srsLTE/lib/test/upper/pdcp_nr_test.cc

528 lines
21 KiB
C++

/*
* Copyright 2013-2019 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "pdcp_nr_test.h"
#include <numeric>
// Encryption and Integrity Keys
uint8_t k_int[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15,
0x16, 0x17, 0x18, 0x19, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x30, 0x31};
uint8_t k_enc[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15,
0x16, 0x17, 0x18, 0x19, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x30, 0x31};
// Security Configuration, common to all tests.
pdcp_security_cfg sec_cfg = {
k_int,
k_enc,
k_int,
k_enc,
srslte::INTEGRITY_ALGORITHM_ID_128_EIA2,
srslte::CIPHERING_ALGORITHM_ID_128_EEA2,
};
// Test SDUs for tx
uint8_t sdu1[] = {0x18, 0xe2};
uint8_t sdu2[] = {0xde, 0xad};
// Test PDUs for rx (generated from SDU1)
uint8_t pdu1_count0_snlen12[] = {0x80, 0x00, 0x8f, 0xe3, 0xe0, 0xdf, 0x82, 0x92};
uint8_t pdu1_count2048_snlen12[] = {0x88, 0x00, 0x8d, 0x2c, 0x47, 0x5e, 0xb1, 0x5b};
uint8_t pdu1_count4096_snlen12[] = {0x80, 0x00, 0x97, 0xbe, 0xa3, 0x32, 0xfa, 0x61};
uint8_t pdu1_count4294967295_snlen12[] = {0x8f, 0xff, 0x1e, 0x47, 0xe6, 0x86, 0x28, 0x6c};
uint8_t pdu1_count0_snlen18[] = {0x80, 0x00, 0x00, 0x8f, 0xe3, 0xe0, 0xdf, 0x82, 0x92};
uint8_t pdu1_count131072_snlen18[] = {0x82, 0x00, 0x00, 0x15, 0x01, 0xf4, 0xb0, 0xfc, 0xc5};
uint8_t pdu1_count262144_snlen18[] = {0x80, 0x00, 0x00, 0xc2, 0x47, 0xa8, 0xdd, 0xc0, 0x73};
uint8_t pdu1_count4294967295_snlen18[] = {0x83, 0xff, 0xff, 0x1e, 0x47, 0xe6, 0x86, 0x28, 0x6c};
// Test PDUs for rx (generated from SDU2)
uint8_t pdu2_count1_snlen12[] = {0x80, 0x01, 0x5e, 0x3d, 0x64, 0xaf, 0xac, 0x7c};
uint8_t pdu2_count1_snlen18[] = {0x80, 0x00, 0x01, 0x5e, 0x3d, 0x64, 0xaf, 0xac, 0x7c};
// This is the normal initial state. All state variables are set to zero
pdcp_initial_state normal_init_state = {};
// Some tests regarding COUNT wraparound take really long.
// This puts the PCDC state closer to wraparound quickly.
pdcp_initial_state near_wraparound_init_state = {
.tx_next = 4294967295, .rx_next = 4294967295, .rx_deliv = 4294967295, .rx_reord = 0};
/*
* Genric function to test transmission of in-sequence packets
*/
int test_tx(uint32_t n_packets,
const pdcp_initial_state& init_state,
uint8_t pdcp_sn_len,
uint64_t n_pdus_exp,
srslte::unique_byte_buffer_t pdu_exp,
srslte::byte_buffer_pool* pool,
srslte::log* log)
{
srslte::pdcp_config_t cfg = {1,
srslte::PDCP_RB_IS_DRB,
srslte::SECURITY_DIRECTION_UPLINK,
srslte::SECURITY_DIRECTION_DOWNLINK,
pdcp_sn_len,
srslte::pdcp_t_reordering_t::ms500,
srslte::pdcp_discard_timer_t::infinity};
pdcp_nr_test_helper pdcp_hlp(cfg, sec_cfg, log);
srslte::pdcp_entity_nr* pdcp = &pdcp_hlp.pdcp;
rlc_dummy* rlc = &pdcp_hlp.rlc;
pdcp_hlp.set_pdcp_initial_state(init_state);
// Run test
for (uint32_t i = 0; i < n_packets; ++i) {
// Test SDU
srslte::unique_byte_buffer_t sdu = allocate_unique_buffer(*pool);
sdu->append_bytes(sdu1, sizeof(sdu1));
pdcp->write_sdu(std::move(sdu), true);
}
srslte::unique_byte_buffer_t pdu_act = allocate_unique_buffer(*pool);
rlc->get_last_sdu(pdu_act);
TESTASSERT(rlc->rx_count == n_pdus_exp);
TESTASSERT(compare_two_packets(pdu_act, pdu_exp) == 0);
return 0;
}
/*
* Genric function to test reception of in-sequence packets
*/
int test_rx(std::vector<pdcp_test_event_t> events,
const pdcp_initial_state& init_state,
uint8_t pdcp_sn_len,
uint32_t n_sdus_exp,
const srslte::unique_byte_buffer_t& sdu_exp,
srslte::byte_buffer_pool* pool,
srslte::log* log)
{
srslte::pdcp_config_t cfg_rx = {1,
srslte::PDCP_RB_IS_DRB,
srslte::SECURITY_DIRECTION_DOWNLINK,
srslte::SECURITY_DIRECTION_UPLINK,
pdcp_sn_len,
srslte::pdcp_t_reordering_t::ms500,
srslte::pdcp_discard_timer_t::infinity};
pdcp_nr_test_helper pdcp_hlp_rx(cfg_rx, sec_cfg, log);
srslte::pdcp_entity_nr* pdcp_rx = &pdcp_hlp_rx.pdcp;
gw_dummy* gw_rx = &pdcp_hlp_rx.gw;
srslte::timer_handler* timers_rx = &pdcp_hlp_rx.timers;
pdcp_hlp_rx.set_pdcp_initial_state(init_state);
// Generate test message and encript/decript SDU.
for (pdcp_test_event_t& event : events) {
// Decript and integrity check the PDU
pdcp_rx->write_pdu(std::move(event.pkt));
for (uint32_t i = 0; i < event.ticks; ++i) {
timers_rx->step_all();
}
}
// Test if the number of RX packets
TESTASSERT(gw_rx->rx_count == n_sdus_exp);
srslte::unique_byte_buffer_t sdu_act = allocate_unique_buffer(*pool);
gw_rx->get_last_pdu(sdu_act);
TESTASSERT(compare_two_packets(sdu_exp, sdu_act) == 0);
return 0;
}
/*
* Genric function to test transmission of in-sequence packets
*/
int test_tx_sdu_discard(const pdcp_initial_state& init_state,
srslte::pdcp_discard_timer_t discard_timeout,
bool imediate_notify,
srslte::byte_buffer_pool* pool,
srslte::log* log)
{
srslte::pdcp_config_t cfg = {1,
srslte::PDCP_RB_IS_DRB,
srslte::SECURITY_DIRECTION_UPLINK,
srslte::SECURITY_DIRECTION_DOWNLINK,
srslte::PDCP_SN_LEN_12,
srslte::pdcp_t_reordering_t::ms500,
discard_timeout};
pdcp_nr_test_helper pdcp_hlp(cfg, sec_cfg, log);
srslte::pdcp_entity_nr* pdcp = &pdcp_hlp.pdcp;
rlc_dummy* rlc = &pdcp_hlp.rlc;
srslte::timer_handler* timers = &pdcp_hlp.timers;
pdcp_hlp.set_pdcp_initial_state(init_state);
// Test SDU
srslte::unique_byte_buffer_t sdu = allocate_unique_buffer(*pool);
sdu->append_bytes(sdu1, sizeof(sdu1));
pdcp->write_sdu(std::move(sdu), true);
for (uint32_t i = 0; i < static_cast<uint32_t>(cfg.discard_timer) - 1; ++i) {
timers->step_all();
}
TESTASSERT(rlc->discard_count == 0);
timers->step_all();
if (imediate_notify) {
TESTASSERT(rlc->discard_count == 0); // RLC imediatly notified the PDCP of tx, there should be no timeouts
} else {
TESTASSERT(rlc->discard_count == 1); // RLC does not notify the the PDCP of tx, there should be a timeout
}
return 0;
}
/*
* TX Test: PDCP Entity with SN LEN = 12 and 18.
* PDCP entity configured with EIA2 and EEA2
*/
int test_tx_all(srslte::byte_buffer_pool* pool, srslte::log* log)
{
//uint64_t n_packets;
///*
// * TX Test 1: PDCP Entity with SN LEN = 12
// * TX_NEXT = 0.
// * Input: {0x18, 0xE2}
// * Output: PDCP Header {0x80, 0x00}, Ciphered Text {0x8f, 0xe3}, MAC-I {0xe0, 0xdf, 0x82, 0x92}
// */
//n_packets = 1;
//srslte::unique_byte_buffer_t pdu_exp_count0_len12 = allocate_unique_buffer(*pool);
//pdu_exp_count0_len12->append_bytes(pdu1_count0_snlen12, sizeof(pdu1_count0_snlen12));
//TESTASSERT(test_tx(n_packets,
// normal_init_state,
// srslte::PDCP_SN_LEN_12,
// n_packets,
// std::move(pdu_exp_count0_len12),
// pool,
// log) == 0);
///*
// * TX Test 2: PDCP Entity with SN LEN = 12
// * TX_NEXT = 2048.
// * Input: {0x18, 0xE2}
// * Output: PDCP Header {0x88, 0x00}, Ciphered Text {0x8d, 0x2c}, MAC-I {0x47, 0x5e, 0xb1, 0x5b}
// */
//n_packets = 2049;
//srslte::unique_byte_buffer_t pdu_exp_count2048_len12 = allocate_unique_buffer(*pool);
//pdu_exp_count2048_len12->append_bytes(pdu1_count2048_snlen12, sizeof(pdu1_count2048_snlen12));
//TESTASSERT(test_tx(n_packets,
// normal_init_state,
// srslte::PDCP_SN_LEN_12,
// n_packets,
// std::move(pdu_exp_count2048_len12),
// pool,
// log) == 0);
///*
// * TX Test 3: PDCP Entity with SN LEN = 12
// * TX_NEXT = 4096.
// * Input: {0x18, 0xE2}
// * Output: PDCP Header {0x80,0x00}, Ciphered Text {0x97, 0xbe}, MAC-I {0xa3, 0x32, 0xfa, 0x61}
// */
//n_packets = 4097;
//srslte::unique_byte_buffer_t pdu_exp_count4096_len12 = allocate_unique_buffer(*pool);
//pdu_exp_count4096_len12->append_bytes(pdu1_count4096_snlen12, sizeof(pdu1_count4096_snlen12));
//TESTASSERT(test_tx(n_packets,
// normal_init_state,
// srslte::PDCP_SN_LEN_12,
// n_packets,
// std::move(pdu_exp_count4096_len12),
// pool,
// log) == 0);
///*
// * TX Test 4: PDCP Entity with SN LEN = 18
// * TX_NEXT = 0.
// * Input: {0x18, 0xE2}
// * Output: PDCP Header {0x80, 0x80, 0x00}, Ciphered Text {0x8f, 0xe3}, MAC-I {0xe0, 0xdf, 0x82, 0x92}
// */
//n_packets = 1;
//srslte::unique_byte_buffer_t pdu_exp_count0_len18 = allocate_unique_buffer(*pool);
//pdu_exp_count0_len18->append_bytes(pdu1_count0_snlen18, sizeof(pdu1_count0_snlen18));
//TESTASSERT(test_tx(n_packets,
// normal_init_state,
// srslte::PDCP_SN_LEN_18,
// n_packets,
// std::move(pdu_exp_count0_len18),
// pool,
// log) == 0);
///*
// * TX Test 5: PDCP Entity with SN LEN = 18
// * TX_NEXT = 131072.
// * Input: {0x18, 0xE2}
// * Output: PDCP Header {0x82, 0x00, 0x00}, Ciphered Text {0x15, 0x01}, MAC-I {0xf4, 0xb0, 0xfc, 0xc5}
// */
//n_packets = 131073;
//srslte::unique_byte_buffer_t pdu_exp_sn131072_len18 = allocate_unique_buffer(*pool);
//pdu_exp_sn131072_len18->append_bytes(pdu1_count131072_snlen18, sizeof(pdu1_count131072_snlen18));
//TESTASSERT(test_tx(n_packets,
// normal_init_state,
// srslte::PDCP_SN_LEN_18,
// n_packets,
// std::move(pdu_exp_sn131072_len18),
// pool,
// log) == 0);
///*
// * TX Test 6: PDCP Entity with SN LEN = 18
// * TX_NEXT = 262144.
// * Input: {0x18, 0xE2}
// * Output: PDCP Header {0x80, 0x00, 0x00}, Ciphered Text {0xc2, 0x47}, MAC-I {0xa8, 0xdd, 0xc0, 0x73}
// */
//n_packets = 262145;
//srslte::unique_byte_buffer_t pdu_exp_count262144_len18 = allocate_unique_buffer(*pool);
//pdu_exp_count262144_len18->append_bytes(pdu1_count262144_snlen18, sizeof(pdu1_count262144_snlen18));
//TESTASSERT(test_tx(n_packets,
// normal_init_state,
// srslte::PDCP_SN_LEN_18,
// n_packets,
// std::move(pdu_exp_count262144_len18),
// pool,
// log) == 0);
///*
// * TX Test 7: PDCP Entity with SN LEN = 12
// * Test TX at COUNT wraparound.
// * Should print a warning and drop all packets after wraparound.
// */
//n_packets = 5;
//srslte::unique_byte_buffer_t pdu_exp_count4294967295_len12 = allocate_unique_buffer(*pool);
//pdu_exp_count4294967295_len12->append_bytes(pdu1_count4294967295_snlen12, sizeof(pdu1_count4294967295_snlen12));
//TESTASSERT(test_tx(n_packets,
// near_wraparound_init_state,
// srslte::PDCP_SN_LEN_12,
// 1,
// std::move(pdu_exp_count4294967295_len12),
// pool,
// log) == 0);
///*
// * TX Test 8: PDCP Entity with SN LEN = 18
// * Test TX at COUNT wraparound.
// * Should print a warning and drop all packets after wraparound.
// */
//n_packets = 5;
//srslte::unique_byte_buffer_t pdu_exp_count4294967295_len18 = allocate_unique_buffer(*pool);
//pdu_exp_count4294967295_len18->append_bytes(pdu1_count4294967295_snlen18, sizeof(pdu1_count4294967295_snlen18));
//TESTASSERT(test_tx(n_packets,
// near_wraparound_init_state,
// srslte::PDCP_SN_LEN_18,
// 1,
// std::move(pdu_exp_count4294967295_len18),
// pool,
// log) == 0);
/*
* TX Test 9: PDCP Entity with SN LEN = 12
* Test TX PDU discard.
*/
TESTASSERT(test_tx_sdu_discard(normal_init_state, srslte::pdcp_discard_timer_t::ms50, false, pool, log) == 0);
return 0;
}
/*
* RX Test: PDCP Entity with SN LEN = 12 and 18.
* PDCP entity configured with EIA2 and EEA2
*/
int test_rx_all(srslte::byte_buffer_pool* pool, srslte::log* log)
{
// Test SDUs
srslte::unique_byte_buffer_t tst_sdu1 = allocate_unique_buffer(*pool); // SDU 1
tst_sdu1->append_bytes(sdu1, sizeof(sdu1));
srslte::unique_byte_buffer_t tst_sdu2 = allocate_unique_buffer(*pool); // SDU 2
tst_sdu2->append_bytes(sdu2, sizeof(sdu2));
/*
* RX Test 1: PDCP Entity with SN LEN = 12
* Test in-sequence reception of 4097 packets.
* This tests correct handling of HFN in the case of SN wraparound (SN LEN 12)
*/
{
std::vector<uint32_t> test1_counts(2); // Test two packets
std::iota(test1_counts.begin(), test1_counts.end(), 4095); // Starting at COUNT 4095
std::vector<pdcp_test_event_t> test1_pdus =
gen_expected_pdus_vector(tst_sdu1, test1_counts, srslte::PDCP_SN_LEN_12, sec_cfg, pool, log);
pdcp_initial_state test1_init_state = {.tx_next = 4095, .rx_next = 4095, .rx_deliv = 4095, .rx_reord = 0};
TESTASSERT(test_rx(std::move(test1_pdus), test1_init_state, srslte::PDCP_SN_LEN_12, 2, tst_sdu1, pool, log) == 0);
}
/*
* RX Test 2: PDCP Entity with SN LEN = 12
* Test in-sequence reception of 4294967297 packets.
* This tests correct handling of COUNT in the case of [HFN|SN] wraparound
* Packet that wraparound should be dropped, so only one packet should be received at the GW.
*/
{
std::vector<uint32_t> test2_counts(2); // Test two packets
std::iota(test2_counts.begin(), test2_counts.end(), 4294967295); // Starting at COUNT 4294967295
std::vector<pdcp_test_event_t> test2_pdus =
gen_expected_pdus_vector(tst_sdu1, test2_counts, srslte::PDCP_SN_LEN_12, sec_cfg, pool, log);
pdcp_initial_state test2_init_state = {
.tx_next = 4294967295, .rx_next = 4294967295, .rx_deliv = 4294967295, .rx_reord = 0};
TESTASSERT(test_rx(std::move(test2_pdus), test2_init_state, srslte::PDCP_SN_LEN_12, 1, tst_sdu1, pool, log) == 0);
}
/*
* RX Test 3: PDCP Entity with SN LEN = 18
* Test In-sequence reception of 262145 packets.
* This tests correct handling of HFN in the case of SN wraparound (SN LEN 18)
*/
{
std::vector<uint32_t> test3_counts(2); // Test two packets
std::iota(test3_counts.begin(), test3_counts.end(), 262144); // Starting at COUNT 262144
std::vector<pdcp_test_event_t> test3_pdus =
gen_expected_pdus_vector(tst_sdu1, test3_counts, srslte::PDCP_SN_LEN_18, sec_cfg, pool, log);
pdcp_initial_state test3_init_state = {.tx_next = 262144, .rx_next = 262144, .rx_deliv = 262144, .rx_reord = 0};
TESTASSERT(test_rx(std::move(test3_pdus), test3_init_state, srslte::PDCP_SN_LEN_18, 2, tst_sdu1, pool, log) == 0);
}
/*
* RX Test 4: PDCP Entity with SN LEN = 18
* Test in-sequence reception of 4294967297 packets.
* This tests correct handling of COUNT in the case of [HFN|SN] wraparound
*/
{
std::vector<uint32_t> test4_counts(2); // Test two packets
std::iota(test4_counts.begin(), test4_counts.end(), 4294967295); // Starting at COUNT 4294967295
std::vector<pdcp_test_event_t> test4_pdus =
gen_expected_pdus_vector(tst_sdu1, test4_counts, srslte::PDCP_SN_LEN_18, sec_cfg, pool, log);
pdcp_initial_state test4_init_state = {
.tx_next = 4294967295, .rx_next = 4294967295, .rx_deliv = 4294967295, .rx_reord = 0};
TESTASSERT(test_rx(std::move(test4_pdus), test4_init_state, srslte::PDCP_SN_LEN_18, 1, tst_sdu1, pool, log) == 0);
}
/*
* RX Test 5: PDCP Entity with SN LEN = 12
* Test reception of two out-of-order packets, starting at COUNT 0.
*/
{
std::vector<pdcp_test_event_t> test5_pdus;
pdcp_initial_state test5_init_state = {};
// First PDU
pdcp_test_event_t event_pdu1;
event_pdu1.pkt = srslte::allocate_unique_buffer(*pool);
event_pdu1.pkt->append_bytes(pdu1_count0_snlen12, sizeof(pdu1_count0_snlen12));
// Second PDU
pdcp_test_event_t event_pdu2;
event_pdu2.pkt = srslte::allocate_unique_buffer(*pool);
event_pdu2.pkt->append_bytes(pdu2_count1_snlen12, sizeof(pdu2_count1_snlen12));
// Write PDUs out of order (first the pdu with COUNT 1 and COUNT 0 after)
test5_pdus.push_back(std::move(event_pdu2));
test5_pdus.push_back(std::move(event_pdu1));
TESTASSERT(test_rx(std::move(test5_pdus), test5_init_state, srslte::PDCP_SN_LEN_12, 2, tst_sdu2, pool, log) == 0);
}
/*
* RX Test 6: PDCP Entity with SN LEN = 18
* Test reception of two out-of-order packets, starting at COUNT 0.
*/
{
std::vector<pdcp_test_event_t> test6_pdus;
pdcp_initial_state test6_init_state = {};
// First PDU
pdcp_test_event_t event_pdu1;
event_pdu1.pkt = srslte::allocate_unique_buffer(*pool);
event_pdu1.pkt->append_bytes(pdu1_count0_snlen18, sizeof(pdu1_count0_snlen18));
// Second PDU
pdcp_test_event_t event_pdu2;
event_pdu2.pkt = srslte::allocate_unique_buffer(*pool);
event_pdu2.pkt->append_bytes(pdu2_count1_snlen18, sizeof(pdu2_count1_snlen18));
// Write PDUs out of order (first the pdu with COUNT 1 and COUNT 0 after)
test6_pdus.push_back(std::move(event_pdu2));
test6_pdus.push_back(std::move(event_pdu1));
TESTASSERT(test_rx(std::move(test6_pdus), test6_init_state, srslte::PDCP_SN_LEN_18, 2, tst_sdu2, pool, log) == 0);
}
/*
* RX Test 7: PDCP Entity with SN LEN = 12
* Test Reception of one out-of-order packet.
*/
{
std::vector<pdcp_test_event_t> test7_pdus;
pdcp_initial_state test7_init_state = {};
// First PDU
pdcp_test_event_t event_pdu1;
event_pdu1.pkt = srslte::allocate_unique_buffer(*pool);
event_pdu1.pkt->append_bytes(pdu2_count1_snlen12, sizeof(pdu2_count1_snlen12));
event_pdu1.ticks = 500;
// Write PDUs out of order (first the pdu with COUNT 1 and COUNT 0 after)
test7_pdus.push_back(std::move(event_pdu1));
TESTASSERT(test_rx(std::move(test7_pdus), test7_init_state, srslte::PDCP_SN_LEN_12, 1, tst_sdu2, pool, log) == 0);
}
/*
* RX Test 8: PDCP Entity with SN LEN = 12
* Test reception of two duplicate PDUs, with COUNT 0.
*/
{
std::vector<pdcp_test_event_t> test8_pdus;
pdcp_initial_state test8_init_state = {};
// First PDU
pdcp_test_event_t event_pdu1;
event_pdu1.pkt = srslte::allocate_unique_buffer(*pool);
event_pdu1.pkt->append_bytes(pdu1_count0_snlen12, sizeof(pdu1_count0_snlen12));
// Second PDU
pdcp_test_event_t event_pdu2;
event_pdu2.pkt = srslte::allocate_unique_buffer(*pool);
event_pdu2.pkt->append_bytes(pdu1_count0_snlen12, sizeof(pdu1_count0_snlen12));
// Write PDUs out of order (first the pdu with COUNT 1 and COUNT 0 after)
test8_pdus.push_back(std::move(event_pdu1));
test8_pdus.push_back(std::move(event_pdu2));
TESTASSERT(test_rx(std::move(test8_pdus), test8_init_state, srslte::PDCP_SN_LEN_12, 1, tst_sdu1, pool, log) == 0);
}
return 0;
}
// Setup all tests
int run_all_tests(srslte::byte_buffer_pool* pool)
{
// Setup log
srslte::log_filter log("PDCP NR Test");
log.set_level(srslte::LOG_LEVEL_DEBUG);
log.set_hex_limit(128);
TESTASSERT(test_tx_all(pool, &log) == 0);
//TESTASSERT(test_rx_all(pool, &log) == 0);
return 0;
}
int main()
{
if (run_all_tests(srslte::byte_buffer_pool::get_instance()) != SRSLTE_SUCCESS) {
fprintf(stderr, "pdcp_nr_tests() failed\n");
return SRSLTE_ERROR;
}
srslte::byte_buffer_pool::cleanup();
return SRSLTE_SUCCESS;
}