zebra/zebra-chain/src/block/merkle.rs

497 lines
16 KiB
Rust

//! The Bitcoin-inherited Merkle tree of transactions.
use std::{fmt, io::Write, iter};
use hex::{FromHex, ToHex};
use crate::{
serialization::sha256d,
transaction::{self, Transaction, UnminedTx, UnminedTxId, VerifiedUnminedTx},
};
#[cfg(any(test, feature = "proptest-impl"))]
use proptest_derive::Arbitrary;
/// The root of the Bitcoin-inherited transaction Merkle tree, binding the
/// block header to the transactions in the block.
///
/// Note: for V5-onward transactions it does not bind to authorizing data
/// (signature and proofs) which makes it non-malleable [ZIP-244].
///
/// Note that because of a flaw in Bitcoin's design, the `merkle_root` does
/// not always precisely bind the contents of the block (CVE-2012-2459). It
/// is sometimes possible for an attacker to create multiple distinct sets of
/// transactions with the same Merkle root, although only one set will be
/// valid.
///
/// # Malleability
///
/// The Bitcoin source code contains the following note:
///
/// > WARNING! If you're reading this because you're learning about crypto
/// > and/or designing a new system that will use merkle trees, keep in mind
/// > that the following merkle tree algorithm has a serious flaw related to
/// > duplicate txids, resulting in a vulnerability (CVE-2012-2459).
/// > The reason is that if the number of hashes in the list at a given time
/// > is odd, the last one is duplicated before computing the next level (which
/// > is unusual in Merkle trees). This results in certain sequences of
/// > transactions leading to the same merkle root. For example, these two
/// > trees:
/// >
/// > ```ascii
/// > A A
/// > / \ / \
/// > B C B C
/// > / \ | / \ / \
/// > D E F D E F F
/// > / \ / \ / \ / \ / \ / \ / \
/// > 1 2 3 4 5 6 1 2 3 4 5 6 5 6
/// > ```
/// >
/// > for transaction lists \[1,2,3,4,5,6\] and \[1,2,3,4,5,6,5,6\] (where 5 and
/// > 6 are repeated) result in the same root hash A (because the hash of both
/// > of (F) and (F,F) is C).
/// >
/// > The vulnerability results from being able to send a block with such a
/// > transaction list, with the same merkle root, and the same block hash as
/// > the original without duplication, resulting in failed validation. If the
/// > receiving node proceeds to mark that block as permanently invalid
/// > however, it will fail to accept further unmodified (and thus potentially
/// > valid) versions of the same block. We defend against this by detecting
/// > the case where we would hash two identical hashes at the end of the list
/// > together, and treating that identically to the block having an invalid
/// > merkle root. Assuming no double-SHA256 collisions, this will detect all
/// > known ways of changing the transactions without affecting the merkle
/// > root.
///
/// This vulnerability does not apply to Zebra, because it does not store invalid
/// data on disk, and because it does not permanently fail blocks or use an
/// aggressive anti-DoS mechanism.
///
/// [ZIP-244]: https://zips.z.cash/zip-0244
#[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize)]
#[cfg_attr(any(test, feature = "proptest-impl"), derive(Arbitrary))]
pub struct Root(pub [u8; 32]);
impl fmt::Debug for Root {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("Root").field(&hex::encode(self.0)).finish()
}
}
impl From<[u8; 32]> for Root {
fn from(hash: [u8; 32]) -> Self {
Root(hash)
}
}
impl From<Root> for [u8; 32] {
fn from(hash: Root) -> Self {
hash.0
}
}
impl Root {
/// Return the hash bytes in big-endian byte-order suitable for printing out byte by byte.
///
/// Zebra displays transaction and block hashes in big-endian byte-order,
/// following the u256 convention set by Bitcoin and zcashd.
pub fn bytes_in_display_order(&self) -> [u8; 32] {
let mut reversed_bytes = self.0;
reversed_bytes.reverse();
reversed_bytes
}
/// Convert bytes in big-endian byte-order into a [`merkle::Root`](crate::block::merkle::Root).
///
/// Zebra displays transaction and block hashes in big-endian byte-order,
/// following the u256 convention set by Bitcoin and zcashd.
pub fn from_bytes_in_display_order(bytes_in_display_order: &[u8; 32]) -> Root {
let mut internal_byte_order = *bytes_in_display_order;
internal_byte_order.reverse();
Root(internal_byte_order)
}
}
impl ToHex for &Root {
fn encode_hex<T: FromIterator<char>>(&self) -> T {
self.bytes_in_display_order().encode_hex()
}
fn encode_hex_upper<T: FromIterator<char>>(&self) -> T {
self.bytes_in_display_order().encode_hex_upper()
}
}
impl ToHex for Root {
fn encode_hex<T: FromIterator<char>>(&self) -> T {
(&self).encode_hex()
}
fn encode_hex_upper<T: FromIterator<char>>(&self) -> T {
(&self).encode_hex_upper()
}
}
impl FromHex for Root {
type Error = <[u8; 32] as FromHex>::Error;
fn from_hex<T: AsRef<[u8]>>(hex: T) -> Result<Self, Self::Error> {
let mut hash = <[u8; 32]>::from_hex(hex)?;
hash.reverse();
Ok(hash.into())
}
}
fn hash(h1: &[u8; 32], h2: &[u8; 32]) -> [u8; 32] {
let mut w = sha256d::Writer::default();
w.write_all(h1).unwrap();
w.write_all(h2).unwrap();
w.finish()
}
fn auth_data_hash(h1: &[u8; 32], h2: &[u8; 32]) -> [u8; 32] {
// > Non-leaf hashes in this tree are BLAKE2b-256 hashes personalized by
// > the string "ZcashAuthDatHash".
// https://zips.z.cash/zip-0244#block-header-changes
blake2b_simd::Params::new()
.hash_length(32)
.personal(b"ZcashAuthDatHash")
.to_state()
.update(h1)
.update(h2)
.finalize()
.as_bytes()
.try_into()
.expect("32 byte array")
}
impl<T> std::iter::FromIterator<T> for Root
where
T: std::convert::AsRef<Transaction>,
{
fn from_iter<I>(transactions: I) -> Self
where
I: IntoIterator<Item = T>,
{
transactions
.into_iter()
.map(|tx| tx.as_ref().hash())
.collect()
}
}
impl std::iter::FromIterator<UnminedTx> for Root {
fn from_iter<I>(transactions: I) -> Self
where
I: IntoIterator<Item = UnminedTx>,
{
transactions
.into_iter()
.map(|tx| tx.id.mined_id())
.collect()
}
}
impl std::iter::FromIterator<UnminedTxId> for Root {
fn from_iter<I>(tx_ids: I) -> Self
where
I: IntoIterator<Item = UnminedTxId>,
{
tx_ids.into_iter().map(|tx_id| tx_id.mined_id()).collect()
}
}
impl std::iter::FromIterator<VerifiedUnminedTx> for Root {
fn from_iter<I>(transactions: I) -> Self
where
I: IntoIterator<Item = VerifiedUnminedTx>,
{
transactions
.into_iter()
.map(|tx| tx.transaction.id.mined_id())
.collect()
}
}
impl std::iter::FromIterator<transaction::Hash> for Root {
/// # Panics
///
/// When there are no transactions in the iterator.
/// This is impossible, because every block must have a coinbase transaction.
fn from_iter<I>(hashes: I) -> Self
where
I: IntoIterator<Item = transaction::Hash>,
{
let mut hashes = hashes.into_iter().map(|hash| hash.0).collect::<Vec<_>>();
while hashes.len() > 1 {
hashes = hashes
.chunks(2)
.map(|chunk| match chunk {
[h1, h2] => hash(h1, h2),
[h1] => hash(h1, h1),
_ => unreachable!("chunks(2)"),
})
.collect();
}
Self(hashes[0])
}
}
/// The root of the authorizing data Merkle tree, binding the
/// block header to the authorizing data of the block (signatures, proofs)
/// as defined in [ZIP-244].
///
/// See [`Root`] for an important disclaimer.
///
/// [ZIP-244]: https://zips.z.cash/zip-0244
#[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize)]
#[cfg_attr(any(test, feature = "proptest-impl"), derive(Arbitrary))]
pub struct AuthDataRoot(pub(crate) [u8; 32]);
impl fmt::Debug for AuthDataRoot {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("AuthRoot")
.field(&hex::encode(self.0))
.finish()
}
}
impl From<[u8; 32]> for AuthDataRoot {
fn from(hash: [u8; 32]) -> Self {
AuthDataRoot(hash)
}
}
impl From<AuthDataRoot> for [u8; 32] {
fn from(hash: AuthDataRoot) -> Self {
hash.0
}
}
impl AuthDataRoot {
/// Return the hash bytes in big-endian byte-order suitable for printing out byte by byte.
///
/// Zebra displays transaction and block hashes in big-endian byte-order,
/// following the u256 convention set by Bitcoin and zcashd.
pub fn bytes_in_display_order(&self) -> [u8; 32] {
let mut reversed_bytes = self.0;
reversed_bytes.reverse();
reversed_bytes
}
/// Convert bytes in big-endian byte-order into a [`merkle::AuthDataRoot`](crate::block::merkle::AuthDataRoot).
///
/// Zebra displays transaction and block hashes in big-endian byte-order,
/// following the u256 convention set by Bitcoin and zcashd.
pub fn from_bytes_in_display_order(bytes_in_display_order: &[u8; 32]) -> AuthDataRoot {
let mut internal_byte_order = *bytes_in_display_order;
internal_byte_order.reverse();
AuthDataRoot(internal_byte_order)
}
}
impl ToHex for &AuthDataRoot {
fn encode_hex<T: FromIterator<char>>(&self) -> T {
self.bytes_in_display_order().encode_hex()
}
fn encode_hex_upper<T: FromIterator<char>>(&self) -> T {
self.bytes_in_display_order().encode_hex_upper()
}
}
impl ToHex for AuthDataRoot {
fn encode_hex<T: FromIterator<char>>(&self) -> T {
(&self).encode_hex()
}
fn encode_hex_upper<T: FromIterator<char>>(&self) -> T {
(&self).encode_hex_upper()
}
}
impl FromHex for AuthDataRoot {
type Error = <[u8; 32] as FromHex>::Error;
fn from_hex<T: AsRef<[u8]>>(hex: T) -> Result<Self, Self::Error> {
let mut hash = <[u8; 32]>::from_hex(hex)?;
hash.reverse();
Ok(hash.into())
}
}
/// The placeholder used for the [`AuthDigest`](transaction::AuthDigest) of pre-v5 transactions.
///
/// # Consensus
///
/// > For transaction versions before v5, a placeholder value consisting
/// > of 32 bytes of 0xFF is used in place of the authorizing data commitment.
/// > This is only used in the tree committed to by hashAuthDataRoot.
///
/// <https://zips.z.cash/zip-0244#authorizing-data-commitment>
pub const AUTH_DIGEST_PLACEHOLDER: transaction::AuthDigest = transaction::AuthDigest([0xFF; 32]);
impl<T> std::iter::FromIterator<T> for AuthDataRoot
where
T: std::convert::AsRef<Transaction>,
{
fn from_iter<I>(transactions: I) -> Self
where
I: IntoIterator<Item = T>,
{
transactions
.into_iter()
.map(|tx| tx.as_ref().auth_digest().unwrap_or(AUTH_DIGEST_PLACEHOLDER))
.collect()
}
}
impl std::iter::FromIterator<UnminedTx> for AuthDataRoot {
fn from_iter<I>(transactions: I) -> Self
where
I: IntoIterator<Item = UnminedTx>,
{
transactions
.into_iter()
.map(|tx| tx.id.auth_digest().unwrap_or(AUTH_DIGEST_PLACEHOLDER))
.collect()
}
}
impl std::iter::FromIterator<VerifiedUnminedTx> for AuthDataRoot {
fn from_iter<I>(transactions: I) -> Self
where
I: IntoIterator<Item = VerifiedUnminedTx>,
{
transactions
.into_iter()
.map(|tx| {
tx.transaction
.id
.auth_digest()
.unwrap_or(AUTH_DIGEST_PLACEHOLDER)
})
.collect()
}
}
impl std::iter::FromIterator<UnminedTxId> for AuthDataRoot {
fn from_iter<I>(tx_ids: I) -> Self
where
I: IntoIterator<Item = UnminedTxId>,
{
tx_ids
.into_iter()
.map(|tx_id| tx_id.auth_digest().unwrap_or(AUTH_DIGEST_PLACEHOLDER))
.collect()
}
}
impl std::iter::FromIterator<transaction::AuthDigest> for AuthDataRoot {
fn from_iter<I>(hashes: I) -> Self
where
I: IntoIterator<Item = transaction::AuthDigest>,
{
let mut hashes = hashes.into_iter().map(|hash| hash.0).collect::<Vec<_>>();
// > This new commitment is named hashAuthDataRoot and is the root of a
// > binary Merkle tree of transaction authorizing data commitments [...]
// > padded with leaves having the "null" hash value [0u8; 32].
// https://zips.z.cash/zip-0244#block-header-changes
// Pad with enough leaves to make the tree full (a power of 2).
let pad_count = hashes.len().next_power_of_two() - hashes.len();
hashes.extend(iter::repeat([0u8; 32]).take(pad_count));
assert!(hashes.len().is_power_of_two());
while hashes.len() > 1 {
hashes = hashes
.chunks(2)
.map(|chunk| match chunk {
[h1, h2] => auth_data_hash(h1, h2),
_ => unreachable!("number of nodes is always even since tree is full"),
})
.collect();
}
Self(hashes[0])
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{block::Block, serialization::ZcashDeserialize, transaction::AuthDigest};
#[test]
fn block_test_vectors() {
for block_bytes in zebra_test::vectors::BLOCKS.iter() {
let block = Block::zcash_deserialize(&**block_bytes).unwrap();
let merkle_root = block.transactions.iter().collect::<Root>();
assert_eq!(
merkle_root,
block.header.merkle_root,
"block: {:?} {:?} transaction hashes: {:?}",
block.coinbase_height().unwrap(),
block.hash(),
block
.transactions
.iter()
.map(|tx| tx.hash())
.collect::<Vec<_>>()
);
}
}
#[test]
fn auth_digest() {
for block_bytes in zebra_test::vectors::BLOCKS.iter() {
let block = Block::zcash_deserialize(&**block_bytes).unwrap();
let _auth_root = block.transactions.iter().collect::<AuthDataRoot>();
// No test vectors for now, so just check it computes without panicking
}
}
#[test]
fn auth_data_padding() {
// Compute the root of a 3-leaf tree with arbitrary leaves
let mut v = vec![
AuthDigest([0x42; 32]),
AuthDigest([0xAA; 32]),
AuthDigest([0x77; 32]),
];
let root_3 = v.iter().copied().collect::<AuthDataRoot>();
// Compute the root a 4-leaf tree with the same leaves as before and
// an additional all-zeroes leaf.
// Since this is the same leaf used as padding in the previous tree,
// then both trees must have the same root.
v.push(AuthDigest([0x00; 32]));
let root_4 = v.iter().copied().collect::<AuthDataRoot>();
assert_eq!(root_3, root_4);
}
#[test]
fn auth_data_pre_v5() {
// Compute the AuthDataRoot for a single transaction of an arbitrary pre-V5 block
let block =
Block::zcash_deserialize(&**zebra_test::vectors::BLOCK_MAINNET_1046400_BYTES).unwrap();
let auth_root = block.transactions.iter().take(1).collect::<AuthDataRoot>();
// Compute the AuthDataRoot with a single [0xFF; 32] digest.
// Since ZIP-244 specifies that this value must be used as the auth digest of
// pre-V5 transactions, then the roots must match.
let expect_auth_root = [AuthDigest([0xFF; 32])]
.iter()
.copied()
.collect::<AuthDataRoot>();
assert_eq!(auth_root, expect_auth_root);
}
}