orchard/book/src/design/circuit/note-commit.md

22 KiB

NoteCommit

Message decomposition

\SinsemillaCommit is used in the \NoteCommit function. The input to \SinsemillaCommit is:

\DiversifiedTransmitBaseRepr \bconcat
  \DiversifiedTransmitPublicRepr \bconcat
  \ItoLEBSP{64}(\mathsf{v}) \bconcat
  \ItoLEBSP{\BaseLength{Orchard}}(\rho) \bconcat
  \ItoLEBSP{\BaseLength{Orchard}}(\psi),$$

where:
- $\DiversifiedTransmitBaseRepr, \DiversifiedTransmitPublicRepr$ are representations of
  Pallas curve points, with $255$ bits used for the $x$-coordinate and $1$ bit used for
  the $y$-coordinate.
- $\rho, \psi$ are Pallas base field elements.
- $\mathsf{v}$ is a $64$-bit value.
- $\BaseLength{Orchard} = 255.$

Sinsemilla operates on multiples of 10 bits, so we start by decomposing the message into
chunks:

\begin{aligned} \DiversifiedTransmitBaseRepr &= a \bconcat b_0 \bconcat b_1 \bconcat b_2 \ &= (\text{bits 0..=249 of } x(\mathsf{g_d})) \bconcat (\text{bits 250..=253 of } x(\mathsf{g_d})) \bconcat (\text{bit 254 of } x(\mathsf{g_d})) \bconcat (ỹ \text{ bit of } \mathsf{g_d}) \ \DiversifiedTransmitPublicRepr &= b_3 \bconcat c \bconcat d_0 \bconcat d_1 \ &= (\text{bits 0..=3 of } x(\mathsf{pk_d})) \bconcat (\text{bits 4..=253 of } x(\mathsf{pk_d})) \bconcat (\text{bit 254 of } x(\mathsf{pk_d})) \bconcat (ỹ \text{ bit of } \mathsf{pk_d}) \ \ItoLEBSP{64}(v) &= d_2 \bconcat d_3 \bconcat e_0 \ &= (\text{bits 0..=7 of } v) \bconcat (\text{bits 8..=57 of } v) \bconcat (\text{bits 58..=63 of } v) \ \ItoLEBSP{\BaseLength{Orchard}}(\rho) &= e_1 \bconcat f \bconcat g_0 \ &= (\text{bits 0..=3 of } \rho) \bconcat (\text{bits 4..=253 of } \rho) \bconcat (\text{bit 254 of } \rho) \ \ItoLEBSP{\BaseLength{Orchard}}(\psi) &= g_1 \bconcat g_2 \bconcat h_0 \bconcat h_1 \ &= (\text{bits 0..=8 of } \psi) \bconcat (\text{bits 9..=248 of } \psi) \bconcat (\text{bits 249..=253 of } \psi) \bconcat (\text{bit 254 of } \psi) \ \end{aligned}



Then we recompose the chunks into message pieces:

\begin{array}{|c|l|} \hline \text{Length (bits)} & \text{Piece} \\hline 250 & a \ 10 & b = b_0 \bconcat b_1 \bconcat b_2 \bconcat b_3 \ 250 & c \ 60 & d = d_0 \bconcat d_1 \bconcat d_2 \bconcat d_3 \ 10 & e = e_0 \bconcat e_1 \ 250 & f \ 250 & g = g_0 \bconcat g_1 \bconcat g_2 \ 10 & h = h_0 \bconcat h_1 \bconcat h_2 \\hline \end{array}



where $h_2$ is 4 zero bits (corresponding to the padding applied by the Sinsemilla
[$\mathsf{pad}$ function](https://zips.z.cash/protocol/protocol.pdf#concretesinsemillahash)).

Each message piece is constrained by $\SinsemillaHash$ to its stated length. Additionally:
- $\DiversifiedTransmitBase$ and $\DiversifiedTransmitPublic$ are witnessed and checked
  to be valid elliptic curve points.
- $\mathsf{v}$ is witnessed as a field element, but its decomposition is sufficient to
  constrain it to be a 64-bit value.
- $\rho$ and $\psi$ are witnessed as field elements, so we know they are canonical.

However, we need additional constraints to enforce that:

- The chunks are the correct bit lengths (or else they could overlap in the decompositions
  and allow the prover to witness an arbitrary $\SinsemillaCommit$ message).
- The chunks contain the canonical decompositions of $\DiversifiedTransmitBase$,
  $\DiversifiedTransmitPublic$, $\rho$, and $\psi$ (or else the prover could witness
  multiple equivalent inputs to $\SinsemillaCommit$).

Some of these constraints are implemented with a reusable circuit gadget,
$\ShortLookupRangeCheck{}$. We define custom gates for the remainder. Since these gates
use simple boolean selectors activated on different rows, their selectors are eligible
for combining, reducing the overall proof size.

## Message piece decomposition

We check the decomposition of each message piece in its own region. There is no need to
check the whole pieces:
- $a$ ($250$ bits) is witnessed and constrained outside the gate;
- $c$ ($250$ bits) is witnessed and constrained outside the gate;
- $f$ ($250$ bits) is witnessed and constrained outside the gate;

The following helper gates are defined:
- $\BoolCheck{x} = x \cdot (1 - x)$.
- $\ShortLookupRangeCheck{}$ is a
  [short lookup range check](../decomposition.md#short-range-check).

### $b = b_0 \bconcat b_1 \bconcat b_2 \bconcat b_3$ <a name="decomposition-b">
$b$ has been constrained to be $10$ bits by the Sinsemilla hash.

#### Region layout

\begin{array}{|c|c|c|c|} \hline A_6 & A_7 & A_8 & q_{\NoteCommit,b} \\hline b & b_0 & b_1 & 1 \\hline & b_2 & b_3 & 0 \\hline \end{array}



#### Constraints

\begin{array}{|c|l|} \hline \text{Degree} & \text{Constraint} \\hline 3 & q_{\NoteCommit,b} \cdot \BoolCheck{b_1} = 0 \\hline 3 & q_{\NoteCommit,b} \cdot \BoolCheck{b_2} = 0 \\hline 2 & q_{\NoteCommit,b} \cdot (b - (b_0 + b_1 \cdot 2^4 + b_2 \cdot 2^5 + b_3 \cdot 2^6)) = 0 \\hline \end{array}



Outside this gate, we have constrained:
- $\ShortLookupRangeCheck{b_0, 4}$
- $\ShortLookupRangeCheck{b_3, 4}$

### $d = d_0 \bconcat d_1 \bconcat d_2 \bconcat d_3$ <a name="decomposition-d">
$d$ has been constrained to be $60$ bits by the $\SinsemillaHash$.

#### Region layout

\begin{array}{|c|c|c|c|} \hline A_6 & A_7 & A_8 & q_{\NoteCommit,d} \\hline d & d_0 & d_1 & 1 \\hline & d_2 & d_3 & 0 \\hline \end{array}



#### Constraints

\begin{array}{|c|l|} \hline \text{Degree} & \text{Constraint} \\hline 3 & q_{\NoteCommit,d} \cdot \BoolCheck{d_0} = 0 \\hline 3 & q_{\NoteCommit,d} \cdot \BoolCheck{d_1} = 0 \\hline 2 & q_{\NoteCommit,d} \cdot (d - (d_0 + d_1 \cdot 2 + d_2 \cdot 2^2 + d_3 \cdot 2^{10})) = 0 \\hline \end{array}



Outside this gate, we have constrained:
- $\ShortLookupRangeCheck{d_2, 8}$
- $d_3$ is equality-constrained to $z_{d,1}$, where the latter is the index-1 running sum
  output of $\SinsemillaHash(d),$ constrained by the hash to be $50$ bits.

### $e = e_0 \bconcat e_1$ <a name="decomposition-e">
$e$ has been constrained to be $10$ bits by the $\SinsemillaHash$.

#### Region layout

\begin{array}{|c|c|c|c|} \hline A_6 & A_7 & A_8 & q_{\NoteCommit,e} \\hline e & e_0 & e_1 & 1 \\hline \end{array}



#### Constraints

\begin{array}{|c|l|} \hline \text{Degree} & \text{Constraint} \\hline 2 & q_{\NoteCommit,e} \cdot (e - (e_0 + e_1 \cdot 2^6)) = 0 \\hline \end{array}



Outside this gate, we have constrained:
- $\ShortLookupRangeCheck{e_0, 6}$
- $\ShortLookupRangeCheck{e_1, 4}$

### $g = g_0 \bconcat g_1 \bconcat g_2$ <a name="decomposition-g">
$g$ has been constrained to be $250$ bits by the $\SinsemillaHash$.

#### Region layout

\begin{array}{|c|c|c|c|} \hline A_6 & A_7 & q_{\NoteCommit,g} \\hline g & g_0 & 1 \\hline g_1 & g_2 & 0 \\hline \end{array}



#### Constraints

\begin{array}{|c|l|} \hline \text{Degree} & \text{Constraint} \\hline 3 & q_{\NoteCommit,g} \cdot \BoolCheck{g_0} = 0 \\hline 2 & q_{\NoteCommit,g} \cdot (g - (g_0 + g_1 \cdot 2 + g_2 \cdot 2^{10})) = 0 \\hline \end{array}



Outside this gate, we have constrained:
- $\ShortLookupRangeCheck{g_1, 9}$
- $g_2$ is equality-constrained to $z_{g,1}$, where the latter is the index-1 running sum
  output of $\SinsemillaHash(g),$ constrained by the hash to be 240 bits.

### $h = h_0 \bconcat h_1 \bconcat h_2$ <a name="decomposition-h">
$h$ has been constrained to be $10$ bits by the $\SinsemillaHash$.

#### Region layout

\begin{array}{|c|c|c|c|} \hline A_6 & A_7 & A_8 & q_{\NoteCommit,h} \\hline h & h_0 & h_1 & 1 \\hline \end{array}



#### Constraints

\begin{array}{|c|l|} \hline \text{Degree} & \text{Constraint} \\hline 3 & q_{\NoteCommit,h} \cdot \BoolCheck{h_1} = 0 \\hline 2 & q_{\NoteCommit,h} \cdot (h - (h_0 + h_1 \cdot 2^5)) = 0 \\hline \end{array}



Outside this gate, we have constrained:
- $\ShortLookupRangeCheck{h_0, 5}$

## Field element checks

All message pieces and subpieces have been range-constrained by the earlier decomposition
gates. They are now used to:
- constrain each field element $\ItoLEBSP{\BaseLength{Orchard}}(x(\mathsf{g_d}))$,
  $\ItoLEBSP{\BaseLength{Orchard}}(x(\mathsf{pk_d}))$,
  $\ItoLEBSP{\BaseLength{Orchard}}(\rho)$, and $\ItoLEBSP{\BaseLength{Orchard}}(\psi)$ to
  be 255-bit values, with top bits $b_1$, $d_0$, $g_0$, and $h_1$ respectively.
- constrain $$
\begin{align}
\ItoLEBSP{\BaseLength{Orchard}}(x(\mathsf{g_d})) &= x(\mathsf{g_d}) \pmod{q_\mathbb{P}} \\
\ItoLEBSP{\BaseLength{Orchard}}(x(\mathsf{pk_d})) &= x(\mathsf{pk_d}) \pmod{q_\mathbb{P}} \\
\ItoLEBSP{\BaseLength{Orchard}}(\rho) &= \rho \pmod{q_\mathbb{P}} \\
\ItoLEBSP{\BaseLength{Orchard}}(\psi) &= \psi \pmod{q_\mathbb{P}} \\
\end{align}

where q_\mathbb{P} is the Pallas base field modulus.

  • check that these are indeed canonically-encoded field elements, i.e. \begin{align} \ItoLEBSP{\BaseLength{Orchard}}(x(\mathsf{g_d})) &< q_\mathbb{P} \ \ItoLEBSP{\BaseLength{Orchard}}(x(\mathsf{pk_d})) &< q_\mathbb{P} \ \ItoLEBSP{\BaseLength{Orchard}}(\rho) &< q_\mathbb{P} \ \ItoLEBSP{\BaseLength{Orchard}}(\psi) &< q_\mathbb{P} \ \end{align}


The Pallas base field modulus has the form $q_\mathbb{P} = 2^{254} + t_\mathbb{P}$, where
$$t_\mathbb{P} = \mathtt{0x224698fc094cf91b992d30ed00000001}$$
is 126 bits. We therefore know that if the top bit is not set, then the remaining bits
will always comprise a canonical encoding of a field element. Thus the canonicity checks
below are enforced if and only if the corresponding top bit is set to 1.

> In the constraints below we use a base-$2^{10}$ variant of the method used in libsnark
> (originally from [[SVPBABW2012](https://eprint.iacr.org/2012/598.pdf), Appendix C.1]) for
> range constraints $0 \leq x < t$:
>
> - Let $t'$ be the smallest power of $2^{10}$ greater than $t$.
> - Enforce $0 \leq x < t'$.
> - Let $x' = x + t' - t$.
> - Enforce $0 \leq x' < t'$.

### $x(\mathsf{g_d})$ with $b_1 = 1 \implies x(\mathsf{g_d}) \geq 2^{254}$ <a name="canonicity-g_d">
Recall that $x(\mathsf{g_d}) = a + 2^{250} \cdot b_0 + 2^{254} \cdot b_1$. When the top
bit $b_1$ is set, we check that $x(\mathsf{g_d})_{0..=253} < t_\mathbb{P}$:

1. $b_1 = 1 \implies b_0 = 0.$

   Since $b_1 = 1 \implies x(\mathsf{g_d})_{0..=253} < t_\mathbb{P} < 2^{126},$ we know
   that $x(\mathsf{g_d})_{126..=253} = 0,$ and in particular
   $$b_0 := x(\mathsf{g_d})_{250..=253} = 0.$$

2. $b_1 = 1 \implies 0 \leq a < t_\mathbb{P}.$

   To check that $a < t_\mathbb{P}$, we use two constraints:

    a) $0 \leq a < 2^{130}$. This is expressed in the custom gate as
       $$b_1 \cdot z_{a,13} = 0,$$
       where $z_{a,13}$ is the index-13 running sum output by $\SinsemillaHash(a).$

    b) $0 \leq a + 2^{130} - t_\mathbb{P} < 2^{130}$. To check this, we decompose
       $a' = a + 2^{130} - t_\mathbb{P}$ into thirteen 10-bit words (little-endian) using
       a running sum $z_{a'}$, looking up each word in a $10$-bit lookup table. We then
       enforce in the custom gate that
       $$b_1 \cdot z_{a',13} = 0.$$

#### Region layout

\begin{array}{|c|c|c|c|c|} \hline A_6 & A_7 & A_8 & A_9 & q_{\NoteCommit,x(\mathsf{g_d})} \\hline x(\mathsf{g_d}) & b_0 & a & z_{a,13} & 1 \\hline & b_1 & a' & z_{a',13}& 0 \\hline \end{array}



#### Constraints

\begin{array}{|c|l|} \hline \text{Degree} & \text{Constraint} \\hline 2 & q_{\NoteCommit,x(\mathsf{g_d})} \cdot (a + b_0 \cdot 2^{250} + b_1 \cdot 2^{254} - x(\mathsf{g_d})) = 0 \\hline 3 & q_{\NoteCommit,x(\mathsf{g_d})} \cdot b_1 \cdot b_0 = 0 \\hline 3 & q_{\NoteCommit,x(\mathsf{g_d})} \cdot b_1 \cdot z_{a,13} = 0 \\hline 2 & q_{\NoteCommit,x(\mathsf{g_d})} \cdot (a + 2^{130} - t_\mathbb{P} - a') = 0 \\hline 3 & q_{\NoteCommit,x(\mathsf{g_d})} \cdot b_1 \cdot z_{a',13} = 0 \\hline \end{array}



### $x(\mathsf{pk_d})$ with $d_0 = 1 \implies x(\mathsf{pk_d}) \geq 2^{254}$ <a name="canonicity-pk_d">
Recall that $x(\mathsf{pk_d}) = b_3 + 2^4 \cdot c + 2^{254} \cdot d_0$. When the top bit
$d_0$ is set, we check that $x(\mathsf{pk_d})_{0..=253} < t_\mathbb{P}$:

1. $d_0 = 1 \implies 0 \leq b_3 + 2^{4} \cdot c < t_\mathbb{P}.$

   To check that $0 \leq b_3 + 2^{4} \cdot c < t_\mathbb{P},$ we use two constraints:

    a) $0 \leq b_3 + 2^{4} \cdot c < 2^{140}.$ $b_3$ is already constrained individually
       to be a $4$-bit value. $z_{c,13}$ is the index-13 running sum output by
       $\SinsemillaHash(c).$ By constraining $$d_0 \cdot z_{c,13} = 0,$$ we constrain
       $b_3 + 2^4 \cdot c < 2^{134} < 2^{140}.$

    b) $0 \leq b_3 + 2^{4} \cdot c + 2^{140} - t_\mathbb{P} < 2^{140}$. To check this, we
       decompose ${b_3}c' = b_3 + 2^{4} \cdot c + 2^{140} - t_\mathbb{P}$ into fourteen
       10-bit words (little-endian) using a running sum $z_{{b_3}c'}$, looking up each
       word in a $10$-bit lookup table. We then enforce in the custom gate that
       $$d_0 \cdot z_{{b_3}c',14} = 0.$$

#### Region layout

\begin{array}{|c|c|c|c|c|} \hline A_6 & A_7 & A_8 & A_9 & q_{\NoteCommit,x(\mathsf{pk_d})} \\hline x(\mathsf{pk_d}) & b_3 & c & z_{c,13} & 1 \\hline & d_0 & b_3c' & z_{b_3c',14} & 0 \\hline \end{array}



#### Constraints

\begin{array}{|c|l|} \hline \text{Degree} & \text{Constraint} \\hline 2 & q_{\NoteCommit,x(\mathsf{pk_d})} \cdot (b_3 + c \cdot 2^4 + d_0 \cdot 2^{254} - x(\mathsf{pk_d}) = 0 \\hline 3 & q_{\NoteCommit,x(\mathsf{pk_d})} \cdot d_0 \cdot z_{c,13} = 0 \\hline 2 & q_{\NoteCommit,x(\mathsf{pk_d})} \cdot (b_3 + c \cdot 2^4 + 2^{140} - t_\mathbb{P} - {b_3}c') = 0 \\hline 3 & q_{\NoteCommit,x(\mathsf{pk_d})} \cdot d_0 \cdot z_{{b_3}c',14} = 0 \\hline \end{array}



### $\mathsf{v} = d_2 + 2^8 \cdot d_3 + 2^{58} \cdot e_0$ <a name="canonicity-v">

#### Region layout

\begin{array}{|c|c|c|c|c|} \hline A_6 & A_7 & A_8 & A_9 & q_{\NoteCommit,value} \\hline value & d_2 & d_3 & e_0 & 1 \\hline \end{array}



#### Constraints

\begin{array}{|c|l|} \hline \text{Degree} & \text{Constraint} \\hline 2 & q_{\NoteCommit,value} \cdot (d_2 + d_3 \cdot 2^8 + e_0 \cdot 2^{58} - \mathsf{value}) = 0 \\hline \end{array}



### $\rho$ with $g_0 = 1 \implies \rho \geq 2^{254}$ <a name="canonicity-rho">
Recall that $\rho = e_1 + 2^4 \cdot f + 2^{254} \cdot g_0$. When the top bit $g_0$ is set,
we check that $\rho_{0..=253} < t_\mathbb{P}$:

1. $g_0 = 1 \implies 0 \leq e_1 + 2^{4} \cdot f < t_\mathbb{P}.$

   To check that $0 \leq e_1 + 2^{4} \cdot f < t_\mathbb{P},$ we use two constraints:

    a) $0 \leq e_1 + 2^{4} \cdot f < 2^{140}.$ $e_1$ is already constrained individually
       to be a $4$-bit value. $z_{f,13}$ is the index-13 running sum output by
       $\SinsemillaHash(f).$ By constraining $$g_0 \cdot z_{f,13} = 0,$$ we constrain
       $e_1 + 2^4 \cdot f < 2^{134} < 2^{140}.$

    b) $0 \leq e_1 + 2^{4} \cdot f + 2^{140} - t_\mathbb{P} < 2^{140}$. To check this, we
       decompose ${e_1}f' = e_1 + 2^{4} \cdot f + 2^{140} - t_\mathbb{P}$ into fourteen
       10-bit words (little-endian) using a running sum $z_{{e_1}f'}$, looking up each
       word in a $10$-bit lookup table. We then enforce in the custom gate that
       $$g_0 \cdot z_{{e_1}f',14} = 0.$$

#### Region layout

\begin{array}{|c|c|c|c|c|} \hline A_6 & A_7 & A_8 & A_9 & q_{\NoteCommit,\rho} \\hline \rho & e_1 & f & z_{f,13} & 1 \\hline & g_0 & e_1f' & z_{e_1f',14}& 0 \\hline \end{array}



#### Constraints

\begin{array}{|c|l|} \hline \text{Degree} & \text{Constraint} \\hline 2 & q_{\NoteCommit,\rho} \cdot (e_1 + f \cdot 2^4 + g_0 \cdot 2^{254} - \rho) = 0 \\hline 3 & q_{\NoteCommit,\rho} \cdot g_0 \cdot z_{f,13} = 0 \\hline 2 & q_{\NoteCommit,\rho} \cdot (e_1 + f \cdot 2^4 + 2^{140} - t_\mathbb{P} - {e_1}f') = 0 \\hline 3 & q_{\NoteCommit,\rho} \cdot g_0 \cdot z_{{e_1}f',14} = 0 \\hline \end{array}



### $\psi$ with $h_1 = 1 \implies \psi \geq 2^{254}$ <a name="canonicity-psi">
Recall that $\psi = g_1 + 2^9 \cdot g_2 + 2^{249} \cdot h_0 + 2^{254} \cdot h_1$. When the
top bit $h_1$ is set, we check that $\psi_{0..=253} < t_\mathbb{P}$:

1. $h_1 = 1 \implies h_0 = 0.$

   Since $h_1 = 1 \implies \psi_{0..=253} < t_\mathbb{P} < 2^{126},$ we know that
   $\psi_{126..=253} = 0,$ and in particular $h_0 := \psi_{249..=253} = 0.$

2. $h_1 = 1 \implies 0 \leq g_1 + 2^{9} \cdot g_2 < t_\mathbb{P}.$

   To check that $0 \leq g_1 + 2^{9} \cdot g_2 < t_\mathbb{P},$ we use two constraints:

    a) $0 \leq g_1 + 2^{9} \cdot g_2 < 2^{140}.$ $g_1$ is already constrained individually
       to be a $9$-bit value. $z_{g,13}$ is the index-13 running sum output by
       $\SinsemillaHash(g).$ By constraining $$h_1 \cdot z_{g,13} = 0,$$ we constrain
       $g_1 + 2^9 \cdot g_2 < 2^{129} < 2^{130}.$

    b) $0 \leq g_1 + 2^{9} \cdot g_2 + 2^{130} - t_\mathbb{P} < 2^{130}$. To check this,
       we decompose ${g_1}{g_2}' = g_1 + 2^{9} \cdot g_2 + 2^{130} - t_\mathbb{P}$ into
       thirteen 10-bit words (little-endian) using a running sum $z_{{g_1}{g_2}'}$,
       looking up each word in a $10$-bit lookup table. We then enforce in the custom gate
       that $$h_1 \cdot z_{{g_1}{g_2}',13} = 0.$$

#### Region layout

\begin{array}{|c|c|c|c|c|} \hline A_6 & A_7 & A_8 & A_9 & q_{\NoteCommit,\psi} \\hline \psi & g_1 & g_2 & z_{g,13} & 1 \\hline h_0 & h_1 & g_1g_2' & z_{g_1g_2',13}& 0 \\hline \end{array}



#### Constraints

\begin{array}{|c|l|} \hline \text{Degree} & \text{Constraint} \\hline 2 & q_{\NoteCommit,\psi} \cdot (g_1 + g_2 \cdot 2^9 + h_0 \cdot 2^{249} + h_1 \cdot 2^{254} - \psi) = 0 \\hline 3 & q_{\NoteCommit,\psi} \cdot h_1 \cdot h_0 = 0 \\hline 3 & q_{\NoteCommit,\psi} \cdot h_1 \cdot z_{g,13} = 0 \\hline 2 & q_{\NoteCommit,\psi} \cdot (g_1 + g_2 \cdot 2^9 + 2^{130} - t_\mathbb{P} - {g_1}{g_2}') = 0 \\hline 3 & q_{\NoteCommit,\psi} \cdot h_1 \cdot z_{{g_1}{g_2}',13} = 0 \\hline \end{array}



### $y$-coordinate checks <a name="decomposition-y">

Note that only the $ỹ$ LSB of the $y$-coordinates $y(\mathsf{g_d}), y(\mathsf{pk_d})$ was
input to the hash, while the other bits of the $y$-coordinate were unused. However, we
must still check that the witnessed $ỹ$ bit matches the original point's $y$-coordinate.
The checks for $y(\mathsf{g_d}), y(\mathsf{pk_d})$ will follow the same format. For each
$y$-coordinate, we witness:

\begin{align} y &= \textsf{LSB} \bconcat k_0 \bconcat k_1 \bconcat k_2 \bconcat k_3\ &= \textsf{LSB} \bconcat \text{ (bits 1..=9 of y) } \bconcat \text{ (bits 10..=249 of y) } \bconcat \text{ (bits 250..=253 of y) } \bconcat \text{ (bit 254 of y) }, \end{align}



where $\textsf{LSB}$ is $b_2$ for $y(\mathsf{g_d})$, and $d_1$ for $y(\mathsf{pk_d})$.
Let $$j = \textsf{LSB} + 2 \cdot k_0 + 2^{10} \cdot k_1.$$ We decompose $j$ to be $250$
bits using a strict $25-$word [ten-bit lookup](../decomposition.md#lookup-decomposition).
The running sum outputs allow us to susbstitute $k_1 = z_{j, 1}.$

Recall that $b_2 = ỹ(\mathsf{g_d})$ and $d_1 = ỹ(\mathsf{pk_d})$ were pieces input to the
Sinsemilla hash and have already been boolean-constrained. $k_0$ and $k_2$ are constrained
outside this gate to $9$ and $4$ bits respectively. To constrain the remaining chunks, we
use the following constraints:

\begin{array}{|c|l|} \hline \text{Degree} & \text{Constraint} \\hline 3 & q_{\NoteCommit,y} \cdot \BoolCheck{k_3} = 0 \\hline \end{array}



Then, to check that the decomposition was correct:

\begin{array}{|c|l|} \hline \text{Degree} & \text{Constraint} \\hline 2 & q_{\NoteCommit,y} \cdot \left(j - (\textsf{LSB} + k_0 \cdot 2 + k_1 \cdot 2^{10}) \right) = 0 \\hline 2 & q_{\NoteCommit,y} \cdot \left(y - (j + k_2 \cdot 2^{250} + k_3 \cdot 2^{254}) \right) = 0 \\hline \end{array}



### $y(\mathsf{g_d})$ with $k_3 = 1 \implies y(\mathsf{g_d}) \geq 2^{254}$ <a name="canonicity-y">

In these cases, we check that $y(\mathsf{g_d})_{0..=253} < t_\mathbb{P}$:

1. $k_3 = 1 \implies k_2 = 0.$

   Since $k_3 = 1 \implies y(\mathsf{g_d})_{0..=253} < t_\mathbb{P} < 2^{126},$ we know that
   $y(\mathsf{g_d})_{126..=253} = 0,$ and in particular
   $$k_2 := y(\mathsf{g_d})_{250..=253} = 0.$$

2. $k_3 = 1 \implies 0 \leq j < t_\mathbb{P}.$

   To check that $j < t_\mathbb{P}$, we use two constraints:

    a) $0 \leq j < 2^{130}$. This is expressed in the custom gate as
       $$k_3 \cdot z_{j,13} = 0,$$
       where $z_{j,13}$ is the index-13 running sum output by the $10$-bit lookup
       decomposition of $j$.

    b) $0 \leq j + 2^{130} - t_\mathbb{P} < 2^{130}$. To check this, we decompose
       $j' = j + 2^{130} - t_\mathbb{P}$ into thirteen 10-bit words (little-endian) using
       a running sum $z_{j'}$, looking up each word in a $10$-bit lookup table. We then
       enforce in the custom gate that
       $$k_3 \cdot z_{j',13} = 0.$$

#### Region layout

\begin{array}{|c|c|c|c|c|c|} \hline A_5 & A_6 & A_7 & A_8 & A_9 & q_{\NoteCommit,y} \\hline y & ỹ & k_0 & k_2 & k_3 & 1 \\hline j & k_1 & z_{j,13} & j' & z_{j',13} & 0 \\hline \end{array}



#### Constraints

\begin{array}{|c|l|} \hline \text{Degree} & \text{Constraint} \\hline 3 & q_{\NoteCommit,y} \cdot k_3 \cdot k_2 = 0 \\hline 3 & q_{\NoteCommit,y} \cdot k_3 \cdot z_{j,13} = 0 \\hline 2 & q_{\NoteCommit,y} \cdot (j + 2^{130} - t_\mathbb{P} - j') = 0 \\hline 3 & q_{\NoteCommit,y} \cdot k_3 \cdot z_{j',13} = 0 \\hline \end{array}



Outside this gate, we have constrained:
- $\ShortLookupRangeCheck{k_0, 9}$
- $\ShortLookupRangeCheck{k_2, 4}$

### $y(\mathsf{pk_d})$
This can be checked in exactly the same way as $y(\mathsf{g_d})$, with $b_2$ replaced by
$d_1$.