solana/src/thin_client.rs

438 lines
16 KiB
Rust
Raw Normal View History

//! The `thin_client` module is a client-side object that interfaces with
//! a server-side TPU. Client code should use this object instead of writing
//! messages to the network directly. The binary encoding of its messages are
//! unstable and may change in future releases.
2018-02-28 13:16:50 -08:00
use bincode::{deserialize, serialize};
use futures::future::{ok, FutureResult};
use hash::Hash;
use request::{Request, Response};
use signature::{KeyPair, PublicKey, Signature};
use std::collections::HashMap;
use std::io;
2018-04-28 00:31:20 -07:00
use std::net::{SocketAddr, UdpSocket};
use transaction::Transaction;
2018-02-28 13:16:50 -08:00
pub struct ThinClient {
2018-04-28 00:31:20 -07:00
pub addr: SocketAddr,
pub requests_socket: UdpSocket,
pub events_socket: UdpSocket,
last_id: Option<Hash>,
transaction_count: u64,
balances: HashMap<PublicKey, Option<i64>>,
2018-02-28 13:16:50 -08:00
}
impl ThinClient {
2018-05-12 09:53:25 -07:00
/// Create a new ThinClient that will interface with Rpu
/// over `requests_socket` and `events_socket`. To receive responses, the caller must bind `socket`
/// to a public address before invoking ThinClient methods.
pub fn new(addr: SocketAddr, requests_socket: UdpSocket, events_socket: UdpSocket) -> Self {
let client = ThinClient {
2018-04-28 00:31:20 -07:00
addr: addr,
requests_socket,
events_socket,
last_id: None,
transaction_count: 0,
balances: HashMap::new(),
2018-04-17 15:41:58 -07:00
};
client
}
pub fn recv_response(&self) -> io::Result<Response> {
let mut buf = vec![0u8; 1024];
2018-05-12 19:00:22 -07:00
trace!("start recv_from");
self.requests_socket.recv_from(&mut buf)?;
2018-05-12 19:00:22 -07:00
trace!("end recv_from");
2018-05-10 17:46:10 -07:00
let resp = deserialize(&buf).expect("deserialize balance in thin_client");
Ok(resp)
}
pub fn process_response(&mut self, resp: Response) {
match resp {
Response::Balance { key, val } => {
2018-05-12 19:00:22 -07:00
trace!("Response balance {:?} {:?}", key, val);
self.balances.insert(key, val);
}
2018-05-14 08:35:10 -07:00
Response::LastId { id } => {
info!("Response last_id {:?}", id);
self.last_id = Some(id);
}
Response::TransactionCount { transaction_count } => {
info!("Response transaction count {:?}", transaction_count);
self.transaction_count = transaction_count;
}
2018-02-28 13:16:50 -08:00
}
}
2018-03-29 11:20:54 -07:00
/// Send a signed Transaction to the server for processing. This method
/// does not wait for a response.
pub fn transfer_signed(&self, tr: Transaction) -> io::Result<usize> {
let req = Request::Transaction(tr);
2018-05-10 17:46:10 -07:00
let data = serialize(&req).expect("serialize Transaction in pub fn transfer_signed");
self.requests_socket.send_to(&data, &self.addr)
2018-02-28 13:16:50 -08:00
}
2018-03-29 11:20:54 -07:00
/// Creates, signs, and processes a Transaction. Useful for writing unit-tests.
2018-02-28 13:16:50 -08:00
pub fn transfer(
2018-03-05 10:11:00 -08:00
&self,
n: i64,
keypair: &KeyPair,
2018-02-28 13:16:50 -08:00
to: PublicKey,
last_id: &Hash,
) -> io::Result<Signature> {
let tr = Transaction::new(keypair, to, n, *last_id);
let sig = tr.sig;
self.transfer_signed(tr).map(|_| sig)
2018-02-28 13:16:50 -08:00
}
2018-03-29 11:20:54 -07:00
/// Request the balance of the user holding `pubkey`. This method blocks
/// until the server sends a response. If the response packet is dropped
/// by the network, this method will hang indefinitely.
pub fn get_balance(&mut self, pubkey: &PublicKey) -> io::Result<i64> {
2018-05-12 19:00:22 -07:00
trace!("get_balance");
2018-02-28 13:16:50 -08:00
let req = Request::GetBalance { key: *pubkey };
2018-05-10 17:46:10 -07:00
let data = serialize(&req).expect("serialize GetBalance in pub fn get_balance");
self.requests_socket
.send_to(&data, &self.addr)
2018-05-10 17:46:10 -07:00
.expect("buffer error in pub fn get_balance");
2018-04-17 15:41:58 -07:00
let mut done = false;
while !done {
let resp = self.recv_response()?;
2018-05-12 19:00:22 -07:00
trace!("recv_response {:?}", resp);
2018-04-17 15:41:58 -07:00
if let &Response::Balance { ref key, .. } = &resp {
done = key == pubkey;
}
self.process_response(resp);
}
self.balances[pubkey].ok_or(io::Error::new(io::ErrorKind::Other, "nokey"))
}
/// Request the transaction count. If the response packet is dropped by the network,
/// this method will hang.
pub fn transaction_count(&mut self) -> u64 {
info!("transaction_count");
let req = Request::GetTransactionCount;
let data =
serialize(&req).expect("serialize GetTransactionCount in pub fn transaction_count");
self.requests_socket
.send_to(&data, &self.addr)
.expect("buffer error in pub fn transaction_count");
let mut done = false;
while !done {
let resp = self.recv_response().expect("transaction count dropped");
info!("recv_response {:?}", resp);
if let &Response::TransactionCount { .. } = &resp {
done = true;
}
self.process_response(resp);
}
self.transaction_count
}
2018-04-02 08:30:10 -07:00
/// Request the last Entry ID from the server. This method blocks
/// until the server sends a response.
pub fn get_last_id(&mut self) -> FutureResult<Hash, ()> {
info!("get_last_id");
let req = Request::GetLastId;
let data = serialize(&req).expect("serialize GetLastId in pub fn get_last_id");
self.requests_socket
.send_to(&data, &self.addr)
.expect("buffer error in pub fn get_last_id");
let mut done = false;
while !done {
let resp = self.recv_response().expect("get_last_id response");
info!("recv_response {:?}", resp);
if let &Response::LastId { .. } = &resp {
done = true;
}
self.process_response(resp);
}
ok(self.last_id.expect("some last_id"))
}
2018-02-28 13:16:50 -08:00
}
#[cfg(test)]
mod tests {
use super::*;
2018-05-14 14:33:11 -07:00
use bank::Bank;
2018-05-06 22:25:05 -07:00
use crdt::{Crdt, ReplicatedData};
use futures::Future;
use logger;
use mint::Mint;
2018-05-09 12:33:33 -07:00
use plan::Plan;
2018-05-12 09:53:25 -07:00
use rpu::Rpu;
use signature::{KeyPair, KeyPairUtil};
2018-03-26 11:17:19 -07:00
use std::io::sink;
use std::sync::atomic::{AtomicBool, Ordering};
2018-05-06 22:25:05 -07:00
use std::sync::{Arc, RwLock};
2018-05-12 19:00:22 -07:00
use std::thread::JoinHandle;
use std::thread::sleep;
use std::time::Duration;
use std::time::Instant;
2018-05-12 19:00:22 -07:00
use streamer::default_window;
use tvu::{self, Tvu};
2018-02-28 13:16:50 -08:00
#[test]
2018-05-13 20:45:55 -07:00
#[ignore]
fn test_thin_client() {
logger::setup();
2018-04-28 00:31:20 -07:00
let gossip = UdpSocket::bind("0.0.0.0:0").unwrap();
let serve = UdpSocket::bind("0.0.0.0:0").unwrap();
2018-05-15 08:42:28 -07:00
serve.set_read_timeout(Some(Duration::new(1, 0))).unwrap();
2018-05-12 10:11:30 -07:00
let _events_socket = UdpSocket::bind("0.0.0.0:0").unwrap();
2018-04-28 00:31:20 -07:00
let addr = serve.local_addr().unwrap();
let pubkey = KeyPair::new().pubkey();
let d = ReplicatedData::new(
pubkey,
gossip.local_addr().unwrap(),
"0.0.0.0:0".parse().unwrap(),
serve.local_addr().unwrap(),
);
let alice = Mint::new(10_000);
2018-05-14 14:33:11 -07:00
let bank = Bank::new(&alice);
let bob_pubkey = KeyPair::new().pubkey();
2018-03-22 13:05:23 -07:00
let exit = Arc::new(AtomicBool::new(false));
2018-05-14 14:33:11 -07:00
let rpu = Rpu::new(bank, alice.last_id(), Some(Duration::from_millis(30)));
2018-05-12 10:11:30 -07:00
let threads = rpu.serve(d, serve, gossip, exit.clone(), sink()).unwrap();
2018-05-13 20:33:41 -07:00
sleep(Duration::from_millis(900));
2018-02-28 13:16:50 -08:00
let requests_socket = UdpSocket::bind("0.0.0.0:0").unwrap();
let events_socket = UdpSocket::bind("0.0.0.0:0").unwrap();
let mut client = ThinClient::new(addr, requests_socket, events_socket);
2018-05-11 15:15:14 -07:00
let last_id = client.get_last_id().wait().unwrap();
let _sig = client
.transfer(500, &alice.keypair(), bob_pubkey, &last_id)
.unwrap();
let mut balance;
let now = Instant::now();
loop {
2018-05-11 15:15:14 -07:00
balance = client.get_balance(&bob_pubkey);
if balance.is_ok() {
break;
}
if now.elapsed().as_secs() > 0 {
break;
}
}
assert_eq!(balance.unwrap(), 500);
2018-03-22 13:05:23 -07:00
exit.store(true, Ordering::Relaxed);
2018-04-28 00:31:20 -07:00
for t in threads {
t.join().unwrap();
}
2018-02-28 13:16:50 -08:00
}
2018-05-09 12:33:33 -07:00
#[test]
2018-05-13 20:41:54 -07:00
#[ignore]
2018-05-09 12:33:33 -07:00
fn test_bad_sig() {
2018-05-12 10:11:30 -07:00
let (leader_data, leader_gossip, _, leader_serve, _leader_events) = tvu::test_node();
2018-05-09 12:33:33 -07:00
let alice = Mint::new(10_000);
2018-05-14 14:33:11 -07:00
let bank = Bank::new(&alice);
2018-05-09 12:33:33 -07:00
let bob_pubkey = KeyPair::new().pubkey();
let exit = Arc::new(AtomicBool::new(false));
2018-05-14 14:33:11 -07:00
let rpu = Rpu::new(bank, alice.last_id(), Some(Duration::from_millis(30)));
2018-05-09 12:33:33 -07:00
let serve_addr = leader_serve.local_addr().unwrap();
2018-05-12 09:53:25 -07:00
let threads = rpu.serve(
2018-05-09 12:33:33 -07:00
leader_data,
leader_serve,
leader_gossip,
exit.clone(),
sink(),
).unwrap();
sleep(Duration::from_millis(300));
let requests_socket = UdpSocket::bind("127.0.0.1:0").unwrap();
requests_socket
.set_read_timeout(Some(Duration::new(5, 0)))
.unwrap();
let events_socket = UdpSocket::bind("127.0.0.1:0").unwrap();
let mut client = ThinClient::new(serve_addr, requests_socket, events_socket);
2018-05-09 12:33:33 -07:00
let last_id = client.get_last_id().wait().unwrap();
trace!("doing stuff");
let tr = Transaction::new(&alice.keypair(), bob_pubkey, 500, last_id);
let _sig = client.transfer_signed(tr).unwrap();
let last_id = client.get_last_id().wait().unwrap();
let mut tr2 = Transaction::new(&alice.keypair(), bob_pubkey, 501, last_id);
tr2.data.tokens = 502;
tr2.data.plan = Plan::new_payment(502, bob_pubkey);
let _sig = client.transfer_signed(tr2).unwrap();
assert_eq!(client.get_balance(&bob_pubkey).unwrap(), 500);
trace!("exiting");
exit.store(true, Ordering::Relaxed);
trace!("joining threads");
for t in threads {
t.join().unwrap();
}
2018-02-28 13:16:50 -08:00
}
2018-05-07 20:44:44 -07:00
fn test_node() -> (ReplicatedData, UdpSocket, UdpSocket, UdpSocket, UdpSocket) {
let gossip = UdpSocket::bind("0.0.0.0:0").unwrap();
let serve = UdpSocket::bind("0.0.0.0:0").unwrap();
2018-05-15 08:42:28 -07:00
serve.set_read_timeout(Some(Duration::new(1, 0))).unwrap();
let events_socket = UdpSocket::bind("0.0.0.0:0").unwrap();
let replicate = UdpSocket::bind("0.0.0.0:0").unwrap();
let pubkey = KeyPair::new().pubkey();
let leader = ReplicatedData::new(
pubkey,
gossip.local_addr().unwrap(),
replicate.local_addr().unwrap(),
serve.local_addr().unwrap(),
);
(leader, gossip, serve, replicate, events_socket)
}
2018-05-12 19:00:22 -07:00
fn replicant(
leader: &ReplicatedData,
exit: Arc<AtomicBool>,
alice: &Mint,
threads: &mut Vec<JoinHandle<()>>,
) {
let replicant = test_node();
2018-05-14 14:33:11 -07:00
let replicant_bank = {
let bank = Bank::new(&alice);
2018-05-14 15:21:41 -07:00
Arc::new(Tvu::new(bank, alice.last_id(), None))
};
2018-05-12 19:00:22 -07:00
let mut ts = Tvu::serve(
2018-05-14 14:33:11 -07:00
&replicant_bank,
replicant.0.clone(),
replicant.1,
replicant.2,
replicant.3,
2018-05-12 19:00:22 -07:00
leader.clone(),
exit.clone(),
).unwrap();
2018-05-12 19:00:22 -07:00
threads.append(&mut ts);
}
2018-05-12 19:00:22 -07:00
fn converge(
leader: &ReplicatedData,
exit: Arc<AtomicBool>,
num_nodes: usize,
threads: &mut Vec<JoinHandle<()>>,
) -> Vec<SocketAddr> {
//lets spy on the network
2018-05-07 20:44:44 -07:00
let (mut spy, spy_gossip, _, _, _) = test_node();
let daddr = "0.0.0.0:0".parse().unwrap();
2018-05-12 19:00:22 -07:00
let me = spy.id.clone();
spy.replicate_addr = daddr;
spy.serve_addr = daddr;
let mut spy_crdt = Crdt::new(spy);
2018-05-12 19:00:22 -07:00
spy_crdt.insert(&leader);
spy_crdt.set_leader(leader.id);
let spy_ref = Arc::new(RwLock::new(spy_crdt));
2018-05-12 19:00:22 -07:00
let spy_window = default_window();
let t_spy_listen = Crdt::listen(spy_ref.clone(), spy_window, spy_gossip, exit.clone());
let t_spy_gossip = Crdt::gossip(spy_ref.clone(), exit.clone());
//wait for the network to converge
2018-05-12 19:00:22 -07:00
for _ in 0..30 {
let len = spy_ref.read().unwrap().table.values().len();
let mut min = num_nodes as u64;
for u in spy_ref.read().unwrap().remote.values() {
if min > *u {
min = *u;
}
}
2018-05-12 19:00:22 -07:00
info!("length {} {}", len, min);
if num_nodes == len && min >= (num_nodes as u64) {
warn!("converged! {} {}", len, min);
break;
}
sleep(Duration::new(1, 0));
}
2018-05-12 19:00:22 -07:00
threads.push(t_spy_listen);
threads.push(t_spy_gossip);
let v: Vec<SocketAddr> = spy_ref
.read()
.unwrap()
.table
.values()
.into_iter()
.filter(|x| x.id != me)
.map(|x| x.serve_addr)
.collect();
v.clone()
}
#[test]
#[ignore]
fn test_multi_node() {
logger::setup();
const N: usize = 5;
trace!("test_multi_accountant_stub");
let leader = test_node();
let alice = Mint::new(10_000);
let bob_pubkey = KeyPair::new().pubkey();
let exit = Arc::new(AtomicBool::new(false));
let leader_bank = {
let bank = Bank::new(&alice);
Rpu::new(bank, alice.last_id(), None)
};
let mut threads = leader_bank
.serve(leader.0.clone(), leader.2, leader.1, exit.clone(), sink())
.unwrap();
2018-05-12 19:00:22 -07:00
for _ in 0..N {
replicant(&leader.0, exit.clone(), &alice, &mut threads);
}
let addrs = converge(&leader.0, exit.clone(), N + 2, &mut threads);
//contains the leader addr as well
assert_eq!(addrs.len(), N + 1);
//verify leader can do transfer
let leader_balance = {
let requests_socket = UdpSocket::bind("0.0.0.0:0").unwrap();
requests_socket
.set_read_timeout(Some(Duration::new(1, 0)))
.unwrap();
let events_socket = UdpSocket::bind("0.0.0.0:0").unwrap();
let mut client = ThinClient::new(leader.0.serve_addr, requests_socket, events_socket);
2018-05-12 19:00:22 -07:00
trace!("getting leader last_id");
2018-05-11 15:15:14 -07:00
let last_id = client.get_last_id().wait().unwrap();
info!("executing leader transer");
2018-05-11 15:15:14 -07:00
let _sig = client
.transfer(500, &alice.keypair(), bob_pubkey, &last_id)
.unwrap();
2018-05-12 19:00:22 -07:00
trace!("getting leader balance");
2018-05-11 15:15:14 -07:00
client.get_balance(&bob_pubkey).unwrap()
};
assert_eq!(leader_balance, 500);
//verify replicant has the same balance
2018-05-12 19:00:22 -07:00
let mut success = 0usize;
for serve_addr in addrs.iter() {
let requests_socket = UdpSocket::bind("0.0.0.0:0").unwrap();
requests_socket
.set_read_timeout(Some(Duration::new(1, 0)))
.unwrap();
let events_socket = UdpSocket::bind("0.0.0.0:0").unwrap();
2018-05-12 19:00:22 -07:00
let mut client = ThinClient::new(*serve_addr, requests_socket, events_socket);
for i in 0..10 {
trace!("getting replicant balance {} {}/10", *serve_addr, i);
if let Ok(bal) = client.get_balance(&bob_pubkey) {
trace!("replicant balance {}", bal);
if bal == leader_balance {
success += 1;
break;
}
}
sleep(Duration::new(1, 0));
}
}
2018-05-12 19:00:22 -07:00
assert_eq!(success, addrs.len());
exit.store(true, Ordering::Relaxed);
2018-05-12 19:00:22 -07:00
for t in threads {
t.join().unwrap();
}
}
}