zebra/zebra-chain/benches/redpallas.rs

126 lines
4.5 KiB
Rust
Raw Permalink Normal View History

2021-06-29 12:53:55 -07:00
//! Benchmarks for batch verifiication of RedPallas signatures.
// Disabled due to warnings in criterion macros
#![allow(missing_docs)]
use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion, Throughput};
use rand::{thread_rng, Rng};
use reddsa::{
batch,
orchard::{Binding, SpendAuth},
Signature, SigningKey, VerificationKey, VerificationKeyBytes,
};
const MESSAGE_BYTES: &[u8; 0] = b"";
2021-06-29 12:53:55 -07:00
/// A batch verification item of a RedPallas signature variant.
///
/// This struct exists to allow batch processing to be decoupled from the
/// lifetime of the message. This is useful when using the batch verification
/// API in an async context. The different enum variants are for the different
/// signature types which use different Pallas basepoints for computation.
enum Item {
SpendAuth {
vk_bytes: VerificationKeyBytes<SpendAuth>,
sig: Signature<SpendAuth>,
},
Binding {
vk_bytes: VerificationKeyBytes<Binding>,
sig: Signature<Binding>,
},
}
2021-06-29 12:53:55 -07:00
/// Generates an iterator of random [Item]s
///
/// Each [Item] has a unique [SigningKey], randomly chosen [SigType] variant,
2021-06-29 12:53:55 -07:00
/// and signature over the empty message, "".
fn sigs_with_distinct_keys() -> impl Iterator<Item = Item> {
std::iter::repeat_with(|| {
let mut rng = thread_rng();
// let msg = b"";
match rng.gen::<u8>() % 2 {
0 => {
let sk = SigningKey::<SpendAuth>::new(thread_rng());
let vk_bytes = VerificationKey::from(&sk).into();
let sig = sk.sign(thread_rng(), &MESSAGE_BYTES[..]);
Item::SpendAuth { vk_bytes, sig }
}
1 => {
let sk = SigningKey::<Binding>::new(thread_rng());
let vk_bytes = VerificationKey::from(&sk).into();
let sig = sk.sign(thread_rng(), &MESSAGE_BYTES[..]);
Item::Binding { vk_bytes, sig }
}
_ => panic!(),
}
})
}
2021-06-29 12:53:55 -07:00
/// Benchmarks batched vs unbatched RedPallas signature verification.
///
/// Includes heterogeneous groups across [SigType], [SigningKey]s, and messages.
fn bench_batch_verify(c: &mut Criterion) {
let mut group = c.benchmark_group("Batch Verification");
for &n in [8usize, 16, 24, 32, 40, 48, 56, 64].iter() {
group.throughput(Throughput::Elements(n as u64));
let sigs = sigs_with_distinct_keys().take(n).collect::<Vec<_>>();
group.bench_with_input(
BenchmarkId::new("Unbatched verification", n),
&sigs,
|b, sigs| {
b.iter(|| {
for item in sigs.iter() {
match item {
Item::SpendAuth { vk_bytes, sig } => {
assert!(VerificationKey::try_from(*vk_bytes)
.and_then(|vk| vk.verify(MESSAGE_BYTES, sig))
.is_ok());
}
Item::Binding { vk_bytes, sig } => {
assert!(VerificationKey::try_from(*vk_bytes)
.and_then(|vk| vk.verify(MESSAGE_BYTES, sig))
.is_ok());
}
}
}
})
},
);
group.bench_with_input(
BenchmarkId::new("Batched verification", n),
&sigs,
|b, sigs| {
b.iter(|| {
let mut batch = batch::Verifier::new();
for item in sigs.iter() {
match item {
Item::SpendAuth { vk_bytes, sig } => {
batch.queue(batch::Item::from_spendauth(
*vk_bytes,
*sig,
MESSAGE_BYTES,
));
}
Item::Binding { vk_bytes, sig } => {
batch.queue(batch::Item::from_binding(
*vk_bytes,
*sig,
MESSAGE_BYTES,
));
}
}
}
assert!(batch.verify(thread_rng()).is_ok())
})
},
);
}
group.finish();
}
criterion_group!(benches, bench_batch_verify);
criterion_main!(benches);