zebra/zebra-chain/src/transparent/serialize.rs

239 lines
9.3 KiB
Rust

use std::io::{self, Read};
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
use crate::{
block,
serialization::{
ReadZcashExt, SerializationError, WriteZcashExt, ZcashDeserialize, ZcashDeserializeInto,
ZcashSerialize,
},
transaction,
};
use super::{CoinbaseData, Input, OutPoint, Output, Script};
/// The coinbase data for a genesis block.
///
/// Zcash uses the same coinbase data for the Mainnet, Testnet, and Regtest
/// genesis blocks.
const GENESIS_COINBASE_DATA: [u8; 77] = [
4, 255, 255, 7, 31, 1, 4, 69, 90, 99, 97, 115, 104, 48, 98, 57, 99, 52, 101, 101, 102, 56, 98,
55, 99, 99, 52, 49, 55, 101, 101, 53, 48, 48, 49, 101, 51, 53, 48, 48, 57, 56, 52, 98, 54, 102,
101, 97, 51, 53, 54, 56, 51, 97, 55, 99, 97, 99, 49, 52, 49, 97, 48, 52, 51, 99, 52, 50, 48,
54, 52, 56, 51, 53, 100, 51, 52,
];
impl ZcashSerialize for OutPoint {
fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
writer.write_all(&self.hash.0[..])?;
writer.write_u32::<LittleEndian>(self.index)?;
Ok(())
}
}
impl ZcashDeserialize for OutPoint {
fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
Ok(OutPoint {
hash: transaction::Hash(reader.read_32_bytes()?),
index: reader.read_u32::<LittleEndian>()?,
})
}
}
// Coinbase inputs include block heights (BIP34). These are not encoded
// directly, but as a Bitcoin script that pushes the block height to the stack
// when executed. The script data is otherwise unused. Because we want to
// *parse* transactions into an internal representation where illegal states are
// unrepresentable, we need just enough parsing of Bitcoin scripts to parse the
// coinbase height and split off the rest of the (inert) coinbase data.
fn parse_coinbase_height(
mut data: Vec<u8>,
) -> Result<(block::Height, CoinbaseData), SerializationError> {
use block::Height;
match (data.get(0), data.len()) {
// Blocks 1 through 16 inclusive encode block height with OP_N opcodes.
(Some(op_n @ 0x51..=0x60), len) if len >= 1 => Ok((
Height((op_n - 0x50) as u32),
CoinbaseData(data.split_off(1)),
)),
// Blocks 17 through 128 exclusive encode block height with the `0x01` opcode.
// The Bitcoin encoding requires that the most significant byte is below 0x80.
(Some(0x01), len) if len >= 2 && data[1] < 0x80 => {
Ok((Height(data[1] as u32), CoinbaseData(data.split_off(2))))
}
// Blocks 128 through 32768 exclusive encode block height with the `0x02` opcode.
// The Bitcoin encoding requires that the most significant byte is below 0x80.
(Some(0x02), len) if len >= 3 && data[2] < 0x80 => Ok((
Height(data[1] as u32 + ((data[2] as u32) << 8)),
CoinbaseData(data.split_off(3)),
)),
// Blocks 65536 through 2**23 exclusive encode block height with the `0x03` opcode.
// The Bitcoin encoding requires that the most significant byte is below 0x80.
(Some(0x03), len) if len >= 4 && data[3] < 0x80 => Ok((
Height(data[1] as u32 + ((data[2] as u32) << 8) + ((data[3] as u32) << 16)),
CoinbaseData(data.split_off(4)),
)),
// The genesis block does not encode the block height by mistake; special case it.
// The first five bytes are [4, 255, 255, 7, 31], the little-endian encoding of
// 520_617_983. This is lucky because it means we can special-case the genesis block
// while remaining below the maximum `block::Height` of 500_000_000 forced by `LockTime`.
// While it's unlikely this code will ever process a block height that high, this means
// we don't need to maintain a cascade of different invariants for allowable heights.
(Some(0x04), _) if data[..] == GENESIS_COINBASE_DATA[..] => {
Ok((Height(0), CoinbaseData(data)))
}
// As noted above, this is included for completeness.
// The Bitcoin encoding requires that the most significant byte is below 0x80.
(Some(0x04), len) if len >= 5 && data[4] < 0x80 => {
let h = data[1] as u32
+ ((data[2] as u32) << 8)
+ ((data[3] as u32) << 16)
+ ((data[4] as u32) << 24);
if h <= Height::MAX.0 {
Ok((Height(h), CoinbaseData(data.split_off(5))))
} else {
Err(SerializationError::Parse("Invalid block height"))
}
}
_ => Err(SerializationError::Parse(
"Could not parse BIP34 height in coinbase data",
)),
}
}
fn coinbase_height_len(height: block::Height) -> usize {
// We can't write this as a match statement on stable until exclusive range
// guards are stabilized.
if let 0 = height.0 {
0
} else if let _h @ 1..=16 = height.0 {
1
} else if let _h @ 17..=127 = height.0 {
2
} else if let _h @ 128..=32767 = height.0 {
3
} else if let _h @ 32768..=8_388_607 = height.0 {
4
} else if let _h @ 8_388_608..=block::Height::MAX_AS_U32 = height.0 {
5
} else {
panic!("Invalid coinbase height");
}
}
fn write_coinbase_height<W: io::Write>(height: block::Height, mut w: W) -> Result<(), io::Error> {
// We can't write this as a match statement on stable until exclusive range
// guards are stabilized.
// The Bitcoin encoding requires that the most significant byte is below 0x80,
// so the ranges run up to 2^{n-1} rather than 2^n.
if let 0 = height.0 {
// Genesis block does not include height.
} else if let h @ 1..=16 = height.0 {
w.write_u8(0x50 + (h as u8))?;
} else if let h @ 17..=127 = height.0 {
w.write_u8(0x01)?;
w.write_u8(h as u8)?;
} else if let h @ 128..=32767 = height.0 {
w.write_u8(0x02)?;
w.write_u16::<LittleEndian>(h as u16)?;
} else if let h @ 32768..=8_388_607 = height.0 {
w.write_u8(0x03)?;
w.write_u8(h as u8)?;
w.write_u8((h >> 8) as u8)?;
w.write_u8((h >> 16) as u8)?;
} else if let h @ 8_388_608..=block::Height::MAX_AS_U32 = height.0 {
w.write_u8(0x04)?;
w.write_u32::<LittleEndian>(h)?;
} else {
panic!("Invalid coinbase height");
}
Ok(())
}
impl ZcashSerialize for Input {
fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
match self {
Input::PrevOut {
outpoint,
unlock_script,
sequence,
} => {
outpoint.zcash_serialize(&mut writer)?;
unlock_script.zcash_serialize(&mut writer)?;
writer.write_u32::<LittleEndian>(*sequence)?;
}
Input::Coinbase {
height,
data,
sequence,
} => {
writer.write_all(&[0; 32][..])?;
writer.write_u32::<LittleEndian>(0xffff_ffff)?;
let height_len = coinbase_height_len(*height);
let total_len = height_len + data.as_ref().len();
writer.write_compactsize(total_len as u64)?;
write_coinbase_height(*height, &mut writer)?;
writer.write_all(data.as_ref())?;
writer.write_u32::<LittleEndian>(*sequence)?;
}
}
Ok(())
}
}
impl ZcashDeserialize for Input {
fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
// This inlines the OutPoint deserialization to peek at the hash value
// and detect whether we have a coinbase input.
let bytes = reader.read_32_bytes()?;
if bytes == [0; 32] {
if reader.read_u32::<LittleEndian>()? != 0xffff_ffff {
return Err(SerializationError::Parse("wrong index in coinbase"));
}
let len = reader.read_compactsize()?;
if len > 100 {
return Err(SerializationError::Parse("coinbase has too much data"));
}
let mut data = Vec::with_capacity(len as usize);
(&mut reader).take(len).read_to_end(&mut data)?;
let (height, data) = parse_coinbase_height(data)?;
let sequence = reader.read_u32::<LittleEndian>()?;
Ok(Input::Coinbase {
height,
data,
sequence,
})
} else {
Ok(Input::PrevOut {
outpoint: OutPoint {
hash: transaction::Hash(bytes),
index: reader.read_u32::<LittleEndian>()?,
},
unlock_script: Script::zcash_deserialize(&mut reader)?,
sequence: reader.read_u32::<LittleEndian>()?,
})
}
}
}
impl ZcashSerialize for Output {
fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
self.value.zcash_serialize(&mut writer)?;
self.lock_script.zcash_serialize(&mut writer)?;
Ok(())
}
}
impl ZcashDeserialize for Output {
fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
let reader = &mut reader;
Ok(Output {
value: reader.zcash_deserialize_into()?,
lock_script: Script::zcash_deserialize(reader)?,
})
}
}