zebra/zebra-network/src/peer/handshake.rs

517 lines
21 KiB
Rust

use std::{
collections::HashSet,
future::Future,
net::SocketAddr,
pin::Pin,
sync::{Arc, Mutex},
task::{Context, Poll},
};
use chrono::{TimeZone, Utc};
use futures::{
channel::{mpsc, oneshot},
prelude::*,
};
use tokio::{net::TcpStream, sync::broadcast};
use tokio_util::codec::Framed;
use tower::Service;
use tracing::{span, Level, Span};
use tracing_futures::Instrument;
use zebra_chain::block;
use crate::{
constants,
protocol::{
external::{types::*, Codec, InventoryHash, Message},
internal::{Request, Response},
},
types::MetaAddr,
BoxError, Config,
};
use super::{Client, Connection, ErrorSlot, HandshakeError};
/// A [`Service`] that handshakes with a remote peer and constructs a
/// client/server pair.
#[derive(Clone)]
pub struct Handshake<S> {
config: Config,
inbound_service: S,
timestamp_collector: mpsc::Sender<MetaAddr>,
inv_collector: broadcast::Sender<(InventoryHash, SocketAddr)>,
nonces: Arc<Mutex<HashSet<Nonce>>>,
user_agent: String,
our_services: PeerServices,
relay: bool,
parent_span: Span,
}
pub struct Builder<S> {
config: Option<Config>,
inbound_service: Option<S>,
timestamp_collector: Option<mpsc::Sender<MetaAddr>>,
our_services: Option<PeerServices>,
user_agent: Option<String>,
relay: Option<bool>,
inv_collector: Option<broadcast::Sender<(InventoryHash, SocketAddr)>>,
}
impl<S> Builder<S>
where
S: Service<Request, Response = Response, Error = BoxError> + Clone + Send + 'static,
S::Future: Send,
{
/// Provide a config. Mandatory.
pub fn with_config(mut self, config: Config) -> Self {
self.config = Some(config);
self
}
/// Provide a service to handle inbound requests. Mandatory.
pub fn with_inbound_service(mut self, inbound_service: S) -> Self {
self.inbound_service = Some(inbound_service);
self
}
/// Provide a channel for registering inventory advertisements. Optional.
pub fn with_inventory_collector(
mut self,
inv_collector: broadcast::Sender<(InventoryHash, SocketAddr)>,
) -> Self {
self.inv_collector = Some(inv_collector);
self
}
/// Provide a hook for timestamp collection. Optional.
///
/// If this is unset, timestamps will not be collected.
pub fn with_timestamp_collector(mut self, timestamp_collector: mpsc::Sender<MetaAddr>) -> Self {
self.timestamp_collector = Some(timestamp_collector);
self
}
/// Provide the services this node advertises to other peers. Optional.
///
/// If this is unset, the node will advertise itself as a client.
pub fn with_advertised_services(mut self, services: PeerServices) -> Self {
self.our_services = Some(services);
self
}
/// Provide this node's user agent. Optional.
///
/// This must be a valid BIP14 string. If it is unset, the user-agent will be empty.
pub fn with_user_agent(mut self, user_agent: String) -> Self {
self.user_agent = Some(user_agent);
self
}
/// Whether to request that peers relay transactions to our node. Optional.
///
/// If this is unset, the node will not request transactions.
pub fn want_transactions(mut self, relay: bool) -> Self {
self.relay = Some(relay);
self
}
/// Consume this builder and produce a [`Handshake`].
///
/// Returns an error only if any mandatory field was unset.
pub fn finish(self) -> Result<Handshake<S>, &'static str> {
let config = self.config.ok_or("did not specify config")?;
let inbound_service = self
.inbound_service
.ok_or("did not specify inbound service")?;
let inv_collector = self.inv_collector.unwrap_or_else(|| {
let (tx, _) = broadcast::channel(100);
tx
});
let timestamp_collector = self.timestamp_collector.unwrap_or_else(|| {
// No timestamp collector was passed, so create a stub channel.
// Dropping the receiver means sends will fail, but we don't care.
let (tx, _rx) = mpsc::channel(1);
tx
});
let nonces = Arc::new(Mutex::new(HashSet::new()));
let user_agent = self.user_agent.unwrap_or_else(|| "".to_string());
let our_services = self.our_services.unwrap_or_else(PeerServices::empty);
let relay = self.relay.unwrap_or(false);
Ok(Handshake {
config,
inbound_service,
inv_collector,
timestamp_collector,
nonces,
user_agent,
our_services,
relay,
parent_span: Span::current(),
})
}
}
impl<S> Handshake<S>
where
S: Service<Request, Response = Response, Error = BoxError> + Clone + Send + 'static,
S::Future: Send,
{
/// Create a builder that configures a [`Handshake`] service.
pub fn builder() -> Builder<S> {
// We don't derive `Default` because the derive inserts a `where S:
// Default` bound even though `Option<S>` implements `Default` even if
// `S` does not.
Builder {
config: None,
inbound_service: None,
timestamp_collector: None,
user_agent: None,
our_services: None,
relay: None,
inv_collector: None,
}
}
}
impl<S> Service<(TcpStream, SocketAddr)> for Handshake<S>
where
S: Service<Request, Response = Response, Error = BoxError> + Clone + Send + 'static,
S::Future: Send,
{
type Response = Client;
type Error = BoxError;
type Future =
Pin<Box<dyn Future<Output = Result<Self::Response, Self::Error>> + Send + 'static>>;
fn poll_ready(&mut self, _cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
Poll::Ready(Ok(()))
}
#[instrument(skip(self))]
fn call(&mut self, req: (TcpStream, SocketAddr)) -> Self::Future {
let (tcp_stream, addr) = req;
let connector_span = span!(Level::INFO, "connector", addr = ?addr);
// set parent: None for the peer connection span, as it should exist
// independently of its creation source (inbound connection, crawler,
// initial peer, ...)
let connection_span = span!(parent: &self.parent_span, Level::INFO, "peer", addr = ?addr);
// Clone these upfront, so they can be moved into the future.
let nonces = self.nonces.clone();
let inbound_service = self.inbound_service.clone();
let timestamp_collector = self.timestamp_collector.clone();
let inv_collector = self.inv_collector.clone();
let network = self.config.network;
let our_addr = self.config.listen_addr;
let user_agent = self.user_agent.clone();
let our_services = self.our_services;
let relay = self.relay;
let fut = async move {
debug!("connecting to remote peer");
let mut stream = Framed::new(
tcp_stream,
Codec::builder()
.for_network(network)
.with_metrics_label(addr.ip().to_string())
.finish(),
);
let local_nonce = Nonce::default();
nonces
.lock()
.expect("mutex should be unpoisoned")
.insert(local_nonce);
// Don't leak our exact clock skew to our peers. On the other hand,
// we can't deviate too much, or zcashd will get confused.
// Inspection of the zcashd source code reveals that the timestamp
// is only ever used at the end of parsing the version message, in
//
// pfrom->nTimeOffset = timeWarning.AddTimeData(pfrom->addr, nTime, GetTime());
//
// AddTimeData is defined in src/timedata.cpp and is a no-op as long
// as the difference between the specified timestamp and the
// zcashd's local time is less than TIMEDATA_WARNING_THRESHOLD, set
// to 10 * 60 seconds (10 minutes).
//
// nTimeOffset is peer metadata that is never used, except for
// statistics.
//
// To try to stay within the range where zcashd will ignore our clock skew,
// truncate the timestamp to the nearest 5 minutes.
let now = Utc::now().timestamp();
let timestamp = Utc.timestamp(now - now.rem_euclid(5 * 60), 0);
let version = Message::Version {
version: constants::CURRENT_VERSION,
services: our_services,
timestamp,
address_recv: (PeerServices::NODE_NETWORK, addr),
address_from: (our_services, our_addr),
nonce: local_nonce,
user_agent,
// The protocol works fine if we don't reveal our current block height,
// and not sending it means we don't need to be connected to the chain state.
start_height: block::Height(0),
relay,
};
debug!(?version, "sending initial version message");
stream.send(version).await?;
let remote_msg = stream
.next()
.await
.ok_or(HandshakeError::ConnectionClosed)??;
// Check that we got a Version and destructure its fields into the local scope.
debug!(?remote_msg, "got message from remote peer");
let (remote_nonce, remote_services, remote_version) = if let Message::Version {
nonce,
services,
version,
..
} = remote_msg
{
(nonce, services, version)
} else {
return Err(HandshakeError::UnexpectedMessage(Box::new(remote_msg)));
};
// Check for nonce reuse, indicating self-connection.
let nonce_reuse = {
let mut locked_nonces = nonces.lock().expect("mutex should be unpoisoned");
let nonce_reuse = locked_nonces.contains(&remote_nonce);
// Regardless of whether we observed nonce reuse, clean up the nonce set.
locked_nonces.remove(&local_nonce);
nonce_reuse
};
if nonce_reuse {
return Err(HandshakeError::NonceReuse);
}
stream.send(Message::Verack).await?;
let remote_msg = stream
.next()
.await
.ok_or(HandshakeError::ConnectionClosed)??;
if let Message::Verack = remote_msg {
debug!("got verack from remote peer");
} else {
return Err(HandshakeError::UnexpectedMessage(Box::new(remote_msg)));
}
// XXX in zcashd remote peer can only send one version message and
// we would disconnect here if it received a second one. Is it even possible
// for that to happen to us here?
// TODO: Reject incoming connections from nodes that don't know about the current epoch.
// zcashd does this:
// const Consensus::Params& consensusParams = chainparams.GetConsensus();
// auto currentEpoch = CurrentEpoch(GetHeight(), consensusParams);
// if (pfrom->nVersion < consensusParams.vUpgrades[currentEpoch].nProtocolVersion)
//
// For approximately 1.5 days before a network upgrade, we also need to:
// - avoid old peers, and
// - prefer updated peers.
// For example, we could reject old peers with probability 0.5.
//
// At the network upgrade, we also need to disconnect from old peers.
// TODO: replace min_for_upgrade(network, MIN_NETWORK_UPGRADE) with
// current_min(network, height) where network is the
// configured network, and height is the best tip's block
// height.
if remote_version < Version::min_for_upgrade(network, constants::MIN_NETWORK_UPGRADE) {
// Disconnect if peer is using an obsolete version.
return Err(HandshakeError::ObsoleteVersion(remote_version));
}
// Set the connection's version to the minimum of the received version or our own.
let negotiated_version = std::cmp::min(remote_version, constants::CURRENT_VERSION);
// Reconfigure the codec to use the negotiated version.
//
// XXX The tokio documentation says not to do this while any frames are still being processed.
// Since we don't know that here, another way might be to release the tcp
// stream from the unversioned Framed wrapper and construct a new one with a versioned codec.
let bare_codec = stream.codec_mut();
bare_codec.reconfigure_version(negotiated_version);
debug!("constructing client, spawning server");
// These channels should not be cloned more than they are
// in this block, see constants.rs for more.
let (server_tx, server_rx) = mpsc::channel(0);
let (shutdown_tx, shutdown_rx) = oneshot::channel();
let slot = ErrorSlot::default();
let client = Client {
shutdown_tx: Some(shutdown_tx),
server_tx: server_tx.clone(),
error_slot: slot.clone(),
};
let (peer_tx, peer_rx) = stream.split();
// Instrument the peer's rx and tx streams.
let peer_tx = peer_tx.with(move |msg: Message| {
// Add a metric for outbound messages.
// XXX add a dimension tagging message metrics by type
metrics::counter!("peer.outbound_messages", 1, "addr" => addr.to_string());
// We need to use future::ready rather than an async block here,
// because we need the sink to be Unpin, and the With<Fut, ...>
// returned by .with is Unpin only if Fut is Unpin, and the
// futures generated by async blocks are not Unpin.
future::ready(Ok(msg))
});
let peer_rx = peer_rx
.then(move |msg| {
// Add a metric for inbound messages and fire a timestamp event.
let mut timestamp_collector = timestamp_collector.clone();
async move {
if msg.is_ok() {
// XXX add a dimension tagging message metrics by type
metrics::counter!(
"inbound_messages",
1,
"addr" => addr.to_string(),
);
use futures::sink::SinkExt;
let _ = timestamp_collector
.send(MetaAddr {
addr,
services: remote_services,
last_seen: Utc::now(),
})
.await;
}
msg
}
})
.then(move |msg| {
let inv_collector = inv_collector.clone();
let span = debug_span!("inventory_filter");
async move {
if let Ok(Message::Inv(hashes)) = &msg {
// We ignore inventory messages with more than one
// block, because they are most likely replies to a
// query, rather than a newly gossiped block.
//
// (We process inventory messages with any number of
// transactions.)
//
// https://zebra.zfnd.org/dev/rfcs/0003-inventory-tracking.html#inventory-monitoring
match hashes.as_slice() {
[hash @ InventoryHash::Block(_)] => {
let _ = inv_collector.send((*hash, addr));
}
[hashes @ ..] => {
for hash in hashes {
if matches!(hash, InventoryHash::Tx(_)) {
debug!(?hash, "registering Tx inventory hash");
let _ = inv_collector.send((*hash, addr));
} else {
trace!(?hash, "ignoring non Tx inventory hash")
}
}
}
}
}
msg
}
.instrument(span)
})
.boxed();
use super::connection;
let server = Connection {
state: connection::State::AwaitingRequest,
svc: inbound_service,
client_rx: server_rx,
error_slot: slot,
peer_tx,
request_timer: None,
};
tokio::spawn(
server
.run(peer_rx)
.instrument(connection_span.clone())
.boxed(),
);
let heartbeat_span = tracing::debug_span!(parent: connection_span, "heartbeat");
tokio::spawn(
async move {
use super::client::ClientRequest;
use futures::future::Either;
let mut shutdown_rx = shutdown_rx;
let mut server_tx = server_tx;
let mut interval_stream = tokio::time::interval(constants::HEARTBEAT_INTERVAL);
loop {
let shutdown_rx_ref = Pin::new(&mut shutdown_rx);
match future::select(interval_stream.next(), shutdown_rx_ref).await {
Either::Left(_) => {
let (tx, rx) = oneshot::channel();
let request = Request::Ping(Nonce::default());
tracing::trace!(?request, "queueing heartbeat request");
if server_tx
.send(ClientRequest {
request,
tx: tx.into(),
span: tracing::Span::current(),
})
.await
.is_err()
{
tracing::trace!(
"error sending heartbeat request, shutting down"
);
return;
}
// Heartbeats are checked internally to the
// connection logic, but we need to wait on the
// response to avoid canceling the request.
match rx.await {
Ok(_) => tracing::trace!("got heartbeat response"),
Err(_) => {
tracing::trace!(
"error awaiting heartbeat response, shutting down"
);
return;
}
}
}
Either::Right(_) => return, // got shutdown signal
}
}
}
.instrument(heartbeat_span)
.boxed(),
);
Ok(client)
};
// Spawn a new task to drive this handshake.
tokio::spawn(fut.instrument(connector_span))
// This is required to get error types to line up.
// Probably there's a nicer way to express this using combinators.
.map(|x| match x {
Ok(Ok(client)) => Ok(client),
Ok(Err(handshake_err)) => Err(handshake_err.into()),
Err(join_err) => Err(join_err.into()),
})
.boxed()
}
}