zcash_script/depend/zcash/src/txmempool.h

660 lines
28 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2014 The Bitcoin Core developers
// Copyright (c) 2016-2023 The Zcash developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or https://www.opensource.org/licenses/mit-license.php .
#ifndef BITCOIN_TXMEMPOOL_H
#define BITCOIN_TXMEMPOOL_H
#include <list>
#include <memory>
#include <set>
#include "int128.h"
#include "amount.h"
#include "coins.h"
#include "mempool_limit.h"
#include "primitives/transaction.h"
#include "sync.h"
#include "random.h"
#include "addressindex.h"
#include "spentindex.h"
#include "util/time.h"
#include "weighted_map.h"
#include "zcash/Note.hpp"
#undef foreach
#include "boost/multi_index_container.hpp"
#include "boost/multi_index/ordered_index.hpp"
#include "boost/multi_index/hashed_index.hpp"
class CAutoFile;
/** Fake height value used in CCoins to signify they are only in the memory pool (since 0.8) */
static const unsigned int MEMPOOL_HEIGHT = 0x7FFFFFFF;
class CTxMemPool;
/** \class CTxMemPoolEntry
*
* CTxMemPoolEntry stores data about the corresponding transaction, as well
* as data about all in-mempool transactions that depend on the transaction
* ("descendant" transactions).
*
* When a new entry is added to the mempool, we update the descendant state
* (nCountWithDescendants, nSizeWithDescendants, and nModFeesWithDescendants) for
* all ancestors of the newly added transaction.
*
* If updating the descendant state is skipped, we can mark the entry as
* "dirty", and set nSizeWithDescendants/nModFeesWithDescendants to equal nTxSize/
* nFee+feeDelta. (This can potentially happen during a reorg, where we limit the
* amount of work we're willing to do to avoid consuming too much CPU.)
*
*/
class CTxMemPoolEntry
{
private:
std::shared_ptr<const CTransaction> tx;
CAmount nFee; //!< Cached to avoid expensive parent-transaction lookups
size_t nTxSize; //!< ... and avoid recomputing tx size
size_t nUsageSize; //!< ... and total memory usage
int64_t nTime; //!< Local time when entering the mempool
unsigned int nHeight; //!< Chain height when entering the mempool
bool hadNoDependencies; //!< Not dependent on any other txs when it entered the mempool
bool spendsCoinbase; //!< keep track of transactions that spend a coinbase
unsigned int sigOpCount; //!< Legacy sig ops plus P2SH sig op count
int64_t feeDelta; //!< Used for determining the priority of the transaction for mining in a block
uint32_t nBranchId; //!< Branch ID this transaction is known to commit to, cached for efficiency
// Information about descendants of this transaction that are in the
// mempool; if we remove this transaction we must remove all of these
// descendants as well. if nCountWithDescendants is 0, treat this entry as
// dirty, and nSizeWithDescendants and nModFeesWithDescendants will not be
// correct.
uint64_t nCountWithDescendants; //! number of descendant transactions
uint64_t nSizeWithDescendants; //! ... and size
CAmount nModFeesWithDescendants; //! ... and total fees (all including us)
public:
CTxMemPoolEntry(const CTransaction& _tx, const CAmount& _nFee,
int64_t _nTime, unsigned int _nHeight,
bool poolHasNoInputsOf, bool spendsCoinbase,
unsigned int nSigOps, uint32_t nBranchId);
CTxMemPoolEntry(const CTxMemPoolEntry& other);
const CTransaction& GetTx() const { return *this->tx; }
std::shared_ptr<const CTransaction> GetSharedTx() const { return this->tx; }
const CAmount& GetFee() const { return nFee; }
// Return the number of unpaid actions calculated according to ZIP 317.
// <https://zips.z.cash/zip-0317#recommended-algorithm-for-block-template-construction>
size_t GetUnpaidActionCount() const;
// Return a fixed-point representation of the entry's weight ratio according
// to ZIP 317, where 1 is represented by WEIGHT_RATIO_SCALE.
int128_t GetWeightRatio() const;
size_t GetTxSize() const { return nTxSize; }
int64_t GetTime() const { return nTime; }
unsigned int GetHeight() const { return nHeight; }
bool WasClearAtEntry() const { return hadNoDependencies; }
unsigned int GetSigOpCount() const { return sigOpCount; }
int64_t GetModifiedFee() const { return nFee + feeDelta; }
size_t DynamicMemoryUsage() const { return nUsageSize; }
// Adjusts the descendant state, if this entry is not dirty.
void UpdateState(int64_t modifySize, CAmount modifyFee, int64_t modifyCount);
// Updates the fee delta used for mining priority score, and the
// modified fees with descendants.
void UpdateFeeDelta(int64_t feeDelta);
/** We can set the entry to be dirty if doing the full calculation of in-
* mempool descendants will be too expensive, which can potentially happen
* when re-adding transactions from a block back to the mempool.
*/
void SetDirty();
bool IsDirty() const { return nCountWithDescendants == 0; }
uint64_t GetCountWithDescendants() const { return nCountWithDescendants; }
uint64_t GetSizeWithDescendants() const { return nSizeWithDescendants; }
CAmount GetModFeesWithDescendants() const { return nModFeesWithDescendants; }
bool GetSpendsCoinbase() const { return spendsCoinbase; }
uint32_t GetValidatedBranchId() const { return nBranchId; }
};
// Helpers for modifying CTxMemPool::mapTx, which is a boost multi_index.
struct update_descendant_state
{
update_descendant_state(int64_t _modifySize, CAmount _modifyFee, int64_t _modifyCount) :
modifySize(_modifySize), modifyFee(_modifyFee), modifyCount(_modifyCount)
{}
void operator() (CTxMemPoolEntry &e)
{ e.UpdateState(modifySize, modifyFee, modifyCount); }
private:
int64_t modifySize;
CAmount modifyFee;
int64_t modifyCount;
};
struct set_dirty
{
void operator() (CTxMemPoolEntry &e)
{ e.SetDirty(); }
};
struct update_fee_delta
{
update_fee_delta(int64_t _feeDelta) : feeDelta(_feeDelta) { }
void operator() (CTxMemPoolEntry &e) { e.UpdateFeeDelta(feeDelta); }
private:
int64_t feeDelta;
};
// extracts a TxMemPoolEntry's transaction hash
struct mempoolentry_txid
{
typedef uint256 result_type;
result_type operator() (const CTxMemPoolEntry &entry) const
{
return entry.GetTx().GetHash();
}
};
/** \class CompareTxMemPoolEntryByDescendantScore
*
* Sort an entry by max(score/size of entry's tx, score/size with all descendants).
*/
class CompareTxMemPoolEntryByDescendantScore
{
public:
bool operator()(const CTxMemPoolEntry& a, const CTxMemPoolEntry& b) const
{
bool fUseADescendants = UseDescendantScore(a);
bool fUseBDescendants = UseDescendantScore(b);
double aModFee = fUseADescendants ? a.GetModFeesWithDescendants() : a.GetModifiedFee();
double aSize = fUseADescendants ? a.GetSizeWithDescendants() : a.GetTxSize();
double bModFee = fUseBDescendants ? b.GetModFeesWithDescendants() : b.GetModifiedFee();
double bSize = fUseBDescendants ? b.GetSizeWithDescendants() : b.GetTxSize();
// Avoid division by rewriting (a/b > c/d) as (a*d > c*b).
double f1 = aModFee * bSize;
double f2 = aSize * bModFee;
if (f1 == f2) {
return a.GetTime() >= b.GetTime();
}
return f1 < f2;
}
// Calculate which score to use for an entry (avoiding division).
bool UseDescendantScore(const CTxMemPoolEntry &a) const
{
double f1 = (double)a.GetModifiedFee() * a.GetSizeWithDescendants();
double f2 = (double)a.GetModFeesWithDescendants() * a.GetTxSize();
return f2 > f1;
}
};
/** \class CompareTxMemPoolEntryByScore
*
* Sort by score of entry ((fee+delta)/size) in descending order
*/
class CompareTxMemPoolEntryByScore
{
public:
bool operator()(const CTxMemPoolEntry& a, const CTxMemPoolEntry& b) const
{
double f1 = (double)a.GetModifiedFee() * b.GetTxSize();
double f2 = (double)b.GetModifiedFee() * a.GetTxSize();
if (f1 == f2) {
return b.GetTx().GetHash() < a.GetTx().GetHash();
}
return f1 > f2;
}
};
class CompareTxMemPoolEntryByEntryTime
{
public:
bool operator()(const CTxMemPoolEntry& a, const CTxMemPoolEntry& b)
{
return a.GetTime() < b.GetTime();
}
};
// Multi_index tag names
struct descendant_score {};
struct mining_score {};
/** An inpoint - a combination of a transaction and an index n into its vin */
class CInPoint
{
public:
const CTransaction* ptx;
uint32_t n;
CInPoint() { SetNull(); }
CInPoint(const CTransaction* ptxIn, uint32_t nIn) { ptx = ptxIn; n = nIn; }
void SetNull() { ptx = NULL; n = (uint32_t) -1; }
bool IsNull() const { return (ptx == NULL && n == (uint32_t) -1); }
size_t DynamicMemoryUsage() const { return 0; }
};
/**
* Information about a mempool transaction.
*/
struct TxMempoolInfo
{
/** The transaction itself */
std::shared_ptr<const CTransaction> tx;
/** Time the transaction entered the mempool. */
int64_t nTime;
/** Feerate of the transaction. */
CFeeRate feeRate;
};
/**
* CTxMemPool stores valid-according-to-the-current-best-chain
* transactions that may be included in the next block.
*
* Transactions are added when they are seen on the network
* (or created by the local node), but not all transactions seen
* are added to the pool: if a new transaction double-spends
* an input of a transaction in the pool, it is dropped,
* as are non-standard transactions.
*
* CTxMemPool::mapTx, and CTxMemPoolEntry bookkeeping:
*
* mapTx is a boost::multi_index that sorts the mempool on 2 criteria:
* - transaction hash
* - feerate [we use max(feerate of tx, feerate of tx with all descendants)]
* - mining score (feerate modified by any fee deltas from PrioritiseTransaction)
*
* Note: the term "descendant" refers to in-mempool transactions that depend on
* this one, while "ancestor" refers to in-mempool transactions that a given
* transaction depends on.
*
* In order for the feerate sort to remain correct, we must update transactions
* in the mempool when new descendants arrive. To facilitate this, we track
* the set of in-mempool direct parents and direct children in mapLinks. Within
* each CTxMemPoolEntry, we track the size and fees of all descendants.
*
* Usually when a new transaction is added to the mempool, it has no in-mempool
* children (because any such children would be an orphan). So in
* addUnchecked(), we:
* - update a new entry's setMemPoolParents to include all in-mempool parents
* - update the new entry's direct parents to include the new tx as a child
* - update all ancestors of the transaction to include the new tx's size/fee
*
* When a transaction is removed from the mempool, we must:
* - update all in-mempool parents to not track the tx in setMemPoolChildren
* - update all ancestors to not include the tx's size/fees in descendant state
* - update all in-mempool children to not include it as a parent
*
* These happen in UpdateForRemoveFromMempool(). (Note that when removing a
* transaction along with its descendants, we must calculate that set of
* transactions to be removed before doing the removal, or else the mempool can
* be in an inconsistent state where it's impossible to walk the ancestors of
* a transaction.)
*
* In the event of a reorg, the assumption that a newly added tx has no
* in-mempool children is false. In particular, the mempool is in an
* inconsistent state while new transactions are being added, because there may
* be descendant transactions of a tx coming from a disconnected block that are
* unreachable from just looking at transactions in the mempool (the linking
* transactions may also be in the disconnected block, waiting to be added).
* Because of this, there's not much benefit in trying to search for in-mempool
* children in addUnchecked(). Instead, in the special case of transactions
* being added from a disconnected block, we require the caller to clean up the
* state, to account for in-mempool, out-of-block descendants for all the
* in-block transactions by calling UpdateTransactionsFromBlock(). Note that
* until this is called, the mempool state is not consistent, and in particular
* mapLinks may not be correct (and therefore functions like
* CalculateMemPoolAncestors() and CalculateDescendants() that rely
* on them to walk the mempool are not generally safe to use).
*
* Computational limits:
*
* Updating all in-mempool ancestors of a newly added transaction can be slow,
* if no bound exists on how many in-mempool ancestors there may be.
* CalculateMemPoolAncestors() takes configurable limits that are designed to
* prevent these calculations from being too CPU intensive.
*
* Adding transactions from a disconnected block can be very time consuming,
* because we don't have a way to limit the number of in-mempool descendants.
* To bound CPU processing, we limit the amount of work we're willing to do
* to properly update the descendant information for a tx being added from
* a disconnected block. If we would exceed the limit, then we instead mark
* the entry as "dirty", and set the feerate for sorting purposes to be equal
* the feerate of the transaction without any descendants.
*
*/
class CTxMemPool
{
private:
uint32_t nCheckFrequency; //!< Value n means that n times in 2^32 we check.
unsigned int nTransactionsUpdated;
uint64_t totalTxSize = 0; //!< sum of all mempool tx' byte sizes
uint64_t cachedInnerUsage; //!< sum of dynamic memory usage of all the map elements (NOT the maps themselves)
std::map<uint256, const CTransaction*> mapRecentlyAddedTx;
uint64_t nRecentlyAddedSequence = 0;
uint64_t nNotifiedSequence = 0;
std::map<uint256, const CTransaction*> mapSproutNullifiers;
std::map<libzcash::nullifier_t, const CTransaction*> mapSaplingNullifiers;
std::map<uint256, const CTransaction*> mapOrchardNullifiers;
RecentlyEvictedList* recentlyEvicted = new RecentlyEvictedList(GetNodeClock(), DEFAULT_MEMPOOL_EVICTION_MEMORY_MINUTES * 60);
MempoolLimitTxSet* limitSet = new MempoolLimitTxSet(DEFAULT_MEMPOOL_TOTAL_COST_LIMIT);
template<typename T>
void checkNullifiers(const std::map<T, const CTransaction*>& mapToUse) const;
CFeeRate minReasonableRelayFee;
public:
typedef boost::multi_index_container<
CTxMemPoolEntry,
boost::multi_index::indexed_by<
// sorted by txid
boost::multi_index::hashed_unique<mempoolentry_txid, SaltedTxidHasher>,
// sorted by fee rate
boost::multi_index::ordered_non_unique<
boost::multi_index::tag<descendant_score>,
boost::multi_index::identity<CTxMemPoolEntry>,
CompareTxMemPoolEntryByDescendantScore
>,
// sorted by score (for mining prioritisation)
boost::multi_index::ordered_unique<
boost::multi_index::tag<mining_score>,
boost::multi_index::identity<CTxMemPoolEntry>,
CompareTxMemPoolEntryByScore
>
>
> indexed_transaction_set;
/**
* This mutex needs to be locked when accessing `mapTx` or other members
* that are guarded by it.
*
* @par Consistency guarantees
*
* By design, it is guaranteed that:
*
* 1. Locking both `cs_main` and `mempool.cs` will give a view of mempool
* that is consistent with current chain tip (`chainActive` and
* `pcoinsTip`) and is fully populated. Fully populated means that if the
* current active chain is missing transactions that were present in a
* previously active chain, all the missing transactions will have been
* re-added to the mempool and should be present if they meet size and
* consistency constraints.
*
* 2. Locking `mempool.cs` without `cs_main` will give a view of a mempool
* consistent with some chain that was active since `cs_main` was last
* locked, and that is fully populated as described above. It is ok for
* code that only needs to query or remove transactions from the mempool
* to lock just `mempool.cs` without `cs_main`.
*
* To provide these guarantees, it is necessary to lock both `cs_main` and
* `mempool.cs` whenever adding transactions to the mempool and whenever
* changing the chain tip. It's necessary to keep both mutexes locked until
* the mempool is consistent with the new chain tip and fully populated.
*
* @par Consistency bug
*
* The second guarantee above is not currently enforced, but
* https://github.com/bitcoin/bitcoin/pull/14193 will fix it. No known code
* in bitcoin currently depends on second guarantee, but it is important to
* fix for third party code that needs be able to frequently poll the
* mempool without locking `cs_main` and without encountering missing
* transactions during reorgs.
*/
mutable RecursiveMutex cs;
indexed_transaction_set mapTx;
typedef indexed_transaction_set::nth_index<0>::type::iterator txiter;
struct CompareIteratorByHash {
bool operator()(const txiter &a, const txiter &b) const {
return a->GetTx().GetHash() < b->GetTx().GetHash();
}
};
typedef std::set<txiter, CompareIteratorByHash> setEntries;
typedef std::deque<txiter> queueEntries;
// Type of a set of candidate transactions to be added to a block template.
typedef WeightedMap<uint256, txiter, int128_t, GetRandInt128> weightedCandidates;
const setEntries & GetMemPoolParents(txiter entry) const;
const setEntries & GetMemPoolChildren(txiter entry) const;
private:
typedef std::map<txiter, setEntries, CompareIteratorByHash> cacheMap;
struct TxLinks {
setEntries parents;
setEntries children;
};
typedef std::map<txiter, TxLinks, CompareIteratorByHash> txlinksMap;
txlinksMap mapLinks;
void UpdateParent(txiter entry, txiter parent, bool add);
void UpdateChild(txiter entry, txiter child, bool add);
// insightexplorer
std::map<CMempoolAddressDeltaKey, CMempoolAddressDelta, CMempoolAddressDeltaKeyCompare> mapAddress;
std::map<uint256, std::vector<CMempoolAddressDeltaKey> > mapAddressInserted;
std::map<CSpentIndexKey, CSpentIndexValue, CSpentIndexKeyCompare> mapSpent;
std::map<uint256, std::vector<CSpentIndexKey>> mapSpentInserted;
std::vector<indexed_transaction_set::const_iterator> GetSortedDepthAndScore() const;
public:
std::map<COutPoint, CInPoint> mapNextTx;
std::map<uint256, CAmount> mapDeltas;
/** Create a new CTxMemPool.
* minReasonableRelayFee should be a feerate which is, roughly, somewhere
* around what it "costs" to relay a transaction around the network and
* below which we would reasonably say a transaction has 0-effective-fee.
*/
CTxMemPool(const CFeeRate& _minReasonableRelayFee);
~CTxMemPool();
/**
* If sanity-checking is turned on, check makes sure the pool is
* consistent (does not contain two transactions that spend the same inputs,
* all inputs are in the mapNextTx array). If sanity-checking is turned off,
* check does nothing.
*/
void check(const CCoinsViewCache *pcoins) const;
void setSanityCheck(double dFrequency = 1.0) { nCheckFrequency = static_cast<uint32_t>(dFrequency * 4294967295.0); }
// addUnchecked must updated state for all ancestors of a given transaction,
// to track size/count of descendant transactions. First version of
// addUnchecked can be used to have it call CalculateMemPoolAncestors(), and
// then invoke the second version.
bool addUnchecked(const uint256& hash, const CTxMemPoolEntry &entry);
bool addUnchecked(const uint256& hash, const CTxMemPoolEntry &entry, setEntries &setAncestors);
// START insightexplorer
void addAddressIndex(const CTxMemPoolEntry &entry, const CCoinsViewCache &view);
void getAddressIndex(const std::vector<std::pair<uint160, int>>& addresses,
std::vector<std::pair<CMempoolAddressDeltaKey, CMempoolAddressDelta>>& results);
void removeAddressIndex(const uint256& txhash);
void addSpentIndex(const CTxMemPoolEntry &entry, const CCoinsViewCache &view);
bool getSpentIndex(const CSpentIndexKey &key, CSpentIndexValue &value);
void removeSpentIndex(const uint256 txhash);
// END insightexplorer
void remove(const CTransaction &tx, std::list<CTransaction>& removed, bool fRecursive = false);
void removeWithAnchor(const uint256 &invalidRoot, ShieldedType type);
void removeForReorg(const CCoinsViewCache *pcoins, unsigned int nMemPoolHeight, int flags);
void removeConflicts(const CTransaction &tx, std::list<CTransaction>& removed);
std::vector<uint256> removeExpired(unsigned int nBlockHeight);
void removeForBlock(const std::vector<CTransaction>& vtx, unsigned int nBlockHeight,
std::list<CTransaction>& conflicts);
void removeWithoutBranchId(uint32_t nMemPoolBranchId);
void clear();
void _clear(); // unlocked
bool CompareDepthAndScore(const uint256& hasha, const uint256& hashb);
void queryHashes(std::vector<uint256>& vtxid);
void pruneSpent(const uint256& hash, CCoins &coins);
unsigned int GetTransactionsUpdated() const;
void AddTransactionsUpdated(unsigned int n);
/**
* Check that none of this transactions inputs are in the mempool, and thus
* the tx is not dependent on other mempool transactions to be included in a block.
*/
bool HasNoInputsOf(const CTransaction& tx) const;
/** Affect CreateNewBlock prioritisation of transactions */
void PrioritiseTransaction(const uint256 hash, const std::string strHash, const CAmount& nFeeDelta);
void ApplyDelta(const uint256 hash, CAmount &nFeeDelta) const;
void ClearPrioritisation(const uint256 hash);
public:
/** Remove a set of transactions from the mempool.
* If a transaction is in this set, then all in-mempool descendants must
* also be in the set.*/
void RemoveStaged(setEntries &stage);
/** When adding transactions from a disconnected block back to the mempool,
* new mempool entries may have children in the mempool (which is generally
* not the case when otherwise adding transactions).
* UpdateTransactionsFromBlock() will find child transactions and update the
* descendant state for each transaction in hashesToUpdate (excluding any
* child transactions present in hashesToUpdate, which are already accounted
* for). Note: hashesToUpdate should be the set of transactions from the
* disconnected block that have been accepted back into the mempool.
*/
void UpdateTransactionsFromBlock(const std::vector<uint256> &hashesToUpdate);
/** Try to calculate all in-mempool ancestors of entry.
* (these are all calculated including the tx itself)
* limitAncestorCount = max number of ancestors
* limitAncestorSize = max size of ancestors
* limitDescendantCount = max number of descendants any ancestor can have
* limitDescendantSize = max size of descendants any ancestor can have
* errString = populated with error reason if any limits are hit
* fSearchForParents = whether to search a tx's vin for in-mempool parents, or
* look up parents from mapLinks. Must be true for entries not in the mempool
*/
bool CalculateMemPoolAncestors(const CTxMemPoolEntry &entry, setEntries &setAncestors, uint64_t limitAncestorCount, uint64_t limitAncestorSize, uint64_t limitDescendantCount, uint64_t limitDescendantSize, std::string &errString, bool fSearchForParents = true);
bool nullifierExists(const uint256& nullifier, ShieldedType type) const;
std::pair<std::vector<CTransaction>, uint64_t> DrainRecentlyAdded();
void SetNotifiedSequence(uint64_t recentlyAddedSequence);
bool IsFullyNotified();
unsigned long size() const
{
LOCK(cs);
return mapTx.size();
}
uint64_t GetTotalTxSize() const
{
LOCK(cs);
return totalTxSize;
}
bool exists(uint256 hash) const
{
LOCK(cs);
return (mapTx.count(hash) != 0);
}
std::shared_ptr<const CTransaction> get(const uint256& hash) const;
TxMempoolInfo info(const uint256& hash) const;
std::vector<TxMempoolInfo> infoAll() const;
size_t DynamicMemoryUsage() const;
void UpdateMetrics() const;
/** Return nCheckFrequency */
uint32_t GetCheckFrequency() const {
return nCheckFrequency;
}
void SetMempoolCostLimit(int64_t totalCostLimit, int64_t evictionMemorySeconds);
// Returns true if a transaction has been recently evicted
bool IsRecentlyEvicted(const uint256& txId);
// If the mempool size limit is exceeded, this evicts transactions from the mempool until it is below capacity
void EnsureSizeLimit();
private:
/** UpdateForDescendants is used by UpdateTransactionsFromBlock to update
* the descendants for a single transaction that has been added to the
* mempool but may have child transactions in the mempool, eg during a
* chain reorg. setExclude is the set of descendant transactions in the
* mempool that must not be accounted for (because any descendants in
* setExclude were added to the mempool after the transaction being
* updated and hence their state is already reflected in the parent
* state).
*
* If updating an entry requires looking at more than maxDescendantsToVisit
* transactions, outside of the ones in setExclude, then give up.
*
* cachedDescendants will be updated with the descendants of the transaction
* being updated, so that future invocations don't need to walk the
* same transaction again, if encountered in another transaction chain.
*/
bool UpdateForDescendants(txiter updateIt,
int maxDescendantsToVisit,
cacheMap &cachedDescendants,
const std::set<uint256> &setExclude);
/** Update ancestors of hash to add/remove it as a descendant transaction. */
void UpdateAncestorsOf(bool add, txiter hash, setEntries &setAncestors);
/** For each transaction being removed, update ancestors and any direct children. */
void UpdateForRemoveFromMempool(const setEntries &entriesToRemove);
/** Sever link between specified transaction and direct children. */
void UpdateChildrenForRemoval(txiter entry);
/** Populate setDescendants with all in-mempool descendants of hash.
* Assumes that setDescendants includes all in-mempool descendants of anything
* already in it. */
void CalculateDescendants(txiter it, setEntries &setDescendants);
/** Before calling removeUnchecked for a given transaction,
* UpdateForRemoveFromMempool must be called on the entire (dependent) set
* of transactions being removed at the same time. We use each
* CTxMemPoolEntry's setMemPoolParents in order to walk ancestors of a
* given transaction that is removed, so we can't remove intermediate
* transactions in a chain before we've updated all the state for the
* removal.
*/
void removeUnchecked(txiter entry);
};
/**
* CCoinsView that brings transactions from a memorypool into view.
* It does not check for spendings by memory pool transactions.
*/
class CCoinsViewMemPool : public CCoinsViewBacked
{
protected:
CTxMemPool &mempool;
public:
CCoinsViewMemPool(CCoinsView *baseIn, CTxMemPool &mempoolIn);
~CCoinsViewMemPool() {}
bool GetNullifier(const uint256 &txid, ShieldedType type) const;
bool GetCoins(const uint256 &txid, CCoins &coins) const;
bool HaveCoins(const uint256 &txid) const;
};
#endif // BITCOIN_TXMEMPOOL_H