* replace to_socket_addrs
* refactor `resolve()` into `resolve_host()`
* use `resolve_host()` to resolve config peers
* add DNS_LOOKUP_TIMEOUT constant
* don't block the main thread in initialize
* add hint for port error
* add issue filter for port panic
* add lock file hint
* add metrics endpoint port conflict hint
* add hint for tracing endpoint port conflict
* add acceptance test for resource conflics
* Split out common conflict test code into a function
* Add state, metrics, and tracing conflict tests
* Add a full set of stderr acceptance test functions
This change makes the stdout and stderr acceptance test interfaces
identical.
* move Zcash listener opening
* add todo about hint for disk full
* add constant for lock file
* match path in state cache
* don't match windows cache path
* Use Display for state path logs
Avoids weird escaping on Windows when using Debug
* Add Windows conflict error messages
* Turn PORT_IN_USE_ERROR into a regex
And add another alternative Windows-specific port error
Co-authored-by: teor <teor@riseup.net>
Co-authored-by: Jane Lusby <jane@zfnd.org>
* Bump versions where appropriate
Tested with cargo install --locked --path etc
* Remove fixed panics from 'Known Issues'
* Change to alpha release series in the README
Co-authored-by: teor <teor@riseup.net>
The clippy unknown lints attribute was deprecated in
nightly in rust-lang/rust#80524. The old lint name now produces a
warning.
Since we're using `allow(unknown_lints)` to suppress warnings, we need to
add the canonical name, so we can continue to build without warnings on
nightly.
But we also need to keep the old name, so we can continue to build
without warnings on stable.
And therefore, we also need to disable the "removed lints" warning,
otherwise we'll get warnings about the old name on nightly.
We'll need to keep this transitional clippy config until rustc 1.51 is
stable.
We can't rule out the connection state changing between the state checks
and any eventual failures, particularly in the presence of async code.
So we turn this panic into a warning.
zebra-network's Connection expects that `fail_with` is only called once
per connection, but the overload handling code continues to process the
current request after an overload error, potentially leading to further
failures.
Closes#1599
## Motivation
This PR is motivated by the regression identified in https://github.com/ZcashFoundation/zebra/issues/1349. That PR notes that the metrics stopped working for most of the crates other than `zebrad`.
## Solution
This PR resolves the regression by deduplicating the `metrics` crate dependency. During a recent change we upgraded the metrics version in `zebrad` and a couple other of our crates, but we never updated the dependencies in `zebra-state`, `zebra-consensus`, or `zebra-network`. This caused the metrics macros to attempt to retrieve the current metrics exporter through the wrong function. We would install the metrics exporter in `0.13`, but then attempt to look it up through the `0.12` crate, which contains a different instance of the metrics exporter static variable which is unset. Doing this causes the metrics macros to return `None` for the current exporter after which they just silently give up.
## Related Issues
closes https://github.com/ZcashFoundation/zebra/issues/1349
## Follow Up Work
I noticed we have quite a few duplicate dependencies in our tree. We might be able to save some compilation time by auditing those and deduplicating them as much as possible.
- https://github.com/ZcashFoundation/zebra/issues/1582
Co-authored-by: teor <teor@riseup.net>
The `peer::Client` translates `Request`s into `ClientRequest`s, which
it sends to a background task. If the send is `Ok(())`, it will assume
that it is safe to unconditionally poll the `Receiver` tied to the
`Sender` used to create the `ClientRequest`.
We enforce this invariant via the type system, by converting
`ClientRequest`s to `InProgressClientRequest`s when they are received by
the background task. These conversions are implemented by
`ClientRequestReceiver`.
Changes:
* Revert `ClientRequest` so it uses a `oneshot::Sender`
* Add `InProgressClientRequest`, which is the same as `ClientRequest`,
but has a `MustUseOneshotSender`
* `impl From<ClientRequest> for InProgressClientRequest`
* Add a new `ClientRequestReceiver` type that wraps a
`mpsc::Receiver<ClientRequest>`
* `impl Stream<InProgressClientRequest> for ClientRequestReceiver`,
converting the successful result of `inner.poll_next_unpin` into an
`InProgressClientRequest`
* Replace `client_rx: mpsc::Receiver<ClientRequest>` in `Connection`
with the new `ClientRequestReceiver` type
* `impl From<mpsc::Receiver<ClientRequest>> for ClientRequestReceiver`
This fix also changes heartbeat behaviour in the following ways:
* if the queue is full, the connection is closed. Previously, the sender
would wait until the queue had emptied
* if the queue flush fails, Zebra panics, because it can't send an error
on the ClientRequest sender, so the invariant is broken
Add a MustUseOneshotSender, which panics if its inner sender is unused.
Callers must call `send()` on the MustUseOneshotSender, or ensure that
the sender is canceled.
Replaces an unreliable panic in `Client::call()` with a reliable panic
when a must-use sender is dropped.
Previously, tx would be dropped before send if:
- the success case would have used tx to wait for further messages,
- but the response was actually an error.
Instead, send the error on `tx` and call `fail_with()` using the same
error.
To support this change, allow `fail_with()` to take a `PeerError` or a
`SharedPeerError`.
* Rewrite GetData handling to match the zcashd implementation
`zcashd` silently ignores missing blocks, but sends found transactions
followed by a `NotFound` message:
e7b425298f/src/main.cpp (L5497)
This is significantly different to the behaviour expected by the old
Zebra connection state machine, which expected `NotFound` for blocks.
Also change Zebra's GetData responses to peer request so they ignore
missing blocks.
* Stop hanging on incomplete transaction or block responses
Instead, if the peer sends an unexpected block, unexpected transaction,
or NotFound message:
1. end the request, and return a partial response containing any items
that were successfully received
2. if none of the expected blocks or transactions were received, return
an error, and close the connection
Previously we set the crate versions to 3.x, so that the major version was
aligned with the NU version. But we want to be able to make API changes
independently of the NU schedule.
We modeled a Bitcoin `headers` message as being a list of block headers.
However, the actual data structure is slightly different: it's a list of (block
header, transaction count) pairs. This caused zcashd to reject our headers
messages.
To fix this, introduce a new `CountedHeader` struct with a `block::Header` and
transaction count `usize`, then thread it through the inbound service and the
state.
I tested this locally by running Zebra with these changes and inspecting a
trace-level log of the span of a peer connection that requested a nontrivial
headers packet from us, and verified that it did not reject our message.
The cancellation implementation changes made to the connection state machine
mean that if a response oneshot is dropped, the connection will avoid
cancelling the request. So the heartbeat task does have to wait on the response.
Not all reject messages include a data field. This change partially addresses
a problem that could lead to a depleted peer set:
1. We send a response to a `getheaders` message;
2. The remote peer `reject`s our `headers` message for some reason;
3. We fail to parse their `reject` message and close the connection;
4. Repeating this process, we have no more peers.
This commit fixes (3) but does not address (2).
This makes the span data more compact (e.g., `msg_as_req{msg=block}`) and
restores the Debug impl for Message to show all of the data contained in the
message. The full message is added as a single event at trace level in the
span to preserve the previous full-inspectability.
As we approach our alpha release we've decided we want to plan ahead for the user bug reports we will eventually receive. One of the bigger issues we foresee is determining exactly what version of the software users are running, and particularly how easy it may or may not be for users to accidentally discard this information when reporting bugs.
To defend against this, we've decided to include the exact git sha for any given build in the compiled artifact. This information will then be re-exported as a span early in the application startup process, so that all logs and error messages should include the sha as their very first span. We've also added this sha as issue metadata for `color-eyre`'s github issue url auto generation feature, which should make sure that the sha is easily available in bug reports we receive, even in the absence of logs.
Co-authored-by: teor <teor@riseup.net>
* warn: if there are no peers at all
* info: if there are no ready peers
* trace: the number of ready and unready peers for every request
Log at most one warn or info log per minute, to avoid flooding the
terminal with log lines. Suppress warn and info logs for the first
minute, while the peer set is starting up.
* implement inbound `FindBlocks`
* Handle inbound peer FindHeaders requests
* handle request before having any chain tip
* Split `find_chain_hashes` into smaller functions
Add a `max_len` argument to support `FindHeaders` requests.
Rewrite the hash collection code to use heights, so we can handle the
`stop` hash and "no intersection" cases correctly.
* Split state height functions into "any chain" and "best chain"
* Rename the best chain block method to `best_block`
* Move fmt utilities to zebra_chain::fmt
* Summarise Debug for some Message variants
Co-authored-by: teor <teor@riseup.net>
Co-authored-by: Jane Lusby <jlusby42@gmail.com>
Closes#1183.
The peer set maintains a preselected ready service that it can use to
perform power-of-two-choices (p2c) routing of requests. Ready services
are stored by key (socket address) in an `IndexMap`, and the preselected
service is represented by an `Option<usize>` indexing that map. This
means that whenever the set of ready services changes (e.g., a service
is removed from the peer set, or a service is taken to be used to
process a request), the preselected index is invalidated. The original
P2C-only implementation maintained this invariant but did not document
it.
The change to inventory-based routing introduced a bug by failing to
maintain this invariant and appropriately invalidate the preselected
index. However, this was only noticeable approximately 1/N of the time
on the next request after an inventory-directed request, so the bug
occurred infrequently. Luckily, the use of `.expect` caused the bug to
be an immediate panic, making it possible to identify by inspecting all
uses of the ready service map.