pub struct EvaluationDomain<G: Group> { /* private fields */ }
Expand description

This structure contains precomputed constants and other details needed for performing operations on an evaluation domain of size $2^k$ and an extended domain of size $2^{k} * j$ with $j \neq 0$.

Implementations

This constructs a new evaluation domain object based on the provided values $j, k$.

Obtains a polynomial in Lagrange form when given a vector of Lagrange coefficients of size n; panics if the provided vector is the wrong length.

Obtains a polynomial in coefficient form when given a vector of coefficients of size n; panics if the provided vector is the wrong length.

Returns an empty (zero) polynomial in the coefficient basis

Returns an empty (zero) polynomial in the Lagrange coefficient basis

Returns a constant polynomial in the Lagrange coefficient basis

Returns an empty (zero) polynomial in the extended Lagrange coefficient basis

Returns a constant polynomial in the extended Lagrange coefficient basis

This takes us from an n-length vector into the coefficient form.

This function will panic if the provided vector is not the correct length.

This takes us from an n-length coefficient vector into a coset of the extended evaluation domain, rotating by rotation if desired.

Rotate the extended domain polynomial over the original domain.

This takes us from the extended evaluation domain and gets us the quotient polynomial coefficients.

This function will panic if the provided vector is not the correct length.

This divides the polynomial (in the extended domain) by the vanishing polynomial of the $2^k$ size domain.

Get the size of the extended domain

Get $\omega$, the generator of the $2^k$ order multiplicative subgroup.

Get $\omega^{-1}$, the inverse of the generator of the $2^k$ order multiplicative subgroup.

Get the generator of the extended domain’s multiplicative subgroup.

Multiplies a value by some power of $\omega$, essentially rotating over the domain.

Computes evaluations (at the point x, where xn = x^n) of Lagrange basis polynomials l_i(X) defined such that l_i(omega^i) = 1 and l_i(omega^j) = 0 for all j != i at each provided rotation i.

Implementation

The polynomial $$\prod_{j=0,j \neq i}^{n - 1} (X - \omega^j)$$ has a root at all points in the domain except $\omega^i$, where it evaluates to $$\prod_{j=0,j \neq i}^{n - 1} (\omega^i - \omega^j)$$ and so we divide that polynomial by this value to obtain $l_i(X)$. Since $$\prod_{j=0,j \neq i}^{n - 1} (X - \omega^j) = \frac{X^n - 1}{X - \omega^i}$$ then $l_i(x)$ for some $x$ is evaluated as $$\left(\frac{x^n - 1}{x - \omega^i}\right) \cdot \left(\frac{1}{\prod_{j=0,j \neq i}^{n - 1} (\omega^i - \omega^j)}\right).$$ We refer to $$1 \over \prod_{j=0,j \neq i}^{n - 1} (\omega^i - \omega^j)$$ as the barycentric weight of $\omega^i$.

We know that for $i = 0$ $$\frac{1}{\prod_{j=0,j \neq i}^{n - 1} (\omega^i - \omega^j)} = \frac{1}{n}.$$

If we multiply $(1 / n)$ by $\omega^i$ then we obtain $$\frac{1}{\prod_{j=0,j \neq 0}^{n - 1} (\omega^i - \omega^j)} = \frac{1}{\prod_{j=0,j \neq i}^{n - 1} (\omega^i - \omega^j)}$$ which is the barycentric weight of $\omega^i$.

Gets the quotient polynomial’s degree (as a multiple of n)

Obtain a pinned version of this evaluation domain; a structure with the minimal parameters needed to determine the rest of the evaluation domain.

Trait Implementations

Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more
Converts self into T using Into<T>. Read more
Causes self to use its Binary implementation when Debug-formatted. Read more
Causes self to use its Display implementation when Debug-formatted. Read more
Causes self to use its LowerExp implementation when Debug-formatted. Read more
Causes self to use its LowerHex implementation when Debug-formatted. Read more
Causes self to use its Octal implementation when Debug-formatted. Read more
Causes self to use its Pointer implementation when Debug-formatted. Read more
Causes self to use its UpperExp implementation when Debug-formatted. Read more
Causes self to use its UpperHex implementation when Debug-formatted. Read more
Formats each item in a sequence. Read more

Returns the argument unchanged.

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Instruments this type with the current Span, returning an Instrumented wrapper. Read more

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Pipes by value. This is generally the method you want to use. Read more
Borrows self and passes that borrow into the pipe function. Read more
Mutably borrows self and passes that borrow into the pipe function. Read more
Borrows self, then passes self.borrow() into the pipe function. Read more
Mutably borrows self, then passes self.borrow_mut() into the pipe function. Read more
Borrows self, then passes self.as_ref() into the pipe function.
Mutably borrows self, then passes self.as_mut() into the pipe function. Read more
Borrows self, then passes self.deref() into the pipe function.
Mutably borrows self, then passes self.deref_mut() into the pipe function. Read more
The alignment of pointer.
The type for initializers.
Initializes a with the given initializer. Read more
Dereferences the given pointer. Read more
Mutably dereferences the given pointer. Read more
Drops the object pointed to by the given pointer. Read more
Immutable access to a value. Read more
Mutable access to a value. Read more
Immutable access to the Borrow<B> of a value. Read more
Mutable access to the BorrowMut<B> of a value. Read more
Immutable access to the AsRef<R> view of a value. Read more
Mutable access to the AsMut<R> view of a value. Read more
Immutable access to the Deref::Target of a value. Read more
Mutable access to the Deref::Target of a value. Read more
Calls .tap() only in debug builds, and is erased in release builds.
Calls .tap_mut() only in debug builds, and is erased in release builds. Read more
Calls .tap_borrow() only in debug builds, and is erased in release builds. Read more
Calls .tap_borrow_mut() only in debug builds, and is erased in release builds. Read more
Calls .tap_ref() only in debug builds, and is erased in release builds. Read more
Calls .tap_ref_mut() only in debug builds, and is erased in release builds. Read more
Calls .tap_deref() only in debug builds, and is erased in release builds. Read more
Calls .tap_deref_mut() only in debug builds, and is erased in release builds. Read more
The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
Attempts to convert self into T using TryInto<T>. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.
Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more