zepio/flow-custom-typedefs/bignumber.js

1744 lines
54 KiB
JavaScript

/**
* Flowtype definitions for bignumber
* Generated by Flowgen from a Typescript Definition
* Flowgen v1.3.0
* Author: [Joar Wilk](http://twitter.com/joarwilk)
* Repo: http://github.com/joarwilk/flowgen
*/
declare module 'bignumber.js' {
declare module.exports: {
BigNumber: typeof BigNumber,
};
}
declare export class BigNumber {
/**
* The coefficient of the value of this BigNumber, an array of base 1e14 integer numbers.
*/
c: number[];
/**
* The exponent of the value of this BigNumber, an integer number, -1000000000 to 1000000000.
*/
e: number;
/**
* The sign of the value of this BigNumber, -1 or 1.
*/
s: number;
/**
* Returns a new instance of a BigNumber object with value `n`, where `n` is a numeric value in
* the specified `base`, or base 10 if `base` is omitted or is `null` or `undefined`.
```ts
x = new BigNumber(123.4567) // '123.4567'
// 'new' is optional
y = BigNumber(x) // '123.4567'
```
If `n` is a base 10 value it can be in normal (fixed-point) or exponential notation.
Values in other bases must be in normal notation. Values in any base can have fraction digits,
i.e. digits after the decimal point.
```ts
new BigNumber(43210) // '43210'
new BigNumber('4.321e+4') // '43210'
new BigNumber('-735.0918e-430') // '-7.350918e-428'
new BigNumber('123412421.234324', 5) // '607236.557696'
```
Signed `0`, signed `Infinity` and `NaN` are supported.
```ts
new BigNumber('-Infinity') // '-Infinity'
new BigNumber(NaN) // 'NaN'
new BigNumber(-0) // '0'
new BigNumber('.5') // '0.5'
new BigNumber('+2') // '2'
```
String values in hexadecimal literal form, e.g. `'0xff'`, are valid, as are string values with
the octal and binary prefixs `'0o'` and `'0b'`. String values in octal literal form without the
prefix will be interpreted as decimals, e.g. `'011'` is interpreted as 11, not 9.
```ts
new BigNumber(-10110100.1, 2) // '-180.5'
new BigNumber('-0b10110100.1') // '-180.5'
new BigNumber('ff.8', 16) // '255.5'
new BigNumber('0xff.8') // '255.5'
```
If a base is specified, `n` is rounded according to the current `DECIMAL_PLACES` and
`ROUNDING_MODE` settings. This includes base 10, so don't include a `base` parameter for decimal
values unless this behaviour is desired.
```ts
BigNumber.config({ DECIMAL_PLACES: 5 })
new BigNumber(1.23456789) // '1.23456789'
new BigNumber(1.23456789, 10) // '1.23457'
```
An error is thrown if `base` is invalid.
There is no limit to the number of digits of a value of type string (other than that of
JavaScript's maximum array size). See `RANGE` to set the maximum and minimum possible exponent
value of a BigNumber.
```ts
new BigNumber('5032485723458348569331745.33434346346912144534543')
new BigNumber('4.321e10000000')
```
BigNumber `NaN` is returned if `n` is invalid (unless `BigNumber.DEBUG` is `true`, see below).
```ts
new BigNumber('.1*') // 'NaN'
new BigNumber('blurgh') // 'NaN'
new BigNumber(9, 2) // 'NaN'
```
To aid in debugging, if `BigNumber.DEBUG` is `true` then an error will be thrown on an
invalid `n`. An error will also be thrown if `n` is of type number with more than 15
significant digits, as calling `toString` or `valueOf` on these numbers may not result in the
intended value.
```ts
console.log(823456789123456.3) // 823456789123456.2
new BigNumber(823456789123456.3) // '823456789123456.2'
BigNumber.DEBUG = true
// 'Error: Number has more than 15 significant digits'
new BigNumber(823456789123456.3)
// 'Error: Not a base 2 number'
new BigNumber(9, 2)
```
* @param n A numeric value.
* @param base The base of `n`, integer, 2 to 36 (or `ALPHABET.length`, see `ALPHABET`).
*/
constructor(n: BigNumber$Value, base?: number): this;
/**
* Returns a BigNumber whose value is the absolute value, i.e. the magnitude, of the value of this
* BigNumber.
The return value is always exact and unrounded.
```ts
x = new BigNumber(-0.8)
x.absoluteValue() // '0.8'
```
*/
absoluteValue(): BigNumber;
/**
* Returns a BigNumber whose value is the absolute value, i.e. the magnitude, of the value of this
* BigNumber.
The return value is always exact and unrounded.
```ts
x = new BigNumber(-0.8)
x.abs() // '0.8'
```
*/
abs(): BigNumber;
/**
* Returns | |
* :-------:|:--------------------------------------------------------------|
1 | If the value of this BigNumber is greater than the value of `n`
-1 | If the value of this BigNumber is less than the value of `n`
0 | If this BigNumber and `n` have the same value
`null` | If the value of either this BigNumber or `n` is `NaN`
```ts
x = new BigNumber(Infinity)
y = new BigNumber(5)
x.comparedTo(y) // 1
x.comparedTo(x.minus(1)) // 0
y.comparedTo(NaN) // null
y.comparedTo('110', 2) // -1
```
* @param n A numeric value.
* @param base The base of n.
*/
comparedTo(n: BigNumber$Value, base?: number): number;
/**
* Returns a BigNumber whose value is the value of this BigNumber rounded by rounding mode
* `roundingMode` to a maximum of `decimalPlaces` decimal places.
If `decimalPlaces` is omitted, or is `null` or `undefined`, the return value is the number of
decimal places of the value of this BigNumber, or `null` if the value of this BigNumber is
±`Infinity` or `NaN`.
If `roundingMode` is omitted, or is `null` or `undefined`, `ROUNDING_MODE` is used.
Throws if `decimalPlaces` or `roundingMode` is invalid.
```ts
x = new BigNumber(1234.56)
x.decimalPlaces() // 2
x.decimalPlaces(1) // '1234.6'
x.decimalPlaces(2) // '1234.56'
x.decimalPlaces(10) // '1234.56'
x.decimalPlaces(0, 1) // '1234'
x.decimalPlaces(0, 6) // '1235'
x.decimalPlaces(1, 1) // '1234.5'
x.decimalPlaces(1, BigNumber.ROUND_HALF_EVEN) // '1234.6'
x // '1234.56'
y = new BigNumber('9.9e-101')
y.decimalPlaces() // 102
```
* @param decimalPlaces Decimal places, integer, 0 to 1e+9.
* @param roundingMode Rounding mode, integer, 0 to 8.
*/
decimalPlaces(): number;
decimalPlaces(decimalPlaces: number, roundingMode?: BigNumber$RoundingMode): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber rounded by rounding mode
* `roundingMode` to a maximum of `decimalPlaces` decimal places.
If `decimalPlaces` is omitted, or is `null` or `undefined`, the return value is the number of
decimal places of the value of this BigNumber, or `null` if the value of this BigNumber is
±`Infinity` or `NaN`.
If `roundingMode` is omitted, or is `null` or `undefined`, `ROUNDING_MODE` is used.
Throws if `decimalPlaces` or `roundingMode` is invalid.
```ts
x = new BigNumber(1234.56)
x.dp() // 2
x.dp(1) // '1234.6'
x.dp(2) // '1234.56'
x.dp(10) // '1234.56'
x.dp(0, 1) // '1234'
x.dp(0, 6) // '1235'
x.dp(1, 1) // '1234.5'
x.dp(1, BigNumber.ROUND_HALF_EVEN) // '1234.6'
x // '1234.56'
y = new BigNumber('9.9e-101')
y.dp() // 102
```
* @param decimalPlaces Decimal places, integer, 0 to 1e+9.
* @param roundingMode Rounding mode, integer, 0 to 8.
*/
dp(): number;
dp(decimalPlaces: number, roundingMode?: BigNumber$RoundingMode): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber divided by `n`, rounded
* according to the current `DECIMAL_PLACES` and `ROUNDING_MODE` settings.
```ts
x = new BigNumber(355)
y = new BigNumber(113)
x.dividedBy(y) // '3.14159292035398230088'
x.dividedBy(5) // '71'
x.dividedBy(47, 16) // '5'
```
* @param n A numeric value.
* @param base The base of n.
*/
dividedBy(n: BigNumber$Value, base?: number): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber divided by `n`, rounded
* according to the current `DECIMAL_PLACES` and `ROUNDING_MODE` settings.
```ts
x = new BigNumber(355)
y = new BigNumber(113)
x.div(y) // '3.14159292035398230088'
x.div(5) // '71'
x.div(47, 16) // '5'
```
* @param n A numeric value.
* @param base The base of n.
*/
div(n: BigNumber$Value, base?: number): BigNumber;
/**
* Returns a BigNumber whose value is the integer part of dividing the value of this BigNumber by
* `n`.
```ts
x = new BigNumber(5)
y = new BigNumber(3)
x.dividedToIntegerBy(y) // '1'
x.dividedToIntegerBy(0.7) // '7'
x.dividedToIntegerBy('0.f', 16) // '5'
```
* @param n A numeric value.
* @param base The base of n.
*/
dividedToIntegerBy(n: BigNumber$Value, base?: number): BigNumber;
/**
* Returns a BigNumber whose value is the integer part of dividing the value of this BigNumber by
* `n`.
```ts
x = new BigNumber(5)
y = new BigNumber(3)
x.idiv(y) // '1'
x.idiv(0.7) // '7'
x.idiv('0.f', 16) // '5'
```
* @param n A numeric value.
* @param base The base of n.
*/
idiv(n: BigNumber$Value, base?: number): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber exponentiated by `n`, i.e.
* raised to the power `n`, and optionally modulo a modulus `m`.
If `n` is negative the result is rounded according to the current `DECIMAL_PLACES` and
`ROUNDING_MODE` settings.
As the number of digits of the result of the power operation can grow so large so quickly,
e.g. 123.456**10000 has over 50000 digits, the number of significant digits calculated is
limited to the value of the `POW_PRECISION` setting (unless a modulus `m` is specified).
By default `POW_PRECISION` is set to 0. This means that an unlimited number of significant
digits will be calculated, and that the method's performance will decrease dramatically for
larger exponents.
If `m` is specified and the value of `m`, `n` and this BigNumber are integers and `n` is
positive, then a fast modular exponentiation algorithm is used, otherwise the operation will
be performed as `x.exponentiatedBy(n).modulo(m)` with a `POW_PRECISION` of 0.
Throws if `n` is not an integer.
```ts
Math.pow(0.7, 2) // 0.48999999999999994
x = new BigNumber(0.7)
x.exponentiatedBy(2) // '0.49'
BigNumber(3).exponentiatedBy(-2) // '0.11111111111111111111'
```
* @param n The exponent, an integer.
* @param m The modulus.
*/
exponentiatedBy(n: BigNumber$Value, m?: BigNumber$Value): BigNumber;
exponentiatedBy(n: number, m?: BigNumber$Value): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber exponentiated by `n`, i.e.
* raised to the power `n`, and optionally modulo a modulus `m`.
If `n` is negative the result is rounded according to the current `DECIMAL_PLACES` and
`ROUNDING_MODE` settings.
As the number of digits of the result of the power operation can grow so large so quickly,
e.g. 123.456**10000 has over 50000 digits, the number of significant digits calculated is
limited to the value of the `POW_PRECISION` setting (unless a modulus `m` is specified).
By default `POW_PRECISION` is set to 0. This means that an unlimited number of significant
digits will be calculated, and that the method's performance will decrease dramatically for
larger exponents.
If `m` is specified and the value of `m`, `n` and this BigNumber are integers and `n` is
positive, then a fast modular exponentiation algorithm is used, otherwise the operation will
be performed as `x.pow(n).modulo(m)` with a `POW_PRECISION` of 0.
Throws if `n` is not an integer.
```ts
Math.pow(0.7, 2) // 0.48999999999999994
x = new BigNumber(0.7)
x.pow(2) // '0.49'
BigNumber(3).pow(-2) // '0.11111111111111111111'
```
* @param n The exponent, an integer.
* @param m The modulus.
*/
pow(n: BigNumber$Value, m?: BigNumber$Value): BigNumber;
pow(n: number, m?: BigNumber$Value): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber rounded to an integer using
* rounding mode `rm`.
If `rm` is omitted, or is `null` or `undefined`, `ROUNDING_MODE` is used.
Throws if `rm` is invalid.
```ts
x = new BigNumber(123.456)
x.integerValue() // '123'
x.integerValue(BigNumber.ROUND_CEIL) // '124'
y = new BigNumber(-12.7)
y.integerValue() // '-13'
x.integerValue(BigNumber.ROUND_DOWN) // '-12'
```
* @param The roundng mode, an integer, 0 to 8.
*/
integerValue(rm?: BigNumber$RoundingMode): BigNumber;
/**
* Returns `true` if the value of this BigNumber is equal to the value of `n`, otherwise returns
* `false`.
As with JavaScript, `NaN` does not equal `NaN`.
```ts
0 === 1e-324 // true
x = new BigNumber(0)
x.isEqualTo('1e-324') // false
BigNumber(-0).isEqualTo(x) // true ( -0 === 0 )
BigNumber(255).isEqualTo('ff', 16) // true
y = new BigNumber(NaN)
y.isEqualTo(NaN) // false
```
* @param n A numeric value.
* @param base The base of n.
*/
isEqualTo(n: BigNumber$Value, base?: number): boolean;
/**
* Returns `true` if the value of this BigNumber is equal to the value of `n`, otherwise returns
* `false`.
As with JavaScript, `NaN` does not equal `NaN`.
```ts
0 === 1e-324 // true
x = new BigNumber(0)
x.eq('1e-324') // false
BigNumber(-0).eq(x) // true ( -0 === 0 )
BigNumber(255).eq('ff', 16) // true
y = new BigNumber(NaN)
y.eq(NaN) // false
```
* @param n A numeric value.
* @param base The base of n.
*/
eq(n: BigNumber$Value, base?: number): boolean;
/**
* Returns `true` if the value of this BigNumber is a finite number, otherwise returns `false`.
*
The only possible non-finite values of a BigNumber are `NaN`, `Infinity` and `-Infinity`.
```ts
x = new BigNumber(1)
x.isFinite() // true
y = new BigNumber(Infinity)
y.isFinite() // false
```
*/
isFinite(): boolean;
/**
* Returns `true` if the value of this BigNumber is greater than the value of `n`, otherwise
* returns `false`.
```ts
0.1 > (0.3 - 0.2) // true
x = new BigNumber(0.1)
x.isGreaterThan(BigNumber(0.3).minus(0.2)) // false
BigNumber(0).isGreaterThan(x) // false
BigNumber(11, 3).isGreaterThan(11.1, 2) // true
```
* @param n A numeric value.
* @param base The base of n.
*/
isGreaterThan(n: BigNumber$Value, base?: number): boolean;
/**
* Returns `true` if the value of this BigNumber is greater than the value of `n`, otherwise
* returns `false`.
```ts
0.1 > (0.3 - 0 // true
x = new BigNumber(0.1)
x.gt(BigNumber(0.3).minus(0.2)) // false
BigNumber(0).gt(x) // false
BigNumber(11, 3).gt(11.1, 2) // true
```
* @param n A numeric value.
* @param base The base of n.
*/
gt(n: BigNumber$Value, base?: number): boolean;
/**
* Returns `true` if the value of this BigNumber is greater than or equal to the value of `n`,
* otherwise returns `false`.
```ts
(0.3 - 0.2) >= 0.1 // false
x = new BigNumber(0.3).minus(0.2)
x.isGreaterThanOrEqualTo(0.1) // true
BigNumber(1).isGreaterThanOrEqualTo(x) // true
BigNumber(10, 18).isGreaterThanOrEqualTo('i', 36) // true
```
* @param n A numeric value.
* @param base The base of n.
*/
isGreaterThanOrEqualTo(n: BigNumber$Value, base?: number): boolean;
/**
* Returns `true` if the value of this BigNumber is greater than or equal to the value of `n`,
* otherwise returns `false`.
```ts
(0.3 - 0.2) >= 0.1 // false
x = new BigNumber(0.3).minus(0.2)
x.gte(0.1) // true
BigNumber(1).gte(x) // true
BigNumber(10, 18).gte('i', 36) // true
```
* @param n A numeric value.
* @param base The base of n.
*/
gte(n: BigNumber$Value, base?: number): boolean;
/**
* Returns `true` if the value of this BigNumber is an integer, otherwise returns `false`.
*
```ts
x = new BigNumber(1)
x.isInteger() // true
y = new BigNumber(123.456)
y.isInteger() // false
```
*/
isInteger(): boolean;
/**
* Returns `true` if the value of this BigNumber is less than the value of `n`, otherwise returns
* `false`.
```ts
(0.3 - 0.2) < 0.1 // true
x = new BigNumber(0.3).minus(0.2)
x.isLessThan(0.1) // false
BigNumber(0).isLessThan(x) // true
BigNumber(11.1, 2).isLessThan(11, 3) // true
```
* @param n A numeric value.
* @param base The base of n.
*/
isLessThan(n: BigNumber$Value, base?: number): boolean;
/**
* Returns `true` if the value of this BigNumber is less than the value of `n`, otherwise returns
* `false`.
```ts
(0.3 - 0.2) < 0.1 // true
x = new BigNumber(0.3).minus(0.2)
x.lt(0.1) // false
BigNumber(0).lt(x) // true
BigNumber(11.1, 2).lt(11, 3) // true
```
* @param n A numeric value.
* @param base The base of n.
*/
lt(n: BigNumber$Value, base?: number): boolean;
/**
* Returns `true` if the value of this BigNumber is less than or equal to the value of `n`,
* otherwise returns `false`.
```ts
0.1 <= (0.3 - 0.2) // false
x = new BigNumber(0.1)
x.isLessThanOrEqualTo(BigNumber(0.3).minus(0.2)) // true
BigNumber(-1).isLessThanOrEqualTo(x) // true
BigNumber(10, 18).isLessThanOrEqualTo('i', 36) // true
```
* @param n A numeric value.
* @param base The base of n.
*/
isLessThanOrEqualTo(n: BigNumber$Value, base?: number): boolean;
/**
* Returns `true` if the value of this BigNumber is less than or equal to the value of `n`,
* otherwise returns `false`.
```ts
0.1 <= (0.3 - 0.2) // false
x = new BigNumber(0.1)
x.lte(BigNumber(0.3).minus(0.2)) // true
BigNumber(-1).lte(x) // true
BigNumber(10, 18).lte('i', 36) // true
```
* @param n A numeric value.
* @param base The base of n.
*/
lte(n: BigNumber$Value, base?: number): boolean;
/**
* Returns `true` if the value of this BigNumber is `NaN`, otherwise returns `false`.
*
```ts
x = new BigNumber(NaN)
x.isNaN() // true
y = new BigNumber('Infinity')
y.isNaN() // false
```
*/
isNaN(): boolean;
/**
* Returns `true` if the value of this BigNumber is negative, otherwise returns `false`.
*
```ts
x = new BigNumber(-0)
x.isNegative() // true
y = new BigNumber(2)
y.isNegative() // false
```
*/
isNegative(): boolean;
/**
* Returns `true` if the value of this BigNumber is positive, otherwise returns `false`.
*
```ts
x = new BigNumber(-0)
x.isPositive() // false
y = new BigNumber(2)
y.isPositive() // true
```
*/
isPositive(): boolean;
/**
* Returns `true` if the value of this BigNumber is zero or minus zero, otherwise returns `false`.
*
```ts
x = new BigNumber(-0)
x.isZero() // true
```
*/
isZero(): boolean;
/**
* Returns a BigNumber whose value is the value of this BigNumber minus `n`.
*
The return value is always exact and unrounded.
```ts
0.3 - 0.1 // 0.19999999999999998
x = new BigNumber(0.3)
x.minus(0.1) // '0.2'
x.minus(0.6, 20) // '0'
```
* @param n A numeric value.
* @param base The base of n.
*/
minus(n: BigNumber$Value, base?: number): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber modulo `n`, i.e. the integer
* remainder of dividing this BigNumber by `n`.
The value returned, and in particular its sign, is dependent on the value of the `MODULO_MODE`
setting of this BigNumber constructor. If it is 1 (default value), the result will have the
same sign as this BigNumber, and it will match that of Javascript's `%` operator (within the
limits of double precision) and BigDecimal's `remainder` method.
The return value is always exact and unrounded.
See `MODULO_MODE` for a description of the other modulo modes.
```ts
1 % 0.9 // 0.09999999999999998
x = new BigNumber(1)
x.modulo(0.9) // '0.1'
y = new BigNumber(33)
y.modulo('a', 33) // '3'
```
* @param n A numeric value.
* @param base The base of n.
*/
modulo(n: BigNumber$Value, base?: number): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber modulo `n`, i.e. the integer
* remainder of dividing this BigNumber by `n`.
The value returned, and in particular its sign, is dependent on the value of the `MODULO_MODE`
setting of this BigNumber constructor. If it is 1 (default value), the result will have the
same sign as this BigNumber, and it will match that of Javascript's `%` operator (within the
limits of double precision) and BigDecimal's `remainder` method.
The return value is always exact and unrounded.
See `MODULO_MODE` for a description of the other modulo modes.
```ts
1 % 0.9 // 0.09999999999999998
x = new BigNumber(1)
x.mod(0.9) // '0.1'
y = new BigNumber(33)
y.mod('a', 33) // '3'
```
* @param n A numeric value.
* @param base The base of n.
*/
mod(n: BigNumber$Value, base?: number): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber multiplied by `n`.
*
The return value is always exact and unrounded.
```ts
0.6 * 3 // 1.7999999999999998
x = new BigNumber(0.6)
y = x.multipliedBy(3) // '1.8'
BigNumber('7e+500').multipliedBy(y) // '1.26e+501'
x.multipliedBy('-a', 16) // '-6'
```
* @param n A numeric value.
* @param base The base of n.
*/
multipliedBy(n: BigNumber$Value, base?: number): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber multiplied by `n`.
*
The return value is always exact and unrounded.
```ts
0.6 * 3 // 1.7999999999999998
x = new BigNumber(0.6)
y = x.times(3) // '1.8'
BigNumber('7e+500').times(y) // '1.26e+501'
x.times('-a', 16) // '-6'
```
* @param n A numeric value.
* @param base The base of n.
*/
times(n: BigNumber$Value, base?: number): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber negated, i.e. multiplied by -1.
*
```ts
x = new BigNumber(1.8)
x.negated() // '-1.8'
y = new BigNumber(-1.3)
y.negated() // '1.3'
```
*/
negated(): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber plus `n`.
*
The return value is always exact and unrounded.
```ts
0.1 + 0.2 // 0.30000000000000004
x = new BigNumber(0.1)
y = x.plus(0.2) // '0.3'
BigNumber(0.7).plus(x).plus(y) // '1'
x.plus('0.1', 8) // '0.225'
```
* @param n A numeric value.
* @param base The base of n.
*/
plus(n: BigNumber$Value, base?: number): BigNumber;
/**
* Returns the number of significant digits of the value of this BigNumber, or `null` if the value
* of this BigNumber is ±`Infinity` or `NaN`.
If `includeZeros` is true then any trailing zeros of the integer part of the value of this
BigNumber are counted as significant digits, otherwise they are not.
Throws if `includeZeros` is invalid.
```ts
x = new BigNumber(9876.54321)
x.precision() // 9
y = new BigNumber(987000)
y.precision(false) // 3
y.precision(true) // 6
```
* @param includeZeros Whether to include integer trailing zeros in the significant digit count.
*/
precision(includeZeros?: boolean): number;
/**
* Returns a BigNumber whose value is the value of this BigNumber rounded to a precision of
* `significantDigits` significant digits using rounding mode `roundingMode`.
If `roundingMode` is omitted or is `null` or `undefined`, `ROUNDING_MODE` will be used.
Throws if `significantDigits` or `roundingMode` is invalid.
```ts
x = new BigNumber(9876.54321)
x.precision(6) // '9876.54'
x.precision(6, BigNumber.ROUND_UP) // '9876.55'
x.precision(2) // '9900'
x.precision(2, 1) // '9800'
x // '9876.54321'
```
* @param significantDigits Significant digits, integer, 1 to 1e+9.
* @param roundingMode Rounding mode, integer, 0 to 8.
*/
precision(significantDigits: number, roundingMode?: BigNumber$RoundingMode): BigNumber;
/**
* Returns the number of significant digits of the value of this BigNumber,
* or `null` if the value of this BigNumber is ±`Infinity` or `NaN`.
If `includeZeros` is true then any trailing zeros of the integer part of
the value of this BigNumber are counted as significant digits, otherwise
they are not.
Throws if `includeZeros` is invalid.
```ts
x = new BigNumber(9876.54321)
x.sd() // 9
y = new BigNumber(987000)
y.sd(false) // 3
y.sd(true) // 6
```
* @param includeZeros Whether to include integer trailing zeros in the significant digit count.
*/
sd(includeZeros?: boolean): number;
sd(significantDigits: number, roundingMode?: BigNumber$RoundingMode): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber shifted by `n` places.
*
The shift is of the decimal point, i.e. of powers of ten, and is to the left if `n` is negative
or to the right if `n` is positive.
The return value is always exact and unrounded.
Throws if `n` is invalid.
```ts
x = new BigNumber(1.23)
x.shiftedBy(3) // '1230'
x.shiftedBy(-3) // '0.00123'
```
* @param n The shift value, integer, -9007199254740991 to 9007199254740991.
*/
shiftedBy(n: number): BigNumber;
/**
* Returns a BigNumber whose value is the square root of the value of this BigNumber, rounded
* according to the current `DECIMAL_PLACES` and `ROUNDING_MODE` settings.
The return value will be correctly rounded, i.e. rounded as if the result was first calculated
to an infinite number of correct digits before rounding.
```ts
x = new BigNumber(16)
x.squareRoot() // '4'
y = new BigNumber(3)
y.squareRoot() // '1.73205080756887729353'
```
*/
squareRoot(): BigNumber;
/**
* Returns a BigNumber whose value is the square root of the value of this BigNumber, rounded
* according to the current `DECIMAL_PLACES` and `ROUNDING_MODE` settings.
The return value will be correctly rounded, i.e. rounded as if the result was first calculated
to an infinite number of correct digits before rounding.
```ts
x = new BigNumber(16)
x.sqrt() // '4'
y = new BigNumber(3)
y.sqrt() // '1.73205080756887729353'
```
*/
sqrt(): BigNumber;
/**
* Returns a string representing the value of this BigNumber in exponential notation rounded using
* rounding mode `roundingMode` to `decimalPlaces` decimal places, i.e with one digit before the
decimal point and `decimalPlaces` digits after it.
If the value of this BigNumber in exponential notation has fewer than `decimalPlaces` fraction
digits, the return value will be appended with zeros accordingly.
If `decimalPlaces` is omitted, or is `null` or `undefined`, the number of digits after the
decimal point defaults to the minimum number of digits necessary to represent the value
exactly.
If `roundingMode` is omitted or is `null` or `undefined`, `ROUNDING_MODE` is used.
Throws if `decimalPlaces` or `roundingMode` is invalid.
```ts
x = 45.6
y = new BigNumber(x)
x.toExponential() // '4.56e+1'
y.toExponential() // '4.56e+1'
x.toExponential(0) // '5e+1'
y.toExponential(0) // '5e+1'
x.toExponential(1) // '4.6e+1'
y.toExponential(1) // '4.6e+1'
y.toExponential(1, 1) // '4.5e+1' (ROUND_DOWN)
x.toExponential(3) // '4.560e+1'
y.toExponential(3) // '4.560e+1'
```
* @param decimalPlaces Decimal places, integer, 0 to 1e+9.
* @param roundingMode Rounding mode, integer, 0 to 8.
*/
toExponential(decimalPlaces: number, roundingMode?: BigNumber$RoundingMode): string;
toExponential(): string;
/**
* Returns a string representing the value of this BigNumber in normal (fixed-point) notation
* rounded to `decimalPlaces` decimal places using rounding mode `roundingMode`.
If the value of this BigNumber in normal notation has fewer than `decimalPlaces` fraction
digits, the return value will be appended with zeros accordingly.
Unlike `Number.prototype.toFixed`, which returns exponential notation if a number is greater or
equal to 10**21, this method will always return normal notation.
If `decimalPlaces` is omitted or is `null` or `undefined`, the return value will be unrounded
and in normal notation. This is also unlike `Number.prototype.toFixed`, which returns the value
to zero decimal places. It is useful when normal notation is required and the current
`EXPONENTIAL_AT` setting causes `toString` to return exponential notation.
If `roundingMode` is omitted or is `null` or `undefined`, `ROUNDING_MODE` is used.
Throws if `decimalPlaces` or `roundingMode` is invalid.
```ts
x = 3.456
y = new BigNumber(x)
x.toFixed() // '3'
y.toFixed() // '3.456'
y.toFixed(0) // '3'
x.toFixed(2) // '3.46'
y.toFixed(2) // '3.46'
y.toFixed(2, 1) // '3.45' (ROUND_DOWN)
x.toFixed(5) // '3.45600'
y.toFixed(5) // '3.45600'
```
* @param decimalPlaces Decimal places, integer, 0 to 1e+9.
* @param roundingMode Rounding mode, integer, 0 to 8.
*/
toFixed(decimalPlaces: number, roundingMode?: BigNumber$RoundingMode): string;
toFixed(): string;
/**
* Returns a string representing the value of this BigNumber in normal (fixed-point) notation
* rounded to `decimalPlaces` decimal places using rounding mode `roundingMode`, and formatted
according to the properties of the `format` or `FORMAT` object.
The formatting object may contain some or all of the properties shown in the examples below.
If `decimalPlaces` is omitted or is `null` or `undefined`, then the return value is not
rounded to a fixed number of decimal places.
If `roundingMode` is omitted or is `null` or `undefined`, `ROUNDING_MODE` is used.
If `format` is omitted or is `null` or `undefined`, `FORMAT` is used.
Throws if `decimalPlaces`, `roundingMode`, or `format` is invalid.
```ts
fmt = {
decimalSeparator: '.',
groupSeparator: ',',
groupSize: 3,
secondaryGroupSize: 0,
fractionGroupSeparator: ' ',
fractionGroupSize: 0
}
x = new BigNumber('123456789.123456789')
// Set the global formatting options
BigNumber.config({ FORMAT: fmt })
x.toFormat() // '123,456,789.123456789'
x.toFormat(3) // '123,456,789.123'
// If a reference to the object assigned to FORMAT has been retained,
// the format properties can be changed directly
fmt.groupSeparator = ' '
fmt.fractionGroupSize = 5
x.toFormat() // '123 456 789.12345 6789'
// Alternatively, pass the formatting options as an argument
fmt = {
decimalSeparator: ',',
groupSeparator: '.',
groupSize: 3,
secondaryGroupSize: 2
}
x.toFormat() // '123 456 789.12345 6789'
x.toFormat(fmt) // '12.34.56.789,123456789'
x.toFormat(2, fmt) // '12.34.56.789,12'
x.toFormat(3, BigNumber.ROUND_UP, fmt) // '12.34.56.789,124'
```
* @param decimalPlaces Decimal places, integer, 0 to 1e+9.
* @param roundingMode Rounding mode, integer, 0 to 8.
* @param format Formatting options object. See `BigNumber.Format`.
*/
toFormat(
decimalPlaces: number,
roundingMode: BigNumber$RoundingMode,
format?: BigNumber$Format,
): string;
toFormat(decimalPlaces: number, roundingMode?: BigNumber$RoundingMode): string;
toFormat(decimalPlaces?: number): string;
toFormat(decimalPlaces: number, format: BigNumber$Format): string;
toFormat(format: BigNumber$Format): string;
/**
* Returns an array of two BigNumbers representing the value of this BigNumber as a simple
* fraction with an integer numerator and an integer denominator.
The denominator will be a positive non-zero value less than or equal to `max_denominator`.
If a maximum denominator, `max_denominator`, is not specified, or is `null` or `undefined`, the
denominator will be the lowest value necessary to represent the number exactly.
Throws if `max_denominator` is invalid.
```ts
x = new BigNumber(1.75)
x.toFraction() // '7, 4'
pi = new BigNumber('3.14159265358')
pi.toFraction() // '157079632679,50000000000'
pi.toFraction(100000) // '312689, 99532'
pi.toFraction(10000) // '355, 113'
pi.toFraction(100) // '311, 99'
pi.toFraction(10) // '22, 7'
pi.toFraction(1) // '3, 1'
```
* @param max_denominator The maximum denominator, integer > 0, or Infinity.
*/
toFraction(max_denominator?: BigNumber$Value): [BigNumber, BigNumber];
/**
* As `valueOf`.
*/
toJSON(): string;
/**
* Returns the value of this BigNumber as a JavaScript primitive number.
*
Using the unary plus operator gives the same result.
```ts
x = new BigNumber(456.789)
x.toNumber() // 456.789
+x // 456.789
y = new BigNumber('45987349857634085409857349856430985')
y.toNumber() // 4.598734985763409e+34
z = new BigNumber(-0)
1 / z.toNumber() // -Infinity
1 / +z // -Infinity
```
*/
toNumber(): number;
/**
* Returns a string representing the value of this BigNumber rounded to `significantDigits`
* significant digits using rounding mode `roundingMode`.
If `significantDigits` is less than the number of digits necessary to represent the integer
part of the value in normal (fixed-point) notation, then exponential notation is used.
If `significantDigits` is omitted, or is `null` or `undefined`, then the return value is the
same as `n.toString()`.
If `roundingMode` is omitted or is `null` or `undefined`, `ROUNDING_MODE` is used.
Throws if `significantDigits` or `roundingMode` is invalid.
```ts
x = 45.6
y = new BigNumber(x)
x.toPrecision() // '45.6'
y.toPrecision() // '45.6'
x.toPrecision(1) // '5e+1'
y.toPrecision(1) // '5e+1'
y.toPrecision(2, 0) // '4.6e+1' (ROUND_UP)
y.toPrecision(2, 1) // '4.5e+1' (ROUND_DOWN)
x.toPrecision(5) // '45.600'
y.toPrecision(5) // '45.600'
```
* @param significantDigits Significant digits, integer, 1 to 1e+9.
* @param roundingMode Rounding mode, integer 0 to 8.
*/
toPrecision(significantDigits: number, roundingMode?: BigNumber$RoundingMode): string;
toPrecision(): string;
/**
* Returns a string representing the value of this BigNumber in base `base`, or base 10 if `base`
* is omitted or is `null` or `undefined`.
For bases above 10, and using the default base conversion alphabet (see `ALPHABET`), values
from 10 to 35 are represented by a-z (the same as `Number.prototype.toString`).
If a base is specified the value is rounded according to the current `DECIMAL_PLACES` and
`ROUNDING_MODE` settings, otherwise it is not.
If a base is not specified, and this BigNumber has a positive exponent that is equal to or
greater than the positive component of the current `EXPONENTIAL_AT` setting, or a negative
exponent equal to or less than the negative component of the setting, then exponential notation
is returned.
If `base` is `null` or `undefined` it is ignored.
Throws if `base` is invalid.
```ts
x = new BigNumber(750000)
x.toString() // '750000'
BigNumber.config({ EXPONENTIAL_AT: 5 })
x.toString() // '7.5e+5'
y = new BigNumber(362.875)
y.toString(2) // '101101010.111'
y.toString(9) // '442.77777777777777777778'
y.toString(32) // 'ba.s'
BigNumber.config({ DECIMAL_PLACES: 4 });
z = new BigNumber('1.23456789')
z.toString() // '1.23456789'
z.toString(10) // '1.2346'
```
* @param base The base, integer, 2 to 36 (or `ALPHABET.length`, see `ALPHABET`).
*/
toString(base?: number): string;
/**
* As `toString`, but does not accept a base argument and includes the minus sign for negative
* zero.
``ts
x = new BigNumber('-0')
x.toString() // '0'
x.valueOf() // '-0'
y = new BigNumber('1.777e+457')
y.valueOf() // '1.777e+457'
```
*/
valueOf(): string;
/**
* Returns a new independent BigNumber constructor with configuration as described by `object`, or
* with the default configuration if object is `null` or `undefined`.
Throws if `object` is not an object.
```ts
BigNumber.config({ DECIMAL_PLACES: 5 })
BN = BigNumber.clone({ DECIMAL_PLACES: 9 })
x = new BigNumber(1)
y = new BN(1)
x.div(3) // 0.33333
y.div(3) // 0.333333333
// BN = BigNumber.clone({ DECIMAL_PLACES: 9 }) is equivalent to:
BN = BigNumber.clone()
BN.config({ DECIMAL_PLACES: 9 })
```
* @param object The configuration object.
*/
static clone(object?: BigNumber$Config): BigNumber$Constructor;
/**
* Configures the settings that apply to this BigNumber constructor.
*
The configuration object, `object`, contains any number of the properties shown in the example
below.
Returns an object with the above properties and their current values.
Throws if `object` is not an object, or if an invalid value is assigned to one or more of the
properties.
```ts
BigNumber.config({
DECIMAL_PLACES: 40,
ROUNDING_MODE: BigNumber.ROUND_HALF_CEIL,
EXPONENTIAL_AT: [-10, 20],
RANGE: [-500, 500],
CRYPTO: true,
MODULO_MODE: BigNumber.ROUND_FLOOR,
POW_PRECISION: 80,
FORMAT: {
groupSize: 3,
groupSeparator: ' ',
decimalSeparator: ','
},
ALPHABET: '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_'
});
BigNumber.config().DECIMAL_PLACES // 40
```
* @param object The configuration object.
*/
static config(object: BigNumber$Config): BigNumber$Config;
/**
* Returns `true` if `value` is a BigNumber instance, otherwise returns `false`.
*
```ts
x = 42
y = new BigNumber(x)
BigNumber.isBigNumber(x) // false
y instanceof BigNumber // true
BigNumber.isBigNumber(y) // true
BN = BigNumber.clone();
z = new BN(x)
z instanceof BigNumber // false
BigNumber.isBigNumber(z) // true
```
* @param value The value to test.
*/
static isBigNumber(value: any): BigNumber;
/**
* Returns a BigNumber whose value is the maximum of the arguments.
*
The return value is always exact and unrounded.
```ts
x = new BigNumber('3257869345.0378653')
BigNumber.maximum(4e9, x, '123456789.9') // '4000000000'
arr = [12, '13', new BigNumber(14)]
BigNumber.maximum.apply(null, arr) // '14'
```
* @param n A numeric value.
*/
static maximum(...n: BigNumber$Value[]): BigNumber;
/**
* Returns a BigNumber whose value is the maximum of the arguments.
*
The return value is always exact and unrounded.
```ts
x = new BigNumber('3257869345.0378653')
BigNumber.max(4e9, x, '123456789.9') // '4000000000'
arr = [12, '13', new BigNumber(14)]
BigNumber.max.apply(null, arr) // '14'
```
* @param n A numeric value.
*/
static max(...n: BigNumber$Value[]): BigNumber;
/**
* Returns a BigNumber whose value is the minimum of the arguments.
*
The return value is always exact and unrounded.
```ts
x = new BigNumber('3257869345.0378653')
BigNumber.minimum(4e9, x, '123456789.9') // '123456789.9'
arr = [2, new BigNumber(-14), '-15.9999', -12]
BigNumber.minimum.apply(null, arr) // '-15.9999'
```
* @param n A numeric value.
*/
static minimum(...n: BigNumber$Value[]): BigNumber;
/**
* Returns a BigNumber whose value is the minimum of the arguments.
*
The return value is always exact and unrounded.
```ts
x = new BigNumber('3257869345.0378653')
BigNumber.min(4e9, x, '123456789.9') // '123456789.9'
arr = [2, new BigNumber(-14), '-15.9999', -12]
BigNumber.min.apply(null, arr) // '-15.9999'
```
* @param n A numeric value.
*/
static min(...n: BigNumber$Value[]): BigNumber;
/**
* Returns a new BigNumber with a pseudo-random value equal to or greater than 0 and less than 1.
*
The return value will have `decimalPlaces` decimal places, or less if trailing zeros are
produced. If `decimalPlaces` is omitted, the current `DECIMAL_PLACES` setting will be used.
Depending on the value of this BigNumber constructor's `CRYPTO` setting and the support for the
`crypto` object in the host environment, the random digits of the return value are generated by
either `Math.random` (fastest), `crypto.getRandomValues` (Web Cryptography API in recent
browsers) or `crypto.randomBytes` (Node.js).
To be able to set `CRYPTO` to true when using Node.js, the `crypto` object must be available
globally:
```ts
global.crypto = require('crypto')
```
If `CRYPTO` is true, i.e. one of the `crypto` methods is to be used, the value of a returned
BigNumber should be cryptographically secure and statistically indistinguishable from a random
value.
Throws if `decimalPlaces` is invalid.
```ts
BigNumber.config({ DECIMAL_PLACES: 10 })
BigNumber.random() // '0.4117936847'
BigNumber.random(20) // '0.78193327636914089009'
```
* @param decimalPlaces Decimal places, integer, 0 to 1e+9.
*/
static random(decimalPlaces?: number): BigNumber;
/**
* Returns a BigNumber whose value is the sum of the arguments.
*
The return value is always exact and unrounded.
```ts
x = new BigNumber('3257869345.0378653')
BigNumber.sum(4e9, x, '123456789.9') // '7381326134.9378653'
arr = [2, new BigNumber(14), '15.9999', 12]
BigNumber.sum.apply(null, arr) // '43.9999'
```
* @param n A numeric value.
*/
static sum(...n: BigNumber$Value[]): BigNumber;
/**
* Configures the settings that apply to this BigNumber constructor.
*
The configuration object, `object`, contains any number of the properties shown in the example
below.
Returns an object with the above properties and their current values.
Throws if `object` is not an object, or if an invalid value is assigned to one or more of the
properties.
```ts
BigNumber.set({
DECIMAL_PLACES: 40,
ROUNDING_MODE: BigNumber.ROUND_HALF_CEIL,
EXPONENTIAL_AT: [-10, 20],
RANGE: [-500, 500],
CRYPTO: true,
MODULO_MODE: BigNumber.ROUND_FLOOR,
POW_PRECISION: 80,
FORMAT: {
groupSize: 3,
groupSeparator: ' ',
decimalSeparator: ','
},
ALPHABET: '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_'
});
BigNumber.set().DECIMAL_PLACES // 40
```
* @param object The configuration object.
*/
static set(object: BigNumber$Config): BigNumber$Config;
/**
* Rounds away from zero.
*/
static ROUND_UP: 0;
/**
* Rounds towards zero.
*/
static ROUND_DOWN: 1;
/**
* Rounds towards Infinity.
*/
static ROUND_CEIL: 2;
/**
* Rounds towards -Infinity.
*/
static ROUND_FLOOR: 3;
/**
* Rounds towards nearest neighbour. If equidistant, rounds away from zero .
*/
static ROUND_HALF_UP: 4;
/**
* Rounds towards nearest neighbour. If equidistant, rounds towards zero.
*/
static ROUND_HALF_DOWN: 5;
/**
* Rounds towards nearest neighbour. If equidistant, rounds towards even neighbour.
*/
static ROUND_HALF_EVEN: 6;
/**
* Rounds towards nearest neighbour. If equidistant, rounds towards Infinity.
*/
static ROUND_HALF_CEIL: 7;
/**
* Rounds towards nearest neighbour. If equidistant, rounds towards -Infinity.
*/
static ROUND_HALF_FLOOR: 8;
/**
* See `MODULO_MODE`.
*/
static EUCLID: 9;
/**
* To aid in debugging, if a `BigNumber.DEBUG` property is `true` then an error will be thrown
* on an invalid `BigNumber.Value`.
```ts
// No error, and BigNumber NaN is returned.
new BigNumber('blurgh') // 'NaN'
new BigNumber(9, 2) // 'NaN'
BigNumber.DEBUG = true
new BigNumber('blurgh') // '[BigNumber Error] Not a number'
new BigNumber(9, 2) // '[BigNumber Error] Not a base 2 number'
```
An error will also be thrown if a `BigNumber.Value` is of type number with more than 15
significant digits, as calling `toString` or `valueOf` on such numbers may not result
in the intended value.
```ts
console.log(823456789123456.3) // 823456789123456.2
// No error, and the returned BigNumber does not have the same value as the number literal.
new BigNumber(823456789123456.3) // '823456789123456.2'
BigNumber.DEBUG = true
new BigNumber(823456789123456.3)
// '[BigNumber Error] Number primitive has more than 15 significant digits'
```
*/
static DEBUG: boolean;
}
/**
* See `BigNumber.config` and `BigNumber.clone`.
*/
export interface BigNumber$Config {
/**
* An integer, 0 to 1e+9. Default value: 20.
*
The maximum number of decimal places of the result of operations involving division, i.e.
division, square root and base conversion operations, and exponentiation when the exponent is
negative.
```ts
BigNumber.config({ DECIMAL_PLACES: 5 })
BigNumber.set({ DECIMAL_PLACES: 5 })
```
*/
DECIMAL_PLACES?: number;
/**
* An integer, 0 to 8. Default value: `BigNumber.ROUND_HALF_UP` (4).
*
The rounding mode used in operations that involve division (see `DECIMAL_PLACES`) and the
default rounding mode of the `decimalPlaces`, `precision`, `toExponential`, `toFixed`,
`toFormat` and `toPrecision` methods.
The modes are available as enumerated properties of the BigNumber constructor.
```ts
BigNumber.config({ ROUNDING_MODE: 0 })
BigNumber.set({ ROUNDING_MODE: BigNumber.ROUND_UP })
```
*/
ROUNDING_MODE?: BigNumber$RoundingMode;
/**
* An integer, 0 to 1e+9, or an array, [-1e+9 to 0, 0 to 1e+9].
* Default value: `[-7, 20]`.
The exponent value(s) at which `toString` returns exponential notation.
If a single number is assigned, the value is the exponent magnitude.
If an array of two numbers is assigned then the first number is the negative exponent value at
and beneath which exponential notation is used, and the second number is the positive exponent
value at and above which exponential notation is used.
For example, to emulate JavaScript numbers in terms of the exponent values at which they begin
to use exponential notation, use `[-7, 20]`.
```ts
BigNumber.config({ EXPONENTIAL_AT: 2 })
new BigNumber(12.3) // '12.3' e is only 1
new BigNumber(123) // '1.23e+2'
new BigNumber(0.123) // '0.123' e is only -1
new BigNumber(0.0123) // '1.23e-2'
BigNumber.config({ EXPONENTIAL_AT: [-7, 20] })
new BigNumber(123456789) // '123456789' e is only 8
new BigNumber(0.000000123) // '1.23e-7'
// Almost never return exponential notation:
BigNumber.config({ EXPONENTIAL_AT: 1e+9 })
// Always return exponential notation:
BigNumber.config({ EXPONENTIAL_AT: 0 })
```
Regardless of the value of `EXPONENTIAL_AT`, the `toFixed` method will always return a value in
normal notation and the `toExponential` method will always return a value in exponential form.
Calling `toString` with a base argument, e.g. `toString(10)`, will also always return normal
notation.
*/
EXPONENTIAL_AT?: number | [number, number];
/**
* An integer, magnitude 1 to 1e+9, or an array, [-1e+9 to -1, 1 to 1e+9].
* Default value: `[-1e+9, 1e+9]`.
The exponent value(s) beyond which overflow to Infinity and underflow to zero occurs.
If a single number is assigned, it is the maximum exponent magnitude: values wth a positive
exponent of greater magnitude become Infinity and those with a negative exponent of greater
magnitude become zero.
If an array of two numbers is assigned then the first number is the negative exponent limit and
the second number is the positive exponent limit.
For example, to emulate JavaScript numbers in terms of the exponent values at which they
become zero and Infinity, use [-324, 308].
```ts
BigNumber.config({ RANGE: 500 })
BigNumber.config().RANGE // [ -500, 500 ]
new BigNumber('9.999e499') // '9.999e+499'
new BigNumber('1e500') // 'Infinity'
new BigNumber('1e-499') // '1e-499'
new BigNumber('1e-500') // '0'
BigNumber.config({ RANGE: [-3, 4] })
new BigNumber(99999) // '99999' e is only 4
new BigNumber(100000) // 'Infinity' e is 5
new BigNumber(0.001) // '0.01' e is only -3
new BigNumber(0.0001) // '0' e is -4
```
The largest possible magnitude of a finite BigNumber is 9.999...e+1000000000.
The smallest possible magnitude of a non-zero BigNumber is 1e-1000000000.
*/
RANGE?: number | [number, number];
/**
* A boolean: `true` or `false`. Default value: `false`.
*
The value that determines whether cryptographically-secure pseudo-random number generation is
used. If `CRYPTO` is set to true then the random method will generate random digits using
`crypto.getRandomValues` in browsers that support it, or `crypto.randomBytes` if using a
version of Node.js that supports it.
If neither function is supported by the host environment then attempting to set `CRYPTO` to
`true` will fail and an exception will be thrown.
If `CRYPTO` is `false` then the source of randomness used will be `Math.random` (which is
assumed to generate at least 30 bits of randomness).
See `BigNumber.random`.
```ts
// Node.js
global.crypto = require('crypto')
BigNumber.config({ CRYPTO: true })
BigNumber.config().CRYPTO // true
BigNumber.random() // 0.54340758610486147524
```
*/
CRYPTO?: boolean;
/**
* An integer, 0, 1, 3, 6 or 9. Default value: `BigNumber.ROUND_DOWN` (1).
*
The modulo mode used when calculating the modulus: `a mod n`.
The quotient, `q = a / n`, is calculated according to the `ROUNDING_MODE` that corresponds to
the chosen `MODULO_MODE`.
The remainder, `r`, is calculated as: `r = a - n * q`.
The modes that are most commonly used for the modulus/remainder operation are shown in the
following table. Although the other rounding modes can be used, they may not give useful
results.
Property | Value | Description
:------------------|:------|:------------------------------------------------------------------
`ROUND_UP` | 0 | The remainder is positive if the dividend is negative.
`ROUND_DOWN` | 1 | The remainder has the same sign as the dividend.
| | Uses 'truncating division' and matches JavaScript's `%` operator .
`ROUND_FLOOR` | 3 | The remainder has the same sign as the divisor.
| | This matches Python's `%` operator.
`ROUND_HALF_EVEN` | 6 | The IEEE 754 remainder function.
`EUCLID` | 9 | The remainder is always positive.
| | Euclidian division: `q = sign(n) * floor(a / abs(n))`
The rounding/modulo modes are available as enumerated properties of the BigNumber constructor.
See `modulo`.
```ts
BigNumber.config({ MODULO_MODE: BigNumber.EUCLID })
BigNumber.set({ MODULO_MODE: 9 }) // equivalent
```
*/
MODULO_MODE?: BigNumber$ModuloMode;
/**
* An integer, 0 to 1e+9. Default value: 0.
*
The maximum precision, i.e. number of significant digits, of the result of the power operation
- unless a modulus is specified.
If set to 0, the number of significant digits will not be limited.
See `exponentiatedBy`.
```ts
BigNumber.config({ POW_PRECISION: 100 })
```
*/
POW_PRECISION?: number;
/**
* An object including any number of the properties shown below.
*
The object configures the format of the string returned by the `toFormat` method.
The example below shows the properties of the object that are recognised, and
their default values.
Unlike the other configuration properties, the values of the properties of the `FORMAT` object
will not be checked for validity - the existing object will simply be replaced by the object
that is passed in.
See `toFormat`.
```ts
BigNumber.config({
FORMAT: {
// string to prepend
prefix: '',
// the decimal separator
decimalSeparator: '.',
// the grouping separator of the integer part
groupSeparator: ',',
// the primary grouping size of the integer part
groupSize: 3,
// the secondary grouping size of the integer part
secondaryGroupSize: 0,
// the grouping separator of the fraction part
fractionGroupSeparator: ' ',
// the grouping size of the fraction part
fractionGroupSize: 0,
// string to append
suffix: ''
}
})
```
*/
FORMAT?: BigNumber$Format;
/**
* The alphabet used for base conversion. The length of the alphabet corresponds to the maximum
* value of the base argument that can be passed to the BigNumber constructor or `toString`.
Default value: `'0123456789abcdefghijklmnopqrstuvwxyz'`.
There is no maximum length for the alphabet, but it must be at least 2 characters long,
and it must not contain whitespace or a repeated character, or the sign indicators '+' and
'-', or the decimal separator '.'.
```ts
// duodecimal (base 12)
BigNumber.config({ ALPHABET: '0123456789TE' })
x = new BigNumber('T', 12)
x.toString() // '10'
x.toString(12) // 'T'
```
*/
ALPHABET?: string;
}
export type BigNumber$Constructor = typeof BigNumber;
/**
* See `FORMAT` and `toFormat`.
*/
export interface BigNumber$Format {
/**
* The string to prepend.
*/
prefix?: string;
/**
* The decimal separator.
*/
decimalSeparator?: string;
/**
* The grouping separator of the integer part.
*/
groupSeparator?: string;
/**
* The primary grouping size of the integer part.
*/
groupSize?: number;
/**
* The secondary grouping size of the integer part.
*/
secondaryGroupSize?: number;
/**
* The grouping separator of the fraction part.
*/
fractionGroupSeparator?: string;
/**
* The grouping size of the fraction part.
*/
fractionGroupSize?: number;
/**
* The string to append.
*/
suffix?: string;
}
export type BigNumber$Instance = BigNumber;
export type BigNumber$ModuloMode = 0 | 1 | 3 | 6 | 9;
export type BigNumber$RoundingMode = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8;
export type BigNumber$Value = string | number | BigNumber;