solana/src/accountant_stub.rs

361 lines
13 KiB
Rust
Raw Normal View History

2018-03-30 13:10:27 -07:00
//! The `accountant_stub` module is a client-side object that interfaces with a server-side Accountant
2018-03-29 11:20:54 -07:00
//! object via the network interface exposed by AccountantSkel. Client code should use
//! this object instead of writing messages to the network directly. The binary
//! encoding of its messages are unstable and may change in future releases.
2018-02-28 13:16:50 -08:00
use accountant_skel::{Request, Response, Subscription};
use bincode::{deserialize, serialize};
use futures::future::{ok, FutureResult};
use hash::Hash;
use signature::{KeyPair, PublicKey, Signature};
use std::collections::HashMap;
use std::io;
2018-04-28 00:31:20 -07:00
use std::net::{SocketAddr, UdpSocket};
use transaction::Transaction;
2018-02-28 13:16:50 -08:00
pub struct AccountantStub {
2018-04-28 00:31:20 -07:00
pub addr: SocketAddr,
pub socket: UdpSocket,
last_id: Option<Hash>,
num_events: u64,
balances: HashMap<PublicKey, Option<i64>>,
2018-02-28 13:16:50 -08:00
}
impl AccountantStub {
2018-03-29 11:20:54 -07:00
/// Create a new AccountantStub that will interface with AccountantSkel
/// over `socket`. To receive responses, the caller must bind `socket`
/// to a public address before invoking AccountantStub methods.
2018-04-28 00:31:20 -07:00
pub fn new(addr: SocketAddr, socket: UdpSocket) -> Self {
2018-04-17 15:41:58 -07:00
let stub = AccountantStub {
2018-04-28 00:31:20 -07:00
addr: addr,
socket,
last_id: None,
num_events: 0,
balances: HashMap::new(),
2018-04-17 15:41:58 -07:00
};
stub.init();
stub
}
pub fn init(&self) {
let subscriptions = vec![Subscription::EntryInfo];
let req = Request::Subscribe { subscriptions };
2018-04-17 15:41:58 -07:00
let data = serialize(&req).expect("serialize Subscribe");
trace!("subscribing to {}", self.addr);
let _res = self.socket.send_to(&data, &self.addr);
}
pub fn recv_response(&self) -> io::Result<Response> {
let mut buf = vec![0u8; 1024];
info!("start recv_from");
self.socket.recv_from(&mut buf)?;
info!("end recv_from");
let resp = deserialize(&buf).expect("deserialize balance");
Ok(resp)
}
pub fn process_response(&mut self, resp: Response) {
match resp {
Response::Balance { key, val } => {
info!("Response balance {:?} {:?}", key, val);
self.balances.insert(key, val);
}
Response::EntryInfo(entry_info) => {
trace!("Response entry_info {:?}", entry_info.id);
self.last_id = Some(entry_info.id);
self.num_events += entry_info.num_events;
}
2018-02-28 13:16:50 -08:00
}
}
2018-03-29 11:20:54 -07:00
/// Send a signed Transaction to the server for processing. This method
/// does not wait for a response.
pub fn transfer_signed(&self, tr: Transaction) -> io::Result<usize> {
let req = Request::Transaction(tr);
2018-02-28 13:16:50 -08:00
let data = serialize(&req).unwrap();
self.socket.send_to(&data, &self.addr)
2018-02-28 13:16:50 -08:00
}
2018-03-29 11:20:54 -07:00
/// Creates, signs, and processes a Transaction. Useful for writing unit-tests.
2018-02-28 13:16:50 -08:00
pub fn transfer(
2018-03-05 10:11:00 -08:00
&self,
n: i64,
keypair: &KeyPair,
2018-02-28 13:16:50 -08:00
to: PublicKey,
last_id: &Hash,
) -> io::Result<Signature> {
let tr = Transaction::new(keypair, to, n, *last_id);
let sig = tr.sig;
self.transfer_signed(tr).map(|_| sig)
2018-02-28 13:16:50 -08:00
}
2018-03-29 11:20:54 -07:00
/// Request the balance of the user holding `pubkey`. This method blocks
/// until the server sends a response. If the response packet is dropped
/// by the network, this method will hang indefinitely.
pub fn get_balance(&mut self, pubkey: &PublicKey) -> io::Result<i64> {
info!("get_balance");
2018-02-28 13:16:50 -08:00
let req = Request::GetBalance { key: *pubkey };
let data = serialize(&req).expect("serialize GetBalance");
self.socket
.send_to(&data, &self.addr)
.expect("buffer error");
2018-04-17 15:41:58 -07:00
let mut done = false;
while !done {
let resp = self.recv_response()?;
info!("recv_response {:?}", resp);
2018-04-17 15:41:58 -07:00
if let &Response::Balance { ref key, .. } = &resp {
done = key == pubkey;
}
self.process_response(resp);
}
self.balances[pubkey].ok_or(io::Error::new(io::ErrorKind::Other, "nokey"))
}
2018-04-02 08:30:10 -07:00
/// Request the last Entry ID from the server. This method blocks
/// until the server sends a response.
pub fn get_last_id(&mut self) -> FutureResult<Hash, ()> {
self.transaction_count();
ok(self.last_id.unwrap_or(Hash::default()))
}
/// Return the number of transactions the server processed since creating
/// this stub instance.
pub fn transaction_count(&mut self) -> u64 {
// Wait for at least one EntryInfo.
let mut done = false;
while !done {
let resp = self.recv_response().expect("recv response");
if let &Response::EntryInfo(_) = &resp {
done = true;
}
self.process_response(resp);
}
// Then take the rest.
self.socket.set_nonblocking(true).expect("set nonblocking");
loop {
match self.recv_response() {
Err(_) => break,
Ok(resp) => self.process_response(resp),
}
}
self.socket.set_nonblocking(false).expect("set blocking");
self.num_events
}
2018-02-28 13:16:50 -08:00
}
#[cfg(test)]
mod tests {
use super::*;
use accountant::Accountant;
use accountant_skel::AccountantSkel;
2018-04-28 00:31:20 -07:00
use crdt::ReplicatedData;
use futures::Future;
2018-04-02 20:15:21 -07:00
use historian::Historian;
use logger;
use mint::Mint;
use signature::{KeyPair, KeyPairUtil};
2018-03-26 11:17:19 -07:00
use std::io::sink;
use std::sync::atomic::{AtomicBool, Ordering};
2018-05-02 15:35:37 -07:00
use std::sync::mpsc::sync_channel;
2018-04-28 00:31:20 -07:00
use std::sync::Arc;
use std::thread::sleep;
use std::time::Duration;
2018-02-28 13:16:50 -08:00
// TODO: Figure out why this test sometimes hangs on TravisCI.
2018-02-28 13:16:50 -08:00
#[test]
fn test_accountant_stub() {
logger::setup();
2018-04-28 00:31:20 -07:00
let gossip = UdpSocket::bind("0.0.0.0:0").unwrap();
let serve = UdpSocket::bind("0.0.0.0:0").unwrap();
let addr = serve.local_addr().unwrap();
let pubkey = KeyPair::new().pubkey();
let d = ReplicatedData::new(
pubkey,
gossip.local_addr().unwrap(),
"0.0.0.0:0".parse().unwrap(),
serve.local_addr().unwrap(),
);
let alice = Mint::new(10_000);
let acc = Accountant::new(&alice);
let bob_pubkey = KeyPair::new().pubkey();
2018-03-22 13:05:23 -07:00
let exit = Arc::new(AtomicBool::new(false));
2018-05-02 15:35:37 -07:00
let (input, event_receiver) = sync_channel(10);
let historian = Historian::new(event_receiver, &alice.last_id(), Some(30));
2018-05-03 12:24:35 -07:00
let acc = Arc::new(AccountantSkel::new(acc, input, historian));
2018-04-28 00:31:20 -07:00
let threads = AccountantSkel::serve(&acc, d, serve, gossip, exit.clone(), sink()).unwrap();
sleep(Duration::from_millis(300));
2018-02-28 13:16:50 -08:00
2018-04-28 00:31:20 -07:00
let socket = UdpSocket::bind("0.0.0.0:0").unwrap();
let mut acc = AccountantStub::new(addr, socket);
let last_id = acc.get_last_id().wait().unwrap();
let _sig = acc.transfer(500, &alice.keypair(), bob_pubkey, &last_id)
.unwrap();
assert_eq!(acc.get_balance(&bob_pubkey).unwrap(), 500);
2018-03-22 13:05:23 -07:00
exit.store(true, Ordering::Relaxed);
2018-04-28 00:31:20 -07:00
for t in threads {
t.join().unwrap();
}
2018-02-28 13:16:50 -08:00
}
}
#[cfg(all(feature = "unstable", test))]
mod unstsable_tests {
use super::*;
use accountant::Accountant;
use accountant_skel::AccountantSkel;
use crdt::{Crdt, ReplicatedData};
use futures::Future;
use historian::Historian;
use logger;
use mint::Mint;
use signature::{KeyPair, KeyPairUtil};
use std::io::sink;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::sync_channel;
use std::sync::{Arc, RwLock};
use std::thread::sleep;
use std::time::Duration;
fn test_node() -> (ReplicatedData, UdpSocket, UdpSocket, UdpSocket) {
let gossip = UdpSocket::bind("0.0.0.0:0").unwrap();
let serve = UdpSocket::bind("0.0.0.0:0").unwrap();
let replicate = UdpSocket::bind("0.0.0.0:0").unwrap();
let pubkey = KeyPair::new().pubkey();
let leader = ReplicatedData::new(
pubkey,
gossip.local_addr().unwrap(),
replicate.local_addr().unwrap(),
serve.local_addr().unwrap(),
);
(leader, gossip, serve, replicate)
}
#[test]
fn test_multi_accountant_stub() {
logger::setup();
info!("test_multi_accountant_stub");
let leader = test_node();
let replicant = test_node();
let alice = Mint::new(10_000);
let bob_pubkey = KeyPair::new().pubkey();
let exit = Arc::new(AtomicBool::new(false));
let leader_acc = {
let (input, event_receiver) = sync_channel(10);
let historian = Historian::new(event_receiver, &alice.last_id(), Some(30));
let acc = Accountant::new(&alice);
Arc::new(AccountantSkel::new(acc, input, historian))
};
let replicant_acc = {
let (input, event_receiver) = sync_channel(10);
let historian = Historian::new(event_receiver, &alice.last_id(), Some(30));
let acc = Accountant::new(&alice);
Arc::new(AccountantSkel::new(acc, input, historian))
};
let leader_threads = AccountantSkel::serve(
&leader_acc,
leader.0.clone(),
leader.2,
leader.1,
exit.clone(),
sink(),
).unwrap();
let replicant_threads = AccountantSkel::replicate(
&replicant_acc,
replicant.0.clone(),
replicant.1,
replicant.2,
replicant.3,
leader.0.clone(),
exit.clone(),
).unwrap();
//lets spy on the network
let (mut spy, spy_gossip, _, _) = test_node();
let daddr = "0.0.0.0:0".parse().unwrap();
spy.replicate_addr = daddr;
spy.serve_addr = daddr;
let mut spy_crdt = Crdt::new(spy);
spy_crdt.insert(leader.0.clone());
spy_crdt.set_leader(leader.0.id);
let spy_ref = Arc::new(RwLock::new(spy_crdt));
let t_spy_listen = Crdt::listen(spy_ref.clone(), spy_gossip, exit.clone());
let t_spy_gossip = Crdt::gossip(spy_ref.clone(), exit.clone());
//wait for the network to converge
for _ in 0..20 {
let ix = spy_ref.read().unwrap().update_index;
info!("my update index is {}", ix);
let len = spy_ref.read().unwrap().remote.values().len();
let mut done = false;
info!("remote len {}", len);
if len > 1 && ix > 2 {
done = true;
//check if everyones remote index is greater or equal to ours
let vs: Vec<u64> = spy_ref.read().unwrap().remote.values().cloned().collect();
for t in vs.into_iter() {
info!("remote update index is {} vs {}", t, ix);
if t < 3 {
done = false;
}
}
}
if done == true {
info!("converged!");
break;
}
sleep(Duration::new(1, 0));
}
//verify leader can do transfer
let leader_balance = {
let socket = UdpSocket::bind("0.0.0.0:0").unwrap();
socket.set_read_timeout(Some(Duration::new(1, 0))).unwrap();
let mut acc = AccountantStub::new(leader.0.serve_addr, socket);
info!("getting leader last_id");
let last_id = acc.get_last_id().wait().unwrap();
info!("executing leader transer");
let _sig = acc.transfer(500, &alice.keypair(), bob_pubkey, &last_id)
.unwrap();
info!("getting leader balance");
acc.get_balance(&bob_pubkey).unwrap()
};
assert_eq!(leader_balance, 500);
//verify replicant has the same balance
let mut replicant_balance = 0;
for _ in 0..10 {
let socket = UdpSocket::bind("0.0.0.0:0").unwrap();
socket.set_read_timeout(Some(Duration::new(1, 0))).unwrap();
let mut acc = AccountantStub::new(replicant.0.serve_addr, socket);
info!("getting replicant balance");
if let Ok(bal) = acc.get_balance(&bob_pubkey) {
replicant_balance = bal;
}
info!("replicant balance {}", replicant_balance);
if replicant_balance == leader_balance {
break;
}
sleep(Duration::new(1, 0));
}
assert_eq!(replicant_balance, leader_balance);
exit.store(true, Ordering::Relaxed);
for t in leader_threads {
t.join().unwrap();
}
for t in replicant_threads {
t.join().unwrap();
}
for t in vec![t_spy_listen, t_spy_gossip] {
t.join().unwrap();
}
}
}