halo2/src/dev.rs

730 lines
26 KiB
Rust
Raw Normal View History

2020-12-21 15:00:39 -08:00
//! Tools for developing circuits.
use std::collections::HashMap;
use std::fmt;
use std::iter;
2020-12-21 15:00:39 -08:00
use ff::Field;
use crate::{
arithmetic::{FieldExt, Group},
plonk::{
permutation, Advice, Any, Assignment, Circuit, Column, ColumnType, ConstraintSystem, Error,
Expression, Fixed, Permutation, Selector,
},
2021-01-07 04:42:04 -08:00
poly::Rotation,
2020-12-21 15:00:39 -08:00
};
#[cfg(feature = "dev-graph")]
mod graph;
#[cfg(feature = "dev-graph")]
#[cfg_attr(docsrs, doc(cfg(feature = "dev-graph")))]
pub use graph::{circuit_dot_graph, layout::CircuitLayout};
/// Cells that haven't been explicitly assigned to, default to zero.
fn cell_value<F: Field>(cell: Option<F>) -> F {
cell.unwrap_or_else(F::zero)
}
2020-12-21 15:00:39 -08:00
/// The reasons why a particular circuit is not satisfied.
#[derive(Debug, PartialEq)]
pub enum VerifyFailure {
/// A cell used in an active gate was not assigned to.
Cell {
/// The column in which this cell is located.
column: Column<Any>,
/// The row in which this cell is located.
row: usize,
/// The index of the active gate. These indices are assigned in the order in which
/// `ConstraintSystem::create_gate` is called during `Circuit::configure`.
gate_index: usize,
/// The name of the active gate. These are specified by the gate creator (such as
2021-06-04 07:18:52 -07:00
/// a chip implementation), and is not enforced to be unique.
gate_name: &'static str,
},
/// A constraint was not satisfied for a particular row.
Constraint {
/// The index of the gate containing the unsatisfied constraint. These indices are
/// assigned in the order in which `ConstraintSystem::create_gate` is called
/// during `Circuit::configure`.
gate_index: usize,
/// The name of the gate containing the unsatisfied constraint. This is specified
2021-06-04 07:18:52 -07:00
/// by the gate creator (such as a chip implementation), and is not enforced to be
/// unique.
gate_name: &'static str,
/// The index of the polynomial constraint within the gate that is not satisfied.
/// These indices correspond to the order in which the constraints are returned
/// from the closure passed to `ConstraintSystem::create_gate` during
/// `Circuit::configure`.
constraint_index: usize,
/// The name of the unsatisfied constraint. This is specified by the gate creator
/// (such as a chip implementation), and is not enforced to be unique.
constraint_name: &'static str,
/// The row on which this constraint is not satisfied.
row: usize,
},
2020-12-21 15:00:39 -08:00
/// A lookup input did not exist in its corresponding table.
Lookup {
/// The index of the lookup that is not satisfied. These indices are assigned in
/// the order in which `ConstraintSystem::lookup` is called during
/// `Circuit::configure`.
lookup_index: usize,
/// The row on which this lookup is not satisfied.
row: usize,
},
2020-12-21 21:56:30 -08:00
/// A permutation did not preserve the original value of a cell.
Permutation {
/// The index of the permutation that is not satisfied. These indices are assigned
/// in the order in which `ConstraintSystem::lookup` is called during
/// `Circuit::configure`.
2020-12-21 21:56:30 -08:00
perm_index: usize,
/// The column in which this permutation is not satisfied.
2020-12-21 21:56:30 -08:00
column: usize,
/// The row on which this permutation is not satisfied.
2020-12-21 21:56:30 -08:00
row: usize,
},
2020-12-21 15:00:39 -08:00
}
impl fmt::Display for VerifyFailure {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Cell {
column,
row,
gate_index,
gate_name,
} => {
write!(
f,
"Cell ({:?}, {}) was not assigned to, but it is used by active gate {} ('{}').",
column, row, gate_index, gate_name
)
}
Self::Constraint {
gate_index,
gate_name,
constraint_index,
constraint_name,
row,
} => {
write!(
f,
"Constraint {}{} in gate {} ('{}') is not satisfied on row {}",
constraint_index,
if constraint_name.is_empty() {
String::new()
} else {
format!(" ('{}')", constraint_name)
},
gate_index,
gate_name,
row
)
}
Self::Lookup { lookup_index, row } => {
write!(f, "Lookup {} is not satisfied on row {}", lookup_index, row)
}
Self::Permutation {
perm_index,
column,
row,
} => {
write!(
f,
"Permutation {} is not satisfied by cell ({:?}, {})",
perm_index, column, row
)
}
}
}
}
/// A test prover for debugging circuits.
///
/// The normal proving process, when applied to a buggy circuit implementation, might
/// return proofs that do not validate when they should, but it can't indicate anything
/// other than "something is invalid". `MockProver` can be used to figure out _why_ these
/// are invalid: it stores all the private inputs along with the circuit internals, and
/// then checks every constraint manually.
///
/// # Examples
///
/// ```
/// use halo2::{
/// arithmetic::FieldExt,
/// dev::{MockProver, VerifyFailure},
/// pasta::Fp,
/// plonk::{Advice, Assignment, Circuit, Column, ConstraintSystem, Error},
2021-01-14 12:31:48 -08:00
/// poly::Rotation,
/// };
/// const K: u32 = 5;
///
/// #[derive(Copy, Clone)]
/// struct MyConfig {
/// a: Column<Advice>,
/// b: Column<Advice>,
/// c: Column<Advice>,
/// }
///
/// #[derive(Clone)]
/// struct MyCircuit {
/// a: Option<u64>,
/// b: Option<u64>,
/// }
///
/// impl<F: FieldExt> Circuit<F> for MyCircuit {
/// type Config = MyConfig;
///
/// fn configure(meta: &mut ConstraintSystem<F>) -> MyConfig {
/// let a = meta.advice_column();
/// let b = meta.advice_column();
/// let c = meta.advice_column();
///
/// meta.create_gate("R1CS constraint", |meta| {
2021-01-14 12:31:48 -08:00
/// let a = meta.query_advice(a, Rotation::cur());
/// let b = meta.query_advice(b, Rotation::cur());
/// let c = meta.query_advice(c, Rotation::cur());
///
/// // BUG: Should be a * b - c
/// Some(("buggy R1CS", a * b + c))
/// });
///
/// MyConfig { a, b, c }
/// }
///
/// fn synthesize(&self, cs: &mut impl Assignment<F>, config: MyConfig) -> Result<(), Error> {
/// cs.assign_advice(|| "a", config.a, 0, || {
/// self.a.map(|v| F::from_u64(v)).ok_or(Error::SynthesisError)
/// })?;
/// cs.assign_advice(|| "b", config.b, 0, || {
/// self.b.map(|v| F::from_u64(v)).ok_or(Error::SynthesisError)
/// })?;
/// cs.assign_advice(|| "c", config.c, 0, || {
/// self.a
/// .and_then(|a| self.b.map(|b| F::from_u64(a * b)))
/// .ok_or(Error::SynthesisError)
/// })
/// }
/// }
///
/// // Assemble the private inputs to the circuit.
/// let circuit = MyCircuit {
/// a: Some(2),
/// b: Some(4),
/// };
///
/// // This circuit has no public inputs.
/// let instance = vec![];
///
/// let prover = MockProver::<Fp>::run(K, &circuit, instance).unwrap();
/// assert_eq!(
/// prover.verify(),
/// Err(vec![VerifyFailure::Constraint {
/// gate_index: 0,
/// gate_name: "R1CS constraint",
/// constraint_index: 0,
/// constraint_name: "buggy R1CS",
/// row: 0
/// }])
/// );
/// ```
#[derive(Debug)]
2021-02-10 03:36:25 -08:00
pub struct MockProver<F: Group + Field> {
2020-12-21 15:00:39 -08:00
n: u32,
cs: ConstraintSystem<F>,
/// The selectors that have been enabled in the circuit. All other selectors are by
/// construction not enabled.
enabled_selectors: HashMap<Selector, Vec<usize>>,
2020-12-21 15:00:39 -08:00
// The fixed cells in the circuit, arranged as [column][row].
fixed: Vec<Vec<Option<F>>>,
2020-12-21 15:00:39 -08:00
// The advice cells in the circuit, arranged as [column][row].
advice: Vec<Vec<Option<F>>>,
// The instance cells in the circuit, arranged as [column][row].
instance: Vec<Vec<F>>,
2020-12-21 15:00:39 -08:00
2020-12-21 21:56:30 -08:00
permutations: Vec<permutation::keygen::Assembly>,
2020-12-21 15:00:39 -08:00
}
impl<F: Field + Group> Assignment<F> for MockProver<F> {
fn enter_region<NR, N>(&mut self, _: N)
where
NR: Into<String>,
N: FnOnce() -> NR,
{
}
fn exit_region(&mut self) {}
fn enable_selector<A, AR>(
&mut self,
annotation: A,
selector: &Selector,
row: usize,
) -> Result<(), Error>
where
A: FnOnce() -> AR,
AR: Into<String>,
{
// Track that this selector was enabled.
self.enabled_selectors
.entry(*selector)
.or_default()
.push(row);
// Selectors are just fixed columns.
self.assign_fixed(annotation, selector.0, row, || Ok(F::one()))
}
fn assign_advice<V, A, AR>(
2020-12-21 15:00:39 -08:00
&mut self,
_: A,
column: Column<Advice>,
2020-12-21 15:00:39 -08:00
row: usize,
to: V,
) -> Result<(), Error>
where
V: FnOnce() -> Result<F, Error>,
A: FnOnce() -> AR,
AR: Into<String>,
{
2020-12-21 15:00:39 -08:00
*self
.advice
.get_mut(column.index())
.and_then(|v| v.get_mut(row))
.ok_or(Error::BoundsFailure)? = Some(to()?);
2020-12-21 15:00:39 -08:00
Ok(())
}
fn assign_fixed<V, A, AR>(
2020-12-21 15:00:39 -08:00
&mut self,
_: A,
column: Column<Fixed>,
2020-12-21 15:00:39 -08:00
row: usize,
to: V,
) -> Result<(), Error>
where
V: FnOnce() -> Result<F, Error>,
A: FnOnce() -> AR,
AR: Into<String>,
{
2020-12-21 15:00:39 -08:00
*self
.fixed
.get_mut(column.index())
.and_then(|v| v.get_mut(row))
.ok_or(Error::BoundsFailure)? = Some(to()?);
2020-12-21 15:00:39 -08:00
Ok(())
}
fn copy(
&mut self,
permutation: &Permutation,
left_column: Column<Any>,
2020-12-21 15:00:39 -08:00
left_row: usize,
right_column: Column<Any>,
2020-12-21 15:00:39 -08:00
right_row: usize,
) -> Result<(), crate::plonk::Error> {
2020-12-21 21:56:30 -08:00
// Check bounds first
if permutation.index() >= self.permutations.len() {
2020-12-21 21:56:30 -08:00
return Err(Error::BoundsFailure);
}
let left_column_index = permutation
.mapping()
.iter()
.position(|c| c == &left_column)
.ok_or(Error::SynthesisError)?;
let right_column_index = permutation
.mapping()
.iter()
.position(|c| c == &right_column)
.ok_or(Error::SynthesisError)?;
self.permutations[permutation.index()].copy(
left_column_index,
left_row,
right_column_index,
right_row,
)
2020-12-21 15:00:39 -08:00
}
fn push_namespace<NR, N>(&mut self, _: N)
where
NR: Into<String>,
N: FnOnce() -> NR,
{
// TODO: Do something with namespaces :)
}
fn pop_namespace(&mut self, _: Option<String>) {
// TODO: Do something with namespaces :)
}
2020-12-21 15:00:39 -08:00
}
impl<F: FieldExt> MockProver<F> {
/// Runs a synthetic keygen-and-prove operation on the given circuit, collecting data
/// about the constraints and their assignments.
2020-12-21 15:00:39 -08:00
pub fn run<ConcreteCircuit: Circuit<F>>(
k: u32,
circuit: &ConcreteCircuit,
instance: Vec<Vec<F>>,
2020-12-21 15:00:39 -08:00
) -> Result<Self, Error> {
2020-12-21 21:56:30 -08:00
let n = 1 << k;
2020-12-21 15:00:39 -08:00
let mut cs = ConstraintSystem::default();
let config = ConcreteCircuit::configure(&mut cs);
let fixed = vec![vec![None; n as usize]; cs.num_fixed_columns];
let advice = vec![vec![None; n as usize]; cs.num_advice_columns];
2020-12-21 21:56:30 -08:00
let permutations = cs
.permutations
.iter()
.map(|p| permutation::keygen::Assembly::new(n as usize, p))
.collect();
2020-12-21 15:00:39 -08:00
let mut prover = MockProver {
2020-12-21 21:56:30 -08:00
n,
2020-12-21 15:00:39 -08:00
cs,
enabled_selectors: HashMap::default(),
2020-12-21 15:00:39 -08:00
fixed,
advice,
instance,
2020-12-21 21:56:30 -08:00
permutations,
2020-12-21 15:00:39 -08:00
};
circuit.synthesize(&mut prover, config)?;
Ok(prover)
}
/// Returns `Ok(())` if this `MockProver` is satisfied, or a list of errors indicating
/// the reasons that the circuit is not satisfied.
pub fn verify(&self) -> Result<(), Vec<VerifyFailure>> {
2020-12-21 15:00:39 -08:00
let n = self.n as i32;
// Check that all cells used in instantiated gates have been assigned to.
let selector_errors = self
.cs
.gates
.iter()
.enumerate()
.flat_map(|(gate_index, gate)| {
gate.queried_selectors()
.iter()
// Assume that if a queried selector is enabled, the user wants to use the
// corresponding gate in some way.
//
// TODO: This will trip up on the reverse case, where leaving a selector
// un-enabled keeps a gate enabled. We could alternatively require that
// every selector is explicitly enabled or disabled on every row? But that
// seems messy and confusing.
.filter_map(|s| self.enabled_selectors.get(&s))
.flat_map(move |at| {
at.iter().flat_map(move |selector_row| {
// Selectors are queried with no rotation.
let gate_row = *selector_row as i32;
gate.queried_cells().iter().filter_map(move |cell| {
// Determine where this cell should have been assigned.
let cell_row = ((gate_row + n + cell.rotation.0) % n) as usize;
// Check that it was assigned!
if match cell.column.column_type() {
Any::Advice => {
self.advice[cell.column.index()][cell_row].is_some()
}
Any::Fixed => {
self.fixed[cell.column.index()][cell_row].is_some()
}
// Instance column cells are assigned outside the circuit.
Any::Instance => true,
} {
None
} else {
Some(VerifyFailure::Cell {
column: cell.column,
row: cell_row,
gate_index,
gate_name: gate.name(),
})
}
})
})
})
});
2020-12-21 15:00:39 -08:00
// Check that all gates are satisfied for all rows.
let gate_errors =
self.cs
.gates
.iter()
.enumerate()
.flat_map(|(gate_index, gate)| {
// We iterate from n..2n so we can just reduce to handle wrapping.
(n..(2 * n)).flat_map(move |row| {
fn load_opt<'a, F: FieldExt, T: ColumnType>(
n: i32,
row: i32,
queries: &'a [(Column<T>, Rotation)],
cells: &'a [Vec<Option<F>>],
) -> impl Fn(usize) -> F + 'a {
move |index| {
let (column, at) = &queries[index];
let resolved_row = (row + at.0) % n;
cell_value(cells[column.index()][resolved_row as usize])
}
}
fn load<'a, F: FieldExt, T: ColumnType>(
n: i32,
row: i32,
queries: &'a [(Column<T>, Rotation)],
cells: &'a [Vec<F>],
) -> impl Fn(usize) -> F + 'a {
move |index| {
let (column, at) = &queries[index];
let resolved_row = (row + at.0) % n;
cells[column.index()][resolved_row as usize]
}
}
gate.polynomials().iter().enumerate().filter_map(
move |(poly_index, poly)| {
if poly.evaluate(
&|scalar| scalar,
&load_opt(n, row, &self.cs.fixed_queries, &self.fixed),
&load_opt(n, row, &self.cs.advice_queries, &self.advice),
&load(n, row, &self.cs.instance_queries, &self.instance),
&|a, b| a + &b,
&|a, b| a * &b,
&|a, scalar| a * scalar,
) == F::zero()
{
None
} else {
Some(VerifyFailure::Constraint {
gate_index,
gate_name: gate.name(),
constraint_index: poly_index,
constraint_name: gate.constraint_name(poly_index),
row: (row - n) as usize,
})
}
},
)
})
});
2020-12-21 15:00:39 -08:00
// Check that all lookups exist in their respective tables.
let lookup_errors =
self.cs
.lookups
.iter()
.enumerate()
.flat_map(|(lookup_index, lookup)| {
(0..n).filter_map(move |input_row| {
let load = |expression: &Expression<F>, row| {
expression.evaluate(
&|scalar| scalar,
&|index| {
let query = self.cs.fixed_queries[index];
let column_index = query.0.index();
let rotation = query.1 .0;
cell_value(
self.fixed[column_index]
[(row as i32 + n + rotation) as usize % n as usize],
)
},
&|index| {
let query = self.cs.advice_queries[index];
let column_index = query.0.index();
let rotation = query.1 .0;
cell_value(
self.advice[column_index]
[(row as i32 + n + rotation) as usize % n as usize],
)
},
&|index| {
let query = self.cs.instance_queries[index];
let column_index = query.0.index();
let rotation = query.1 .0;
self.instance[column_index]
[(row as i32 + n + rotation) as usize % n as usize]
},
&|a, b| a + b,
&|a, b| a * b,
&|a, scalar| a * scalar,
)
};
let inputs: Vec<_> = lookup
.input_expressions
.iter()
.map(|c| load(c, input_row))
.collect();
let lookup_passes = (0..n)
.map(|table_row| {
lookup
.table_expressions
.iter()
.map(move |c| load(c, table_row))
})
.any(|table_row| table_row.eq(inputs.iter().cloned()));
if lookup_passes {
None
} else {
Some(VerifyFailure::Lookup {
lookup_index,
row: input_row as usize,
})
}
})
});
2020-12-21 15:00:39 -08:00
2020-12-21 21:56:30 -08:00
// Check that permutations preserve the original values of the cells.
let perm_errors =
self.permutations
2020-12-21 21:56:30 -08:00
.iter()
.enumerate()
.flat_map(|(perm_index, assembly)| {
// Original values of columns involved in the permutation
let original = |perm_index: usize, column, row| {
self.cs.permutations[perm_index]
.get_columns()
.get(column)
.map(|c: &Column<Any>| match c.column_type() {
Any::Advice => cell_value(self.advice[c.index()][row]),
Any::Fixed => cell_value(self.fixed[c.index()][row]),
Any::Instance => self.instance[c.index()][row],
})
.unwrap()
};
// Iterate over each column of the permutation
assembly
.mapping
.iter()
.enumerate()
.flat_map(move |(column, values)| {
// Iterate over each row of the column to check that the cell's
// value is preserved by the mapping.
values.iter().enumerate().filter_map(move |(row, cell)| {
let original_cell = original(perm_index, column, row);
let permuted_cell = original(perm_index, cell.0, cell.1);
if original_cell == permuted_cell {
None
} else {
Some(VerifyFailure::Permutation {
perm_index,
column,
row,
})
}
})
})
});
let errors: Vec<_> = iter::empty()
.chain(selector_errors)
.chain(gate_errors)
.chain(lookup_errors)
.chain(perm_errors)
.collect();
if errors.is_empty() {
Ok(())
} else {
Err(errors)
2020-12-21 21:56:30 -08:00
}
2020-12-21 15:00:39 -08:00
}
}
#[cfg(test)]
mod tests {
use pasta_curves::Fp;
use super::{MockProver, VerifyFailure};
use crate::{
circuit::{layouter::SingleChipLayouter, Layouter},
plonk::{Advice, Any, Assignment, Circuit, Column, ConstraintSystem, Error, Selector},
poly::Rotation,
};
#[test]
fn unassigned_cell() {
const K: u32 = 4;
const FAULTY_ROW: usize = 2;
#[derive(Clone)]
struct FaultyCircuitConfig {
a: Column<Advice>,
q: Selector,
}
struct FaultyCircuit {}
impl Circuit<Fp> for FaultyCircuit {
type Config = FaultyCircuitConfig;
fn configure(meta: &mut ConstraintSystem<Fp>) -> Self::Config {
let a = meta.advice_column();
let b = meta.advice_column();
let q = meta.selector();
meta.create_gate("Equality check", |cells| {
let a = cells.query_advice(a, Rotation::prev());
let b = cells.query_advice(b, Rotation::cur());
let q = cells.query_selector(q);
// If q is enabled, a and b must be assigned to.
vec![q * (a - b)]
});
FaultyCircuitConfig { a, q }
}
fn synthesize(
&self,
cs: &mut impl Assignment<Fp>,
config: Self::Config,
) -> Result<(), Error> {
let mut layouter = SingleChipLayouter::new(cs)?;
layouter.assign_region(
|| "Faulty synthesis",
|mut region| {
// Enable the equality gate.
config.q.enable(&mut region, FAULTY_ROW)?;
// Assign a = 0.
region.assign_advice(
|| "a",
config.a,
FAULTY_ROW - 1,
|| Ok(Fp::zero()),
)?;
// BUG: Forget to assign b = 0! This could go unnoticed during
// development, because cell values default to zero, which in this
// case is fine, but for other assignments would be broken.
Ok(())
},
)
}
}
let prover = MockProver::run(K, &FaultyCircuit {}, vec![]).unwrap();
assert_eq!(
prover.verify(),
Err(vec![VerifyFailure::Cell {
column: Column::new(1, Any::Advice),
row: FAULTY_ROW,
gate_index: 0,
gate_name: "Equality check"
}])
);
}
}