This commit is contained in:
Matthew Little 2014-01-09 13:09:57 -05:00
parent a136f922c6
commit 773ef4c9b2
18 changed files with 1077 additions and 43 deletions

View File

@ -13,13 +13,12 @@ Features (mostly untested)
* Block template / job manager
* Optimized generation transaction building
* Process share submissions
* Supports algos: scrypt, scrypt-jane, quark
#### To do
* Proof-of-stake support
* Payment processing module
* Support more algos (scrypt, scrypt-jane, quark)
* Port [scrypt hash](https://github.com/Tydus/litecoin_scrypt) to node module
* Port [scrypt-jane hash](https://github.com/Rav3nPL/p2pool-yac/tree/master/yac_scrypt) to node module
* Port [quark hash](https://github.com/Neisklar/quarkcoin-hash-python) to node module
* Vardiff
* Statistics module
* Integrate with PostgreSQL database
* Web frontend
@ -32,6 +31,7 @@ Requirements
* PostgreSQL
* npm dependencies
* [scrypt256-hash](https://github.com/zone117x/node-scrypt256-hash)
* [scrypt-jane-hash](https://github.com/zone117x/node-scrypt-jane-hash)
* [quark-hash](https://github.com/zone117x/node-quark-hash)
* [binpack](https://github.com/russellmcc/node-binpack)
* [bignum](https://github.com/justmoon/node-bignum)

View File

@ -57,13 +57,16 @@ var BlockTemplate = module.exports = function BlockTemplate(jobId, rpcData, publ
var header = new Buffer(80);
var position = 0;
header.writeUInt32BE(nonce, position);
header.write(nonce, position, 4, 'hex');
header.write(rpcData.bits, position += 4, 4, 'hex');
header.writeUInt32BE(nTime, position += 4);
header.write(nTime, position += 4, 4, 'hex');
header.write(merkleRoot, position += 4, 32, 'hex');
header.write(rpcData.previousblockhash, position += 32, 32, 'hex');
header.writeUInt32BE(rpcData.version, position + 32);
var header = reverseBuffer(header);
var header = util.reverseBuffer(header);
var test = header.toString('hex');
return header;
@ -86,8 +89,8 @@ var BlockTemplate = module.exports = function BlockTemplate(jobId, rpcData, publ
]);
};
this.registerSubmit = function(extraNonce1Buffer, extraNonce2, nTime, nonce){
var submission = extraNonce1Buffer.toString('hex') + extraNonce2 + nTime + nonce;
this.registerSubmit = function(extraNonce1, extraNonce2, nTime, nonce){
var submission = extraNonce1 + extraNonce2 + nTime + nonce;
if (submits.indexOf(submission) === -1){
submits.push(submission);
return true;

View File

@ -34,7 +34,7 @@ var JobCounter = function(){
this.next = function(){
counter++;
if (counter % 0xffff == 0)
if (counter % 0xffff === 0)
counter = 1;
return counter.toString(16);
};
@ -49,16 +49,31 @@ var JobManager = module.exports = function JobManager(options){
var jobCounter = new JobCounter();
var jobs = {};
function CheckNewIfNewBlock(blockTemplate){
var newBlock = true;
for(var job in jobs){
if (jobs[job].rpcData.previousblockhash == blockTemplate.rpcData.previousblockhash)
if (jobs[job].rpcData.previousblockhash === blockTemplate.rpcData.previousblockhash)
newBlock = false;
}
if (newBlock)
_this.emit('newBlock', blockTemplate);
}
var diffDividend = bignum.fromBuffer(new Buffer((function(){
switch(options.algorithm){
case 'sha256':
return '00000000ffff0000000000000000000000000000000000000000000000000000';
case 'scrypt':
case 'scrypt-jane':
return '0000ffff00000000000000000000000000000000000000000000000000000000';
case 'quark':
return '000000ffff000000000000000000000000000000000000000000000000000000'
}
})(), 'hex'));
//public members
@ -72,7 +87,7 @@ var JobManager = module.exports = function JobManager(options){
jobs[this.currentJob.jobId] = this.currentJob;
CheckNewIfNewBlock(this.currentJob);
};
this.processShare = function(jobId, difficulty, extraNonce1Buffer, extraNonce2, nTime, nonce){
this.processShare = function(jobId, difficulty, extraNonce1, extraNonce2, nTime, nonce){
var submitTime = Date.now() / 1000 | 0;
@ -98,20 +113,22 @@ var JobManager = module.exports = function JobManager(options){
return {error: [20, 'incorrect size of nonce']};
if (!job.registerSubmit(extraNonce1Buffer, extraNonce2, nTime, nonce))
if (!job.registerSubmit(extraNonce1, extraNonce2, nTime, nonce))
return {error: [22, 'duplicate share', null]};
var extraNonce1Buffer = new Buffer(extraNonce1, 'hex');
var extraNonce2Buffer = new Buffer(extraNonce2, 'hex');
var coinbaseBuffer = job.serializeCoinbase(extraNonce1Buffer, extraNonce2Buffer);
var coinbaseHash = util.doublesha(coinbaseBuffer);
var merkleRoot = job.merkleTree.withFirst(coinbaseHash).toString('hex');
var merkleRoot = job.merkleTree.withFirst(coinbaseHash);
for (var i = 0; i < 8; i++) merkleRoot.writeUInt32LE(merkleRoot.readUInt32BE(i * 4), i * 4);
merkleRoot = util.reverseBuffer(merkleRoot).toString('hex');
var headerBuffer = job.serializeHeader(merkleRoot, nTime, nonce);
for (var i = 0; i < 20; i++) headerBuffer.writeUInt32LE(headerBuffer.readUInt32BE(i * 4), i * 4);
var headerHash = (function(){
switch(options.algorithm){
case 'sha256':
@ -125,17 +142,19 @@ var JobManager = module.exports = function JobManager(options){
}
})();
var headerBigNum = bignum.fromBuffer(headerHash);
var targetUser = bignum.fromBuffer(
new Buffer('00000000ffff0000000000000000000000000000000000000000000000000000', 'hex')
).div(difficulty);
if (headerBigNum.gt(targetUser))
var headerBigNum = bignum.fromBuffer(headerHash, {endian: 'little', size: 32});
if (job.target.ge(headerBigNum)){
var blockHex = job.serializeBlock(headerBuffer, coinbaseBuffer);
_this.emit('blockFound', blockHex);
}
var targetUser = diffDividend.div(difficulty);
if (headerBigNum.gt(targetUser)){
console.log('target:' + targetUser.toString());
console.log('share:' + headerBigNum.toString());
return {error: [23, 'low difficulty share', null]};
if (headerBigNum.gt(job.target)){
_this.emit('blockFound', job.serializeBlock(headerBuffer, coinbaseBuffer));
}
return {result: true};

View File

@ -18,6 +18,7 @@ var coins = [
reward: 'POW', //or POS
address: 'D5uXR7F6bTCJKRZBqj1D4gyHF9MHAd5oNs',
stratumPort: 3333,
difficulty: 8,
daemon: {
bin: 'dogecoind',
port: 8332,

View File

@ -24,7 +24,7 @@ var MerkleTree = module.exports = function MerkleTree(data){
if (Ll > 1){
while (true){
if (Ll == 1)
if (Ll === 1)
break;
steps.push(L[1]);

37
pool.js
View File

@ -21,13 +21,22 @@ var pool = module.exports = function pool(coin){
});
this.jobManager.on('newBlock', function(blockTemplate){
_this.stratumServer.broadcastMiningJobs(blockTemplate.getJobParams());
}).on('blockFound', function(blockBuffer){
_this.daemon.cmd('submitblock',
[blockBuffer.toString('hex')],
function(error, result){
}).on('blockFound', function(blockHex){
}
);
if (coin.options.hasSubmitMethod)
_this.daemon.cmd('submitblock',
[blockHex],
function(error, result){
}
);
else
_this.daemon.cmd('getblocktemplate',
[{'mode': 'submit', 'data': blockHex}],
function(error, result){
}
);
});
@ -68,7 +77,6 @@ var pool = module.exports = function pool(coin){
_this.daemon.cmd('submitblock',
[],
function(error, result){
console.log(error);
if (error && error.message === 'Method not found')
callback(null, false);
else
@ -104,19 +112,22 @@ var pool = module.exports = function pool(coin){
client.on('subscription', function(params, resultCallback){
var extraNonce = _this.jobManager.extraNonceCounter.next();
var extraNonce2Size = _this.jobManager.extraNonce2Size;
resultCallback(null, extraNonce, extraNonce2Size);
this.sendDifficulty(1);
resultCallback(null,
extraNonce,
extraNonce2Size
);
this.sendDifficulty(coin.options.difficulty);
this.sendMiningJob(_this.jobManager.currentJob.getJobParams());
}).on('authorize', function(params, resultCallback){
resultCallback(null, true);
}).on('submit', function(params, resultCallback){
var result =_this.jobManager.processShare(
result.jobId,
params.jobId,
client.difficulty,
client.extraNonce1,
result.extraNonce2,
result.nTime,
result.nonce
params.extraNonce2,
params.nTime,
params.nonce
);
if (result.error){
resultCallback(result.error);

View File

@ -0,0 +1,681 @@
/*-
* Copyright 2009 Colin Percival, 2011 ArtForz
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file was originally written by Colin Percival as part of the Tarsnap
* online backup system.
*/
#include "scrypt.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
static __inline uint32_t
be32dec(const void *pp)
{
const uint8_t *p = (uint8_t const *)pp;
return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8) +
((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24));
}
static __inline void
be32enc(void *pp, uint32_t x)
{
uint8_t * p = (uint8_t *)pp;
p[3] = x & 0xff;
p[2] = (x >> 8) & 0xff;
p[1] = (x >> 16) & 0xff;
p[0] = (x >> 24) & 0xff;
}
static __inline uint32_t
le32dec(const void *pp)
{
const uint8_t *p = (uint8_t const *)pp;
return ((uint32_t)(p[0]) + ((uint32_t)(p[1]) << 8) +
((uint32_t)(p[2]) << 16) + ((uint32_t)(p[3]) << 24));
}
static __inline void
le32enc(void *pp, uint32_t x)
{
uint8_t * p = (uint8_t *)pp;
p[0] = x & 0xff;
p[1] = (x >> 8) & 0xff;
p[2] = (x >> 16) & 0xff;
p[3] = (x >> 24) & 0xff;
}
typedef struct SHA256Context {
uint32_t state[8];
uint32_t count[2];
unsigned char buf[64];
} SHA256_CTX;
typedef struct HMAC_SHA256Context {
SHA256_CTX ictx;
SHA256_CTX octx;
} HMAC_SHA256_CTX;
/*
* Encode a length len/4 vector of (uint32_t) into a length len vector of
* (unsigned char) in big-endian form. Assumes len is a multiple of 4.
*/
static void
be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len)
{
size_t i;
for (i = 0; i < len / 4; i++)
be32enc(dst + i * 4, src[i]);
}
/*
* Decode a big-endian length len vector of (unsigned char) into a length
* len/4 vector of (uint32_t). Assumes len is a multiple of 4.
*/
static void
be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len)
{
size_t i;
for (i = 0; i < len / 4; i++)
dst[i] = be32dec(src + i * 4);
}
/* Elementary functions used by SHA256 */
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define SHR(x, n) (x >> n)
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
/* SHA256 round function */
#define RND(a, b, c, d, e, f, g, h, k) \
t0 = h + S1(e) + Ch(e, f, g) + k; \
t1 = S0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1;
/* Adjusted round function for rotating state */
#define RNDr(S, W, i, k) \
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
S[(66 - i) % 8], S[(67 - i) % 8], \
S[(68 - i) % 8], S[(69 - i) % 8], \
S[(70 - i) % 8], S[(71 - i) % 8], \
W[i] + k)
/*
* SHA256 block compression function. The 256-bit state is transformed via
* the 512-bit input block to produce a new state.
*/
static void
SHA256_Transform(uint32_t * state, const unsigned char block[64])
{
uint32_t W[64];
uint32_t S[8];
uint32_t t0, t1;
int i;
/* 1. Prepare message schedule W. */
be32dec_vect(W, block, 64);
for (i = 16; i < 64; i++)
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
/* 2. Initialize working variables. */
memcpy(S, state, 32);
/* 3. Mix. */
RNDr(S, W, 0, 0x428a2f98);
RNDr(S, W, 1, 0x71374491);
RNDr(S, W, 2, 0xb5c0fbcf);
RNDr(S, W, 3, 0xe9b5dba5);
RNDr(S, W, 4, 0x3956c25b);
RNDr(S, W, 5, 0x59f111f1);
RNDr(S, W, 6, 0x923f82a4);
RNDr(S, W, 7, 0xab1c5ed5);
RNDr(S, W, 8, 0xd807aa98);
RNDr(S, W, 9, 0x12835b01);
RNDr(S, W, 10, 0x243185be);
RNDr(S, W, 11, 0x550c7dc3);
RNDr(S, W, 12, 0x72be5d74);
RNDr(S, W, 13, 0x80deb1fe);
RNDr(S, W, 14, 0x9bdc06a7);
RNDr(S, W, 15, 0xc19bf174);
RNDr(S, W, 16, 0xe49b69c1);
RNDr(S, W, 17, 0xefbe4786);
RNDr(S, W, 18, 0x0fc19dc6);
RNDr(S, W, 19, 0x240ca1cc);
RNDr(S, W, 20, 0x2de92c6f);
RNDr(S, W, 21, 0x4a7484aa);
RNDr(S, W, 22, 0x5cb0a9dc);
RNDr(S, W, 23, 0x76f988da);
RNDr(S, W, 24, 0x983e5152);
RNDr(S, W, 25, 0xa831c66d);
RNDr(S, W, 26, 0xb00327c8);
RNDr(S, W, 27, 0xbf597fc7);
RNDr(S, W, 28, 0xc6e00bf3);
RNDr(S, W, 29, 0xd5a79147);
RNDr(S, W, 30, 0x06ca6351);
RNDr(S, W, 31, 0x14292967);
RNDr(S, W, 32, 0x27b70a85);
RNDr(S, W, 33, 0x2e1b2138);
RNDr(S, W, 34, 0x4d2c6dfc);
RNDr(S, W, 35, 0x53380d13);
RNDr(S, W, 36, 0x650a7354);
RNDr(S, W, 37, 0x766a0abb);
RNDr(S, W, 38, 0x81c2c92e);
RNDr(S, W, 39, 0x92722c85);
RNDr(S, W, 40, 0xa2bfe8a1);
RNDr(S, W, 41, 0xa81a664b);
RNDr(S, W, 42, 0xc24b8b70);
RNDr(S, W, 43, 0xc76c51a3);
RNDr(S, W, 44, 0xd192e819);
RNDr(S, W, 45, 0xd6990624);
RNDr(S, W, 46, 0xf40e3585);
RNDr(S, W, 47, 0x106aa070);
RNDr(S, W, 48, 0x19a4c116);
RNDr(S, W, 49, 0x1e376c08);
RNDr(S, W, 50, 0x2748774c);
RNDr(S, W, 51, 0x34b0bcb5);
RNDr(S, W, 52, 0x391c0cb3);
RNDr(S, W, 53, 0x4ed8aa4a);
RNDr(S, W, 54, 0x5b9cca4f);
RNDr(S, W, 55, 0x682e6ff3);
RNDr(S, W, 56, 0x748f82ee);
RNDr(S, W, 57, 0x78a5636f);
RNDr(S, W, 58, 0x84c87814);
RNDr(S, W, 59, 0x8cc70208);
RNDr(S, W, 60, 0x90befffa);
RNDr(S, W, 61, 0xa4506ceb);
RNDr(S, W, 62, 0xbef9a3f7);
RNDr(S, W, 63, 0xc67178f2);
/* 4. Mix local working variables into global state */
for (i = 0; i < 8; i++)
state[i] += S[i];
/* Clean the stack. */
memset(W, 0, 256);
memset(S, 0, 32);
t0 = t1 = 0;
}
static unsigned char PAD[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/* SHA-256 initialization. Begins a SHA-256 operation. */
static void
SHA256_Init(SHA256_CTX * ctx)
{
/* Zero bits processed so far */
ctx->count[0] = ctx->count[1] = 0;
/* Magic initialization constants */
ctx->state[0] = 0x6A09E667;
ctx->state[1] = 0xBB67AE85;
ctx->state[2] = 0x3C6EF372;
ctx->state[3] = 0xA54FF53A;
ctx->state[4] = 0x510E527F;
ctx->state[5] = 0x9B05688C;
ctx->state[6] = 0x1F83D9AB;
ctx->state[7] = 0x5BE0CD19;
}
/* Add bytes into the hash */
static void
SHA256_Update(SHA256_CTX * ctx, const void *in, size_t len)
{
uint32_t bitlen[2];
uint32_t r;
const unsigned char *src = in;
/* Number of bytes left in the buffer from previous updates */
r = (ctx->count[1] >> 3) & 0x3f;
/* Convert the length into a number of bits */
bitlen[1] = ((uint32_t)len) << 3;
bitlen[0] = (uint32_t)(len >> 29);
/* Update number of bits */
if ((ctx->count[1] += bitlen[1]) < bitlen[1])
ctx->count[0]++;
ctx->count[0] += bitlen[0];
/* Handle the case where we don't need to perform any transforms */
if (len < 64 - r) {
memcpy(&ctx->buf[r], src, len);
return;
}
/* Finish the current block */
memcpy(&ctx->buf[r], src, 64 - r);
SHA256_Transform(ctx->state, ctx->buf);
src += 64 - r;
len -= 64 - r;
/* Perform complete blocks */
while (len >= 64) {
SHA256_Transform(ctx->state, src);
src += 64;
len -= 64;
}
/* Copy left over data into buffer */
memcpy(ctx->buf, src, len);
}
/* Add padding and terminating bit-count. */
static void
SHA256_Pad(SHA256_CTX * ctx)
{
unsigned char len[8];
uint32_t r, plen;
/*
* Convert length to a vector of bytes -- we do this now rather
* than later because the length will change after we pad.
*/
be32enc_vect(len, ctx->count, 8);
/* Add 1--64 bytes so that the resulting length is 56 mod 64 */
r = (ctx->count[1] >> 3) & 0x3f;
plen = (r < 56) ? (56 - r) : (120 - r);
SHA256_Update(ctx, PAD, (size_t)plen);
/* Add the terminating bit-count */
SHA256_Update(ctx, len, 8);
}
/*
* SHA-256 finalization. Pads the input data, exports the hash value,
* and clears the context state.
*/
static void
SHA256_Final(unsigned char digest[32], SHA256_CTX * ctx)
{
/* Add padding */
SHA256_Pad(ctx);
/* Write the hash */
be32enc_vect(digest, ctx->state, 32);
/* Clear the context state */
memset((void *)ctx, 0, sizeof(*ctx));
}
/* Initialize an HMAC-SHA256 operation with the given key. */
static void
HMAC_SHA256_Init(HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen)
{
unsigned char pad[64];
unsigned char khash[32];
const unsigned char * K = _K;
size_t i;
/* If Klen > 64, the key is really SHA256(K). */
if (Klen > 64) {
SHA256_Init(&ctx->ictx);
SHA256_Update(&ctx->ictx, K, Klen);
SHA256_Final(khash, &ctx->ictx);
K = khash;
Klen = 32;
}
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
SHA256_Init(&ctx->ictx);
memset(pad, 0x36, 64);
for (i = 0; i < Klen; i++)
pad[i] ^= K[i];
SHA256_Update(&ctx->ictx, pad, 64);
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
SHA256_Init(&ctx->octx);
memset(pad, 0x5c, 64);
for (i = 0; i < Klen; i++)
pad[i] ^= K[i];
SHA256_Update(&ctx->octx, pad, 64);
/* Clean the stack. */
memset(khash, 0, 32);
}
/* Add bytes to the HMAC-SHA256 operation. */
static void
HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void *in, size_t len)
{
/* Feed data to the inner SHA256 operation. */
SHA256_Update(&ctx->ictx, in, len);
}
/* Finish an HMAC-SHA256 operation. */
static void
HMAC_SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX * ctx)
{
unsigned char ihash[32];
/* Finish the inner SHA256 operation. */
SHA256_Final(ihash, &ctx->ictx);
/* Feed the inner hash to the outer SHA256 operation. */
SHA256_Update(&ctx->octx, ihash, 32);
/* Finish the outer SHA256 operation. */
SHA256_Final(digest, &ctx->octx);
/* Clean the stack. */
memset(ihash, 0, 32);
}
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
static void
PBKDF2_SHA256(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt,
size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen)
{
HMAC_SHA256_CTX PShctx, hctx;
size_t i;
uint8_t ivec[4];
uint8_t U[32];
uint8_t T[32];
uint64_t j;
int k;
size_t clen;
/* Compute HMAC state after processing P and S. */
HMAC_SHA256_Init(&PShctx, passwd, passwdlen);
HMAC_SHA256_Update(&PShctx, salt, saltlen);
/* Iterate through the blocks. */
for (i = 0; i * 32 < dkLen; i++) {
/* Generate INT(i + 1). */
be32enc(ivec, (uint32_t)(i + 1));
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX));
HMAC_SHA256_Update(&hctx, ivec, 4);
HMAC_SHA256_Final(U, &hctx);
/* T_i = U_1 ... */
memcpy(T, U, 32);
for (j = 2; j <= c; j++) {
/* Compute U_j. */
HMAC_SHA256_Init(&hctx, passwd, passwdlen);
HMAC_SHA256_Update(&hctx, U, 32);
HMAC_SHA256_Final(U, &hctx);
/* ... xor U_j ... */
for (k = 0; k < 32; k++)
T[k] ^= U[k];
}
/* Copy as many bytes as necessary into buf. */
clen = dkLen - i * 32;
if (clen > 32)
clen = 32;
memcpy(&buf[i * 32], T, clen);
}
/* Clean PShctx, since we never called _Final on it. */
memset(&PShctx, 0, sizeof(HMAC_SHA256_CTX));
}
static void blkcpy(void *, void *, size_t);
static void blkxor(void *, void *, size_t);
static void salsa20_8(uint32_t[16]);
static void blockmix_salsa8(uint32_t *, uint32_t *, uint32_t *, size_t);
static uint64_t integerify(void *, size_t);
static void smix(uint8_t *, size_t, uint64_t, uint32_t *, uint32_t *);
static void
blkcpy(void * dest, void * src, size_t len)
{
size_t * D = dest;
size_t * S = src;
size_t L = len / sizeof(size_t);
size_t i;
for (i = 0; i < L; i++)
D[i] = S[i];
}
static void
blkxor(void * dest, void * src, size_t len)
{
size_t * D = dest;
size_t * S = src;
size_t L = len / sizeof(size_t);
size_t i;
for (i = 0; i < L; i++)
D[i] ^= S[i];
}
/**
* salsa20_8(B):
* Apply the salsa20/8 core to the provided block.
*/
static void
salsa20_8(uint32_t B[16])
{
uint32_t x[16];
size_t i;
blkcpy(x, B, 64);
for (i = 0; i < 8; i += 2) {
#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
/* Operate on columns. */
x[ 4] ^= R(x[ 0]+x[12], 7); x[ 8] ^= R(x[ 4]+x[ 0], 9);
x[12] ^= R(x[ 8]+x[ 4],13); x[ 0] ^= R(x[12]+x[ 8],18);
x[ 9] ^= R(x[ 5]+x[ 1], 7); x[13] ^= R(x[ 9]+x[ 5], 9);
x[ 1] ^= R(x[13]+x[ 9],13); x[ 5] ^= R(x[ 1]+x[13],18);
x[14] ^= R(x[10]+x[ 6], 7); x[ 2] ^= R(x[14]+x[10], 9);
x[ 6] ^= R(x[ 2]+x[14],13); x[10] ^= R(x[ 6]+x[ 2],18);
x[ 3] ^= R(x[15]+x[11], 7); x[ 7] ^= R(x[ 3]+x[15], 9);
x[11] ^= R(x[ 7]+x[ 3],13); x[15] ^= R(x[11]+x[ 7],18);
/* Operate on rows. */
x[ 1] ^= R(x[ 0]+x[ 3], 7); x[ 2] ^= R(x[ 1]+x[ 0], 9);
x[ 3] ^= R(x[ 2]+x[ 1],13); x[ 0] ^= R(x[ 3]+x[ 2],18);
x[ 6] ^= R(x[ 5]+x[ 4], 7); x[ 7] ^= R(x[ 6]+x[ 5], 9);
x[ 4] ^= R(x[ 7]+x[ 6],13); x[ 5] ^= R(x[ 4]+x[ 7],18);
x[11] ^= R(x[10]+x[ 9], 7); x[ 8] ^= R(x[11]+x[10], 9);
x[ 9] ^= R(x[ 8]+x[11],13); x[10] ^= R(x[ 9]+x[ 8],18);
x[12] ^= R(x[15]+x[14], 7); x[13] ^= R(x[12]+x[15], 9);
x[14] ^= R(x[13]+x[12],13); x[15] ^= R(x[14]+x[13],18);
#undef R
}
for (i = 0; i < 16; i++)
B[i] += x[i];
}
/**
* blockmix_salsa8(Bin, Bout, X, r):
* Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r
* bytes in length; the output Bout must also be the same size. The
* temporary space X must be 64 bytes.
*/
static void
blockmix_salsa8(uint32_t * Bin, uint32_t * Bout, uint32_t * X, size_t r)
{
size_t i;
/* 1: X <-- B_{2r - 1} */
blkcpy(X, &Bin[(2 * r - 1) * 16], 64);
/* 2: for i = 0 to 2r - 1 do */
for (i = 0; i < 2 * r; i += 2) {
/* 3: X <-- H(X \xor B_i) */
blkxor(X, &Bin[i * 16], 64);
salsa20_8(X);
/* 4: Y_i <-- X */
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
blkcpy(&Bout[i * 8], X, 64);
/* 3: X <-- H(X \xor B_i) */
blkxor(X, &Bin[i * 16 + 16], 64);
salsa20_8(X);
/* 4: Y_i <-- X */
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
blkcpy(&Bout[i * 8 + r * 16], X, 64);
}
}
/**
* integerify(B, r):
* Return the result of parsing B_{2r-1} as a little-endian integer.
*/
static uint64_t
integerify(void * B, size_t r)
{
uint32_t * X = (void *)((uintptr_t)(B) + (2 * r - 1) * 64);
return (((uint64_t)(X[1]) << 32) + X[0]);
}
/**
* smix(B, r, N, V, XY):
* Compute B = SMix_r(B, N). The input B must be 128r bytes in length;
* the temporary storage V must be 128rN bytes in length; the temporary
* storage XY must be 256r + 64 bytes in length. The value N must be a
* power of 2 greater than 1. The arrays B, V, and XY must be aligned to a
* multiple of 64 bytes.
*/
static void
smix(uint8_t * B, size_t r, uint64_t N, uint32_t * V, uint32_t * XY)
{
uint32_t * X = XY;
uint32_t * Y = &XY[32 * r];
uint32_t * Z = &XY[64 * r];
uint64_t i;
uint64_t j;
size_t k;
/* 1: X <-- B */
for (k = 0; k < 32 * r; k++)
X[k] = le32dec(&B[4 * k]);
/* 2: for i = 0 to N - 1 do */
for (i = 0; i < N; i += 2) {
/* 3: V_i <-- X */
blkcpy(&V[i * (32 * r)], X, 128 * r);
/* 4: X <-- H(X) */
blockmix_salsa8(X, Y, Z, r);
/* 3: V_i <-- X */
blkcpy(&V[(i + 1) * (32 * r)], Y, 128 * r);
/* 4: X <-- H(X) */
blockmix_salsa8(Y, X, Z, r);
}
/* 6: for i = 0 to N - 1 do */
for (i = 0; i < N; i += 2) {
/* 7: j <-- Integerify(X) mod N */
j = integerify(X, r) & (N - 1);
/* 8: X <-- H(X \xor V_j) */
blkxor(X, &V[j * (32 * r)], 128 * r);
blockmix_salsa8(X, Y, Z, r);
/* 7: j <-- Integerify(X) mod N */
j = integerify(Y, r) & (N - 1);
/* 8: X <-- H(X \xor V_j) */
blkxor(Y, &V[j * (32 * r)], 128 * r);
blockmix_salsa8(Y, X, Z, r);
}
/* 10: B' <-- X */
for (k = 0; k < 32 * r; k++)
le32enc(&B[4 * k], X[k]);
}
/* cpu and memory intensive function to transform a 80 byte buffer into a 32 byte output
scratchpad size needs to be at least 63 + (128 * r * p) + (256 * r + 64) + (128 * r * N) bytes
*/
void scrypt_1024_1_1_256_sp(const char* input, char* output, char* scratchpad)
{
uint8_t * B;
uint32_t * V;
uint32_t * XY;
uint32_t i;
const uint32_t N = 1024;
const uint32_t r = 1;
const uint32_t p = 1;
B = (uint8_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63));
XY = (uint32_t *)(B + (128 * r * p));
V = (uint32_t *)(B + (128 * r * p) + (256 * r + 64));
/* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
PBKDF2_SHA256((const uint8_t*)input, 80, (const uint8_t*)input, 80, 1, B, p * 128 * r);
/* 2: for i = 0 to p - 1 do */
for (i = 0; i < p; i++) {
/* 3: B_i <-- MF(B_i, N) */
smix(&B[i * 128 * r], r, N, V, XY);
}
/* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
PBKDF2_SHA256((const uint8_t*)input, 80, B, p * 128 * r, 1, (uint8_t*)output, 32);
}
void scrypt_1024_1_1_256(const char* input, char* output)
{
char scratchpad[131583];
scrypt_1024_1_1_256_sp(input, output, scratchpad);
}

View File

@ -0,0 +1,16 @@
#ifndef SCRYPT_H
#define SCRYPT_H
#ifdef __cplusplus
extern "C" {
#endif
void scrypt_1024_1_1_256(const char* input, char* output);
void scrypt_1024_1_1_256_sp(const char* input, char* output, char* scratchpad);
#define scrypt_scratchpad_size 131583;
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,57 @@
#include <Python.h>
#include "scrypt.h"
static PyObject *scrypt_getpowhash(PyObject *self, PyObject *args)
{
char *output;
PyObject *value;
#if PY_MAJOR_VERSION >= 3
PyBytesObject *input;
#else
PyStringObject *input;
#endif
if (!PyArg_ParseTuple(args, "S", &input))
return NULL;
Py_INCREF(input);
output = PyMem_Malloc(32);
#if PY_MAJOR_VERSION >= 3
scrypt_1024_1_1_256((char *)PyBytes_AsString((PyObject*) input), output);
#else
scrypt_1024_1_1_256((char *)PyString_AsString((PyObject*) input), output);
#endif
Py_DECREF(input);
#if PY_MAJOR_VERSION >= 3
value = Py_BuildValue("y#", output, 32);
#else
value = Py_BuildValue("s#", output, 32);
#endif
PyMem_Free(output);
return value;
}
static PyMethodDef ScryptMethods[] = {
{ "getPoWHash", scrypt_getpowhash, METH_VARARGS, "Returns the proof of work hash using scrypt" },
{ NULL, NULL, 0, NULL }
};
#if PY_MAJOR_VERSION >= 3
static struct PyModuleDef ScryptModule = {
PyModuleDef_HEAD_INIT,
"ltc_scrypt",
"...",
-1,
ScryptMethods
};
PyMODINIT_FUNC PyInit_ltc_scrypt(void) {
return PyModule_Create(&ScryptModule);
}
#else
PyMODINIT_FUNC initltc_scrypt(void) {
(void) Py_InitModule("ltc_scrypt", ScryptMethods);
}
#endif

View File

@ -0,0 +1,11 @@
from distutils.core import setup, Extension
ltc_scrypt_module = Extension('ltc_scrypt',
sources = ['scryptmodule.c',
'scrypt.c'],
include_dirs=['.'])
setup (name = 'ltc_scrypt',
version = '1.0',
description = 'Bindings for scrypt proof of work used by Litecoin',
ext_modules = [ltc_scrypt_module])

177
python/util.py Normal file
View File

@ -0,0 +1,177 @@
import binascii
import struct
from hashlib import sha256
import ltc_scrypt
def ser_number(n):
# For encoding nHeight into coinbase
s = bytearray(b'\1')
while n > 127:
s[0] += 1
s.append(n % 256)
n //= 256
s.append(n)
return bytes(s)
def ser_string(s):
if len(s) < 253:
return chr(len(s)) + s
elif len(s) < 0x10000:
print "here"
return chr(253) + struct.pack("<H", len(s)) + s
elif len(s) < 0x100000000L:
return chr(254) + struct.pack("<I", len(s)) + s
else:
return chr(255) + struct.pack("<Q", len(s)) + s
def doublesha(b):
return sha256(sha256(b).digest()).digest()
__b58chars = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'
__b58base = len(__b58chars)
def b58decode(v, length):
""" decode v into a string of len bytes
"""
long_value = 0L
for (i, c) in enumerate(v[::-1]):
long_value += __b58chars.find(c) * (__b58base**i)
result = ''
while long_value >= 256:
div, mod = divmod(long_value, 256)
result = chr(mod) + result
long_value = div
result = chr(long_value) + result
nPad = 0
for c in v:
if c == __b58chars[0]: nPad += 1
else: break
result = chr(0)*nPad + result
if length is not None and len(result) != length:
return None
return result
def address_to_pubkeyhash(addr):
#try:
addr = b58decode(addr, 25)
#except:
# return None
if addr is None:
return None
ver = addr[0]
cksumA = addr[-4:]
cksumB = doublesha(addr[:-4])[:4]
if cksumA != cksumB:
return None
return (ver, addr[1:-4])
def script_to_address(addr):
d = address_to_pubkeyhash(addr)
if not d:
raise ValueError('invalid address')
(ver, pubkeyhash) = d
print "a - " + binascii.hexlify(pubkeyhash)
return b'\x76\xa9\x14' + pubkeyhash + b'\x88\xac'
def ser_uint256(u):
rs = ""
for i in xrange(8):
rs += struct.pack("<I", u & 0xFFFFFFFFL)
u >>= 32
return rs
def uint256_from_str(s):
r = 0L
t = struct.unpack("<IIIIIIII", s[:32])
for i in xrange(8):
r += t[i] << (i * 32)
return r
def ser_uint256_be(u):
'''ser_uint256 to big endian'''
rs = ""
for i in xrange(8):
rs += struct.pack(">I", u & 0xFFFFFFFFL)
u >>= 32
return rs
def reverse_hash(h):
# This only revert byte order, nothing more
if len(h) != 64:
raise Exception('hash must have 64 hexa chars')
return ''.join([ h[56-i:64-i] for i in range(0, 64, 8) ])
def serialize_header(merkle_root_int, ntime_bin, nonce_bin, nVersion, nBits, prevhash_bin):
'''Serialize header for calculating block hash'''
r = struct.pack(">i", nVersion)
r += prevhash_bin
r += ser_uint256_be(merkle_root_int)
r += ntime_bin
r += struct.pack(">I", nBits)
r += nonce_bin
return r
def diff_to_target(difficulty):
diff1 = 0x0000ffff00000000000000000000000000000000000000000000000000000000
return diff1 / difficulty
nonce = "cf280000"
nonce_bin = binascii.unhexlify(nonce)
bits = "1c013403"
nBits = int(bits, 16)
ntime = "52ce31b9"
ntime_bin = binascii.unhexlify(ntime)
merkleroot = "38f3e68be0b74813af175b8da506dfa3c3017ff06fed7ae85e3efee655c9f7fd"
merkle_root_bin = binascii.unhexlify(merkleroot)
merkle_root_int = uint256_from_str(merkle_root_bin)
pbh = "fefbf5b855440b6ac8f742e03558a910969a8232cc0436c59c306e1d493ca917"
prevhash_bin = binascii.unhexlify(reverse_hash(pbh))
version = 1
header_bin = serialize_header(merkle_root_int, ntime_bin, nonce_bin, version, nBits, prevhash_bin)
hash_bin = ''.join([ header_bin[i*4:i*4+4][::-1] for i in range(0, 20) ])
hash_bin = ltc_scrypt.getPoWHash(hash_bin)
hash_int = uint256_from_str(hash_bin)
target_user = diff_to_target(16)
print hash_int
print target_user
if hash_int > target_user:
print 'bad'
else:
print 'good'
for x in range(0, 10):
source = binascii.unhexlify("38f3e68be0b74813af175b8da506dfa3c3017ff06fed7ae85e3efee655c9f7fd");
print binascii.hexlify(source)
print "hash " + str(x) + " " + binascii.hexlify(ltc_scrypt.getPoWHash(source))

View File

@ -12,7 +12,7 @@ var SubscriptionCounter = function(){
return {
next: function(){
count++;
if (Number.MAX_VALUE == count) count = 0;
if (Number.MAX_VALUE === count) count = 0;
return padding + binpack.packUInt64(count, 'big').toString('hex');
}
};
@ -142,6 +142,7 @@ var StratumClient = function(options){
if (dataBuffer.slice(-1) === '\n'){
var messages = dataBuffer.split('\n');
messages.forEach(function(message){
if (message.trim() === '') return;
var messageJson;
try{
messageJson = JSON.parse(message);

59
test.js
View File

@ -1,3 +1,7 @@
var bignum = require('bignum');
var scrypt = require('scrypt256-hash');
var reverseBuffer = function(buff){
var reversed = new Buffer(buff.length);
for (var i = buff.length - 1; i >= 0; i--)
@ -5,6 +9,31 @@ var reverseBuffer = function(buff){
return reversed;
};
var hash = new Buffer("38f3e68be0b74813af175b8da506dfa3c3017ff06fed7ae85e3efee655c9f7fd", 'hex');
var goal = "8be6f3381348b7e08d5b17afa3df06a5f07f01c3e87aed6fe6fe3e5efdf7c955";
var s = scrypt.digest(hash);
console.log(s.toString('hex'));
for (var i = 0; i < 20; i++) s.writeUInt32LE(s.readUInt32BE(i * 4), i * 4);
var nHash = new Buffer(hash.length);
for (var i = 0; i < 8; i++) nHash.writeUInt32LE(hash.readUInt32BE(i * 4), i * 4);
console.log('maybe: ' + nHash.toString('hex'));
var wow = bignum.fromBuffer(hash, {endian: 'little', size: 32}).toBuffer({endian: 'big', size: 32}).toString('hex');
console.log(wow);
console.log(wow == goal ? 'good' : 'fuck');
/*
var bb = new Buffer('0100000017a93c491d6e309cc53604cc32829a9610a95835e042f7c86a0b4455b8f5fbfe38f3e68be0b74813af175b8da506dfa3c3017ff06fed7ae85e3efee655c9f7fdb931ce520334011c000028cf', 'hex');
var hash = scrypt.digest(bb);
console.log(bignum.fromBuffer(hash, {endian: 'little', size: 32}).toString());
*?
/*
var block = {
hash: "409fd235e2fdc7182db92e13eed1b352081d9013ddc90e0acd817e378b8c1d1a",
confirmations: 1,
@ -46,4 +75,32 @@ var header = reverseBuffer(header);
if (phpResult === header.toString('hex'))
console.log('works!!!!!');
else
console.log('fuck');
console.log('fuck');
*/
nonce = "cf280000";
bits = "1c013403";
time = "52ce31b9";
merkleroot = "38f3e68be0b74813af175b8da506dfa3c3017ff06fed7ae85e3efee655c9f7fd";
pbh = "fefbf5b855440b6ac8f742e03558a910969a8232cc0436c59c306e1d493ca917";
version = 1;
merkleroot = reverseBuffer(new Buffer(merkleroot, 'hex')).toString('hex');
var serializeHeader = function(){
var header = new Buffer(80);
var position = 0;
header.write(nonce, position, 4, 'hex');
header.write(bits, position += 4, 4, 'hex');
header.write(time, position += 4, 4, 'hex');
header.write(merkleroot, position += 4, 32, 'hex');
header.write(pbh, position += 32, 32, 'hex');
header.writeUInt32BE(version, position + 32);
var header = reverseBuffer(header);
var test = header.toString('hex');
return header;
};

View File

@ -139,11 +139,11 @@ exports.varIntBuffer = function(n){
};
exports.range = function(start, stop, step){
if (typeof stop == 'undefined'){
if (typeof stop === 'undefined'){
stop = start;
start = 0;
}
if (typeof step == 'undefined'){
if (typeof step === 'undefined'){
step = 1;
}
if ((step > 0 && start >= stop) || (step < 0 && start <= stop)){