hbbft/src/common_subset.rs

349 lines
13 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//! Asynchronous Common Subset algorithm.
use std::collections::{BTreeMap, BTreeSet, VecDeque};
use std::fmt::Debug;
use std::rc::Rc;
use agreement;
use agreement::{Agreement, AgreementMessage};
use broadcast;
use broadcast::{Broadcast, BroadcastMessage};
use fmt::HexBytes;
use messaging::{DistAlgorithm, NetworkInfo, TargetedMessage};
error_chain!{
types {
Error, ErrorKind, ResultExt, CommonSubsetResult;
}
links {
Agreement(agreement::Error, agreement::ErrorKind);
Broadcast(broadcast::Error, broadcast::ErrorKind);
}
errors {
MultipleAgreementResults
NoSuchAgreementInstance
NoSuchBroadcastInstance
}
}
// TODO: Make this a generic argument of `CommonSubset`.
type ProposedValue = Vec<u8>;
/// Message from Common Subset to remote nodes.
#[derive(Serialize, Deserialize, Clone, Debug)]
pub enum Message<NodeUid> {
/// A message for the broadcast algorithm concerning the set element proposed by the given node.
Broadcast(NodeUid, BroadcastMessage),
/// A message for the agreement algorithm concerning the set element proposed by the given
/// node.
Agreement(NodeUid, AgreementMessage),
}
/// The queue of outgoing messages in a `CommonSubset` instance.
#[derive(Deref, DerefMut)]
struct MessageQueue<NodeUid>(VecDeque<TargetedMessage<Message<NodeUid>, NodeUid>>);
impl<NodeUid: Clone + Debug + Ord> MessageQueue<NodeUid> {
/// Appends to the queue the messages from `agr`, wrapped with `proposer_id`.
fn extend_agreement(&mut self, proposer_id: &NodeUid, agr: &mut Agreement<NodeUid>) {
let convert = |msg: TargetedMessage<AgreementMessage, NodeUid>| {
msg.map(|a_msg| Message::Agreement(proposer_id.clone(), a_msg))
};
self.extend(agr.message_iter().map(convert));
}
/// Appends to the queue the messages from `bc`, wrapped with `proposer_id`.
fn extend_broadcast(&mut self, proposer_id: &NodeUid, bc: &mut Broadcast<NodeUid>) {
let convert = |msg: TargetedMessage<BroadcastMessage, NodeUid>| {
msg.map(|b_msg| Message::Broadcast(proposer_id.clone(), b_msg))
};
self.extend(bc.message_iter().map(convert));
}
}
/// Asynchronous Common Subset algorithm instance
///
/// The Asynchronous Common Subset protocol assumes a network of `N` nodes that send signed
/// messages to each other, with at most `f` of them malicious, where `3 * f < N`. Handling the
/// networking and signing is the responsibility of the user: only when a message has been
/// verified to be "from node i", it can be handed to the `CommonSubset` instance.
///
/// Each participating node proposes an element for inclusion. Under the above conditions, the
/// protocol guarantees that all of the good nodes output the same set, consisting of at least
/// `N - f` of the proposed elements.
///
/// The algorithm works as follows:
///
/// * `CommonSubset` instantiates one `Broadcast` algorithm for each of the participating nodes.
/// At least `N - f` of these - the ones whose proposer is not malicious - will eventually output
/// the element proposed by that node.
/// * It also instantiates an `Agreement` instance for each participating node, to decide whether
/// that node's proposed element should be included in the common set. Whenever an element is
/// received via broadcast, we input "yes" (`true`) into the corresponding `Agreement` instance.
/// * When `N - f` `Agreement` instances have decided "yes", we input "no" (`false`) into the
/// remaining ones, where we haven't provided input yet.
/// * Once all `Agreement` instances have decided, `CommonSubset` returns the set of all proposed
/// values for which the decision was "yes".
pub struct CommonSubset<NodeUid> {
/// Shared network information.
netinfo: Rc<NetworkInfo<NodeUid>>,
broadcast_instances: BTreeMap<NodeUid, Broadcast<NodeUid>>,
agreement_instances: BTreeMap<NodeUid, Agreement<NodeUid>>,
broadcast_results: BTreeMap<NodeUid, ProposedValue>,
agreement_results: BTreeMap<NodeUid, bool>,
/// Outgoing message queue.
messages: MessageQueue<NodeUid>,
/// The output value of the algorithm.
output: Option<BTreeMap<NodeUid, ProposedValue>>,
/// Whether the instance has decided on a value.
decided: bool,
}
impl<NodeUid: Clone + Debug + Ord> DistAlgorithm for CommonSubset<NodeUid> {
type NodeUid = NodeUid;
type Input = ProposedValue;
type Output = BTreeMap<NodeUid, ProposedValue>;
type Message = Message<NodeUid>;
type Error = Error;
fn input(&mut self, input: Self::Input) -> CommonSubsetResult<()> {
debug!(
"{:?} Proposing {:?}",
self.netinfo.our_uid(),
HexBytes(&input)
);
self.send_proposed_value(input)
}
fn handle_message(
&mut self,
sender_id: &Self::NodeUid,
message: Self::Message,
) -> CommonSubsetResult<()> {
match message {
Message::Broadcast(p_id, b_msg) => self.handle_broadcast(sender_id, &p_id, b_msg),
Message::Agreement(p_id, a_msg) => self.handle_agreement(sender_id, &p_id, a_msg),
}
}
fn next_message(&mut self) -> Option<TargetedMessage<Self::Message, Self::NodeUid>> {
self.messages.pop_front()
}
fn next_output(&mut self) -> Option<Self::Output> {
self.output.take()
}
fn terminated(&self) -> bool {
self.messages.is_empty() && self.agreement_instances.values().all(Agreement::terminated)
}
fn our_id(&self) -> &Self::NodeUid {
self.netinfo.our_uid()
}
}
impl<NodeUid: Clone + Debug + Ord> CommonSubset<NodeUid> {
pub fn new(netinfo: Rc<NetworkInfo<NodeUid>>, session_id: u64) -> CommonSubsetResult<Self> {
// Create all broadcast instances.
let mut broadcast_instances: BTreeMap<NodeUid, Broadcast<NodeUid>> = BTreeMap::new();
for proposer_id in netinfo.all_uids() {
broadcast_instances.insert(
proposer_id.clone(),
Broadcast::new(netinfo.clone(), proposer_id.clone())?,
);
}
// Create all agreement instances.
let mut agreement_instances: BTreeMap<NodeUid, Agreement<NodeUid>> = BTreeMap::new();
for proposer_id in netinfo.all_uids().iter().cloned() {
agreement_instances.insert(
proposer_id.clone(),
Agreement::new(netinfo.clone(), session_id, proposer_id)?,
);
}
Ok(CommonSubset {
netinfo,
broadcast_instances,
agreement_instances,
broadcast_results: BTreeMap::new(),
agreement_results: BTreeMap::new(),
messages: MessageQueue(VecDeque::new()),
output: None,
decided: false,
})
}
/// Common Subset input message handler. It receives a value for broadcast
/// and redirects it to the corresponding broadcast instance.
pub fn send_proposed_value(&mut self, value: ProposedValue) -> CommonSubsetResult<()> {
if !self.netinfo.is_validator() {
return Ok(());
}
let uid = self.netinfo.our_uid().clone();
// Upon receiving input v_i , input v_i to RBC_i. See Figure 2.
self.process_broadcast(&uid, |bc| bc.input(value))
}
/// Receives a broadcast message from a remote node `sender_id` concerning a
/// value proposed by the node `proposer_id`.
fn handle_broadcast(
&mut self,
sender_id: &NodeUid,
proposer_id: &NodeUid,
bmessage: BroadcastMessage,
) -> CommonSubsetResult<()> {
self.process_broadcast(proposer_id, |bc| bc.handle_message(sender_id, bmessage))
}
/// Receives an agreement message from a remote node `sender_id` concerning
/// a value proposed by the node `proposer_id`.
fn handle_agreement(
&mut self,
sender_id: &NodeUid,
proposer_id: &NodeUid,
amessage: AgreementMessage,
) -> CommonSubsetResult<()> {
// Send the message to the local instance of Agreement
self.process_agreement(proposer_id, |agreement| {
agreement.handle_message(sender_id, amessage)
})
}
/// Upon delivery of v_j from RBC_j, if input has not yet been provided to
/// BA_j, then provide input 1 to BA_j. See Figure 11.
fn process_broadcast<F>(&mut self, proposer_id: &NodeUid, f: F) -> CommonSubsetResult<()>
where
F: FnOnce(&mut Broadcast<NodeUid>) -> Result<(), broadcast::Error>,
{
let value = {
let broadcast = self
.broadcast_instances
.get_mut(proposer_id)
.ok_or(ErrorKind::NoSuchBroadcastInstance)?;
f(broadcast)?;
self.messages.extend_broadcast(&proposer_id, broadcast);
if let Some(output) = broadcast.next_output() {
output
} else {
return Ok(());
}
};
self.broadcast_results.insert(proposer_id.clone(), value);
self.process_agreement(proposer_id, |agreement| {
if agreement.accepts_input() {
agreement.set_input(true)
} else {
Ok(())
}
})
}
/// Callback to be invoked on receipt of the decision value of the Agreement
/// instance `uid`.
fn process_agreement<F>(&mut self, proposer_id: &NodeUid, f: F) -> CommonSubsetResult<()>
where
F: FnOnce(&mut Agreement<NodeUid>) -> Result<(), agreement::Error>,
{
let value = {
let agreement = self
.agreement_instances
.get_mut(proposer_id)
.ok_or(ErrorKind::NoSuchAgreementInstance)?;
if agreement.terminated() {
return Ok(());
}
f(agreement)?;
self.messages.extend_agreement(proposer_id, agreement);
if let Some(output) = agreement.next_output() {
output
} else {
return Ok(());
}
};
if self
.agreement_results
.insert(proposer_id.clone(), value)
.is_some()
{
return Err(ErrorKind::MultipleAgreementResults.into());
}
debug!(
"{:?} Updated Agreement results: {:?}",
self.netinfo.our_uid(),
self.agreement_results
);
if value && self.count_true() == self.netinfo.num_nodes() - self.netinfo.num_faulty() {
// Upon delivery of value 1 from at least N f instances of BA, provide
// input 0 to each instance of BA that has not yet been provided input.
for (uid, agreement) in &mut self.agreement_instances {
if agreement.accepts_input() {
agreement.set_input(false)?;
self.messages.extend_agreement(uid, agreement);
if let Some(output) = agreement.next_output() {
if self.agreement_results.insert(uid.clone(), output).is_some() {
return Err(ErrorKind::MultipleAgreementResults.into());
}
}
}
}
}
self.try_agreement_completion();
Ok(())
}
/// Returns the number of agreement instances that have decided "yes".
fn count_true(&self) -> usize {
self.agreement_results.values().filter(|v| **v).count()
}
fn try_agreement_completion(&mut self) {
if self.decided || self.count_true() < self.netinfo.num_nodes() - self.netinfo.num_faulty()
{
return;
}
// Once all instances of BA have completed, let C ⊂ [1..N] be
// the indexes of each BA that delivered 1. Wait for the output
// v_j for each RBC_j such that j∈C. Finally output j∈C v_j.
if self.agreement_results.len() < self.netinfo.num_nodes() {
return;
}
debug!(
"{:?} All Agreement instances have terminated",
self.netinfo.our_uid()
);
// All instances of Agreement that delivered `true` (or "1" in the paper).
let delivered_1: BTreeSet<&NodeUid> = self
.agreement_results
.iter()
.filter(|(_, v)| **v)
.map(|(k, _)| k)
.collect();
debug!("Agreement instances that delivered 1: {:?}", delivered_1);
// Results of Broadcast instances in `delivered_1`
let broadcast_results: BTreeMap<NodeUid, ProposedValue> = self
.broadcast_results
.iter()
.filter(|(k, _)| delivered_1.contains(k))
.map(|(k, v)| (k.clone(), v.clone()))
.collect();
if delivered_1.len() == broadcast_results.len() {
debug!(
"{:?} Agreement instances completed:",
self.netinfo.our_uid()
);
for (uid, result) in &broadcast_results {
debug!(" {:?} → {:?}", uid, HexBytes(&result));
}
self.decided = true;
self.output = Some(broadcast_results)
}
}
}