zcash_note_encryption/src/lib.rs

697 lines
25 KiB
Rust
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//! Note encryption for Zcash transactions.
//!
//! This crate implements the [in-band secret distribution scheme] for the Sapling and
//! Orchard protocols. It provides reusable methods that implement common note encryption
//! and trial decryption logic, and enforce protocol-agnostic verification requirements.
//!
//! Protocol-specific logic is handled via the [`Domain`] trait. Implementations of this
//! trait are provided in the [`zcash_primitives`] (for Sapling) and [`orchard`] crates;
//! users with their own existing types can similarly implement the trait themselves.
//!
//! [in-band secret distribution scheme]: https://zips.z.cash/protocol/protocol.pdf#saplingandorchardinband
//! [`zcash_primitives`]: https://crates.io/crates/zcash_primitives
//! [`orchard`]: https://crates.io/crates/orchard
#![no_std]
#![cfg_attr(docsrs, feature(doc_cfg))]
// Catch documentation errors caused by code changes.
#![deny(rustdoc::broken_intra_doc_links)]
#![deny(unsafe_code)]
// TODO: #![deny(missing_docs)]
use core::fmt::{self, Write};
#[cfg(feature = "alloc")]
extern crate alloc;
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
use chacha20::{
cipher::{StreamCipher, StreamCipherSeek},
ChaCha20,
};
use chacha20poly1305::{aead::AeadInPlace, ChaCha20Poly1305, KeyInit};
use cipher::KeyIvInit;
use rand_core::RngCore;
use subtle::{Choice, ConstantTimeEq};
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
pub mod batch;
/// The size of a compact note.
pub const COMPACT_NOTE_SIZE: usize = 1 + // version
11 + // diversifier
8 + // value
32; // rseed (or rcm prior to ZIP 212)
/// The size of [`NotePlaintextBytes`].
pub const NOTE_PLAINTEXT_SIZE: usize = COMPACT_NOTE_SIZE + 512;
/// The size of [`OutPlaintextBytes`].
pub const OUT_PLAINTEXT_SIZE: usize = 32 + // pk_d
32; // esk
const AEAD_TAG_SIZE: usize = 16;
/// The size of an encrypted note plaintext.
pub const ENC_CIPHERTEXT_SIZE: usize = NOTE_PLAINTEXT_SIZE + AEAD_TAG_SIZE;
/// The size of an encrypted outgoing plaintext.
pub const OUT_CIPHERTEXT_SIZE: usize = OUT_PLAINTEXT_SIZE + AEAD_TAG_SIZE;
/// A symmetric key that can be used to recover a single Sapling or Orchard output.
pub struct OutgoingCipherKey(pub [u8; 32]);
impl From<[u8; 32]> for OutgoingCipherKey {
fn from(ock: [u8; 32]) -> Self {
OutgoingCipherKey(ock)
}
}
impl AsRef<[u8]> for OutgoingCipherKey {
fn as_ref(&self) -> &[u8] {
&self.0
}
}
/// Newtype representing the byte encoding of an [`EphemeralPublicKey`].
///
/// [`EphemeralPublicKey`]: Domain::EphemeralPublicKey
#[derive(Clone)]
pub struct EphemeralKeyBytes(pub [u8; 32]);
impl fmt::Debug for EphemeralKeyBytes {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
struct HexFmt<'b>(&'b [u8]);
impl<'b> fmt::Debug for HexFmt<'b> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_char('"')?;
for b in self.0 {
f.write_fmt(format_args!("{:02x}", b))?;
}
f.write_char('"')
}
}
f.debug_tuple("EphemeralKeyBytes")
.field(&HexFmt(&self.0))
.finish()
}
}
impl AsRef<[u8]> for EphemeralKeyBytes {
fn as_ref(&self) -> &[u8] {
&self.0
}
}
impl From<[u8; 32]> for EphemeralKeyBytes {
fn from(value: [u8; 32]) -> EphemeralKeyBytes {
EphemeralKeyBytes(value)
}
}
impl ConstantTimeEq for EphemeralKeyBytes {
fn ct_eq(&self, other: &Self) -> Choice {
self.0.ct_eq(&other.0)
}
}
/// Newtype representing the byte encoding of a note plaintext.
pub struct NotePlaintextBytes(pub [u8; NOTE_PLAINTEXT_SIZE]);
/// Newtype representing the byte encoding of a outgoing plaintext.
pub struct OutPlaintextBytes(pub [u8; OUT_PLAINTEXT_SIZE]);
#[derive(Copy, Clone, PartialEq, Eq)]
enum NoteValidity {
Valid,
Invalid,
}
/// Trait that encapsulates protocol-specific note encryption types and logic.
///
/// This trait enables most of the note encryption logic to be shared between Sapling and
/// Orchard, as well as between different implementations of those protocols.
pub trait Domain {
type EphemeralSecretKey: ConstantTimeEq;
type EphemeralPublicKey;
type PreparedEphemeralPublicKey;
type SharedSecret;
type SymmetricKey: AsRef<[u8]>;
type Note;
type Recipient;
type DiversifiedTransmissionKey;
type IncomingViewingKey;
type OutgoingViewingKey;
type ValueCommitment;
type ExtractedCommitment;
type ExtractedCommitmentBytes: Eq + for<'a> From<&'a Self::ExtractedCommitment>;
type Memo;
/// Derives the `EphemeralSecretKey` corresponding to this note.
///
/// Returns `None` if the note was created prior to [ZIP 212], and doesn't have a
/// deterministic `EphemeralSecretKey`.
///
/// [ZIP 212]: https://zips.z.cash/zip-0212
fn derive_esk(note: &Self::Note) -> Option<Self::EphemeralSecretKey>;
/// Extracts the `DiversifiedTransmissionKey` from the note.
fn get_pk_d(note: &Self::Note) -> Self::DiversifiedTransmissionKey;
/// Prepare an ephemeral public key for more efficient scalar multiplication.
fn prepare_epk(epk: Self::EphemeralPublicKey) -> Self::PreparedEphemeralPublicKey;
/// Derives `EphemeralPublicKey` from `esk` and the note's diversifier.
fn ka_derive_public(
note: &Self::Note,
esk: &Self::EphemeralSecretKey,
) -> Self::EphemeralPublicKey;
/// Derives the `SharedSecret` from the sender's information during note encryption.
fn ka_agree_enc(
esk: &Self::EphemeralSecretKey,
pk_d: &Self::DiversifiedTransmissionKey,
) -> Self::SharedSecret;
/// Derives the `SharedSecret` from the recipient's information during note trial
/// decryption.
fn ka_agree_dec(
ivk: &Self::IncomingViewingKey,
epk: &Self::PreparedEphemeralPublicKey,
) -> Self::SharedSecret;
/// Derives the `SymmetricKey` used to encrypt the note plaintext.
///
/// `secret` is the `SharedSecret` obtained from [`Self::ka_agree_enc`] or
/// [`Self::ka_agree_dec`].
///
/// `ephemeral_key` is the byte encoding of the [`EphemeralPublicKey`] used to derive
/// `secret`. During encryption it is derived via [`Self::epk_bytes`]; during trial
/// decryption it is obtained from [`ShieldedOutput::ephemeral_key`].
///
/// [`EphemeralPublicKey`]: Self::EphemeralPublicKey
/// [`EphemeralSecretKey`]: Self::EphemeralSecretKey
fn kdf(secret: Self::SharedSecret, ephemeral_key: &EphemeralKeyBytes) -> Self::SymmetricKey;
/// Encodes the given `Note` and `Memo` as a note plaintext.
fn note_plaintext_bytes(note: &Self::Note, memo: &Self::Memo) -> NotePlaintextBytes;
/// Derives the [`OutgoingCipherKey`] for an encrypted note, given the note-specific
/// public data and an `OutgoingViewingKey`.
fn derive_ock(
ovk: &Self::OutgoingViewingKey,
cv: &Self::ValueCommitment,
cmstar_bytes: &Self::ExtractedCommitmentBytes,
ephemeral_key: &EphemeralKeyBytes,
) -> OutgoingCipherKey;
/// Encodes the outgoing plaintext for the given note.
fn outgoing_plaintext_bytes(
note: &Self::Note,
esk: &Self::EphemeralSecretKey,
) -> OutPlaintextBytes;
/// Returns the byte encoding of the given `EphemeralPublicKey`.
fn epk_bytes(epk: &Self::EphemeralPublicKey) -> EphemeralKeyBytes;
/// Attempts to parse `ephemeral_key` as an `EphemeralPublicKey`.
///
/// Returns `None` if `ephemeral_key` is not a valid byte encoding of an
/// `EphemeralPublicKey`.
fn epk(ephemeral_key: &EphemeralKeyBytes) -> Option<Self::EphemeralPublicKey>;
/// Derives the `ExtractedCommitment` for this note.
fn cmstar(note: &Self::Note) -> Self::ExtractedCommitment;
/// Parses the given note plaintext from the recipient's perspective.
///
/// The implementation of this method must check that:
/// - The note plaintext version is valid (for the given decryption domain's context,
/// which may be passed via `self`).
/// - The note plaintext contains valid encodings of its various fields.
/// - Any domain-specific requirements are satisfied.
///
/// `&self` is passed here to enable the implementation to enforce contextual checks,
/// such as rules like [ZIP 212] that become active at a specific block height.
///
/// [ZIP 212]: https://zips.z.cash/zip-0212
///
/// # Panics
///
/// Panics if `plaintext` is shorter than [`COMPACT_NOTE_SIZE`].
fn parse_note_plaintext_without_memo_ivk(
&self,
ivk: &Self::IncomingViewingKey,
plaintext: &[u8],
) -> Option<(Self::Note, Self::Recipient)>;
/// Parses the given note plaintext from the sender's perspective.
///
/// The implementation of this method must check that:
/// - The note plaintext version is valid (for the given decryption domain's context,
/// which may be passed via `self`).
/// - The note plaintext contains valid encodings of its various fields.
/// - Any domain-specific requirements are satisfied.
///
/// `&self` is passed here to enable the implementation to enforce contextual checks,
/// such as rules like [ZIP 212] that become active at a specific block height.
///
/// [ZIP 212]: https://zips.z.cash/zip-0212
fn parse_note_plaintext_without_memo_ovk(
&self,
pk_d: &Self::DiversifiedTransmissionKey,
plaintext: &NotePlaintextBytes,
) -> Option<(Self::Note, Self::Recipient)>;
/// Extracts the memo field from the given note plaintext.
///
/// # Compatibility
///
/// `&self` is passed here in anticipation of future changes to memo handling, where
/// the memos may no longer be part of the note plaintext.
fn extract_memo(&self, plaintext: &NotePlaintextBytes) -> Self::Memo;
/// Parses the `DiversifiedTransmissionKey` field of the outgoing plaintext.
///
/// Returns `None` if `out_plaintext` does not contain a valid byte encoding of a
/// `DiversifiedTransmissionKey`.
fn extract_pk_d(out_plaintext: &OutPlaintextBytes) -> Option<Self::DiversifiedTransmissionKey>;
/// Parses the `EphemeralSecretKey` field of the outgoing plaintext.
///
/// Returns `None` if `out_plaintext` does not contain a valid byte encoding of an
/// `EphemeralSecretKey`.
fn extract_esk(out_plaintext: &OutPlaintextBytes) -> Option<Self::EphemeralSecretKey>;
}
/// Trait that encapsulates protocol-specific batch trial decryption logic.
///
/// Each batchable operation has a default implementation that calls through to the
/// non-batched implementation. Domains can override whichever operations benefit from
/// batched logic.
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
pub trait BatchDomain: Domain {
/// Computes `Self::kdf` on a batch of items.
///
/// For each item in the batch, if the shared secret is `None`, this returns `None` at
/// that position.
fn batch_kdf<'a>(
items: impl Iterator<Item = (Option<Self::SharedSecret>, &'a EphemeralKeyBytes)>,
) -> Vec<Option<Self::SymmetricKey>> {
// Default implementation: do the non-batched thing.
items
.map(|(secret, ephemeral_key)| secret.map(|secret| Self::kdf(secret, ephemeral_key)))
.collect()
}
/// Computes `Self::epk` on a batch of ephemeral keys.
///
/// This is useful for protocols where the underlying curve requires an inversion to
/// parse an encoded point.
///
/// For usability, this returns tuples of the ephemeral keys and the result of parsing
/// them.
fn batch_epk(
ephemeral_keys: impl Iterator<Item = EphemeralKeyBytes>,
) -> Vec<(Option<Self::PreparedEphemeralPublicKey>, EphemeralKeyBytes)> {
// Default implementation: do the non-batched thing.
ephemeral_keys
.map(|ephemeral_key| {
(
Self::epk(&ephemeral_key).map(Self::prepare_epk),
ephemeral_key,
)
})
.collect()
}
}
/// Trait that provides access to the components of an encrypted transaction output.
///
/// Implementations of this trait are required to define the length of their ciphertext
/// field. In order to use the trial decryption APIs in this crate, the length must be
/// either [`ENC_CIPHERTEXT_SIZE`] or [`COMPACT_NOTE_SIZE`].
pub trait ShieldedOutput<D: Domain, const CIPHERTEXT_SIZE: usize> {
/// Exposes the `ephemeral_key` field of the output.
fn ephemeral_key(&self) -> EphemeralKeyBytes;
/// Exposes the `cmu_bytes` or `cmx_bytes` field of the output.
fn cmstar_bytes(&self) -> D::ExtractedCommitmentBytes;
/// Exposes the note ciphertext of the output.
fn enc_ciphertext(&self) -> &[u8; CIPHERTEXT_SIZE];
}
/// A struct containing context required for encrypting Sapling and Orchard notes.
///
/// This struct provides a safe API for encrypting Sapling and Orchard notes. In particular, it
/// enforces that fresh ephemeral keys are used for every note, and that the ciphertexts are
/// consistent with each other.
///
/// Implements section 4.19 of the
/// [Zcash Protocol Specification](https://zips.z.cash/protocol/nu5.pdf#saplingandorchardinband)
pub struct NoteEncryption<D: Domain> {
epk: D::EphemeralPublicKey,
esk: D::EphemeralSecretKey,
note: D::Note,
memo: D::Memo,
/// `None` represents the `ovk = ⊥` case.
ovk: Option<D::OutgoingViewingKey>,
}
impl<D: Domain> NoteEncryption<D> {
/// Construct a new note encryption context for the specified note,
/// recipient, and memo.
pub fn new(ovk: Option<D::OutgoingViewingKey>, note: D::Note, memo: D::Memo) -> Self {
let esk = D::derive_esk(&note).expect("ZIP 212 is active.");
NoteEncryption {
epk: D::ka_derive_public(&note, &esk),
esk,
note,
memo,
ovk,
}
}
/// For use only with Sapling. This method is preserved in order that test code
/// be able to generate pre-ZIP-212 ciphertexts so that tests can continue to
/// cover pre-ZIP-212 transaction decryption.
#[cfg(feature = "pre-zip-212")]
#[cfg_attr(docsrs, doc(cfg(feature = "pre-zip-212")))]
pub fn new_with_esk(
esk: D::EphemeralSecretKey,
ovk: Option<D::OutgoingViewingKey>,
note: D::Note,
memo: D::Memo,
) -> Self {
NoteEncryption {
epk: D::ka_derive_public(&note, &esk),
esk,
note,
memo,
ovk,
}
}
/// Exposes the ephemeral secret key being used to encrypt this note.
pub fn esk(&self) -> &D::EphemeralSecretKey {
&self.esk
}
/// Exposes the encoding of the ephemeral public key being used to encrypt this note.
pub fn epk(&self) -> &D::EphemeralPublicKey {
&self.epk
}
/// Generates `encCiphertext` for this note.
pub fn encrypt_note_plaintext(&self) -> [u8; ENC_CIPHERTEXT_SIZE] {
let pk_d = D::get_pk_d(&self.note);
let shared_secret = D::ka_agree_enc(&self.esk, &pk_d);
let key = D::kdf(shared_secret, &D::epk_bytes(&self.epk));
let input = D::note_plaintext_bytes(&self.note, &self.memo);
let mut output = [0u8; ENC_CIPHERTEXT_SIZE];
output[..NOTE_PLAINTEXT_SIZE].copy_from_slice(&input.0);
let tag = ChaCha20Poly1305::new(key.as_ref().into())
.encrypt_in_place_detached(
[0u8; 12][..].into(),
&[],
&mut output[..NOTE_PLAINTEXT_SIZE],
)
.unwrap();
output[NOTE_PLAINTEXT_SIZE..].copy_from_slice(&tag);
output
}
/// Generates `outCiphertext` for this note.
pub fn encrypt_outgoing_plaintext<R: RngCore>(
&self,
cv: &D::ValueCommitment,
cmstar: &D::ExtractedCommitment,
rng: &mut R,
) -> [u8; OUT_CIPHERTEXT_SIZE] {
let (ock, input) = if let Some(ovk) = &self.ovk {
let ock = D::derive_ock(ovk, cv, &cmstar.into(), &D::epk_bytes(&self.epk));
let input = D::outgoing_plaintext_bytes(&self.note, &self.esk);
(ock, input)
} else {
// ovk = ⊥
let mut ock = OutgoingCipherKey([0; 32]);
let mut input = [0u8; OUT_PLAINTEXT_SIZE];
rng.fill_bytes(&mut ock.0);
rng.fill_bytes(&mut input);
(ock, OutPlaintextBytes(input))
};
let mut output = [0u8; OUT_CIPHERTEXT_SIZE];
output[..OUT_PLAINTEXT_SIZE].copy_from_slice(&input.0);
let tag = ChaCha20Poly1305::new(ock.as_ref().into())
.encrypt_in_place_detached([0u8; 12][..].into(), &[], &mut output[..OUT_PLAINTEXT_SIZE])
.unwrap();
output[OUT_PLAINTEXT_SIZE..].copy_from_slice(&tag);
output
}
}
/// Trial decryption of the full note plaintext by the recipient.
///
/// Attempts to decrypt and validate the given shielded output using the given `ivk`.
/// If successful, the corresponding note and memo are returned, along with the address to
/// which the note was sent.
///
/// Implements section 4.19.2 of the
/// [Zcash Protocol Specification](https://zips.z.cash/protocol/nu5.pdf#decryptivk).
pub fn try_note_decryption<D: Domain, Output: ShieldedOutput<D, ENC_CIPHERTEXT_SIZE>>(
domain: &D,
ivk: &D::IncomingViewingKey,
output: &Output,
) -> Option<(D::Note, D::Recipient, D::Memo)> {
let ephemeral_key = output.ephemeral_key();
let epk = D::prepare_epk(D::epk(&ephemeral_key)?);
let shared_secret = D::ka_agree_dec(ivk, &epk);
let key = D::kdf(shared_secret, &ephemeral_key);
try_note_decryption_inner(domain, ivk, &ephemeral_key, output, &key)
}
fn try_note_decryption_inner<D: Domain, Output: ShieldedOutput<D, ENC_CIPHERTEXT_SIZE>>(
domain: &D,
ivk: &D::IncomingViewingKey,
ephemeral_key: &EphemeralKeyBytes,
output: &Output,
key: &D::SymmetricKey,
) -> Option<(D::Note, D::Recipient, D::Memo)> {
let enc_ciphertext = output.enc_ciphertext();
let mut plaintext =
NotePlaintextBytes(enc_ciphertext[..NOTE_PLAINTEXT_SIZE].try_into().unwrap());
ChaCha20Poly1305::new(key.as_ref().into())
.decrypt_in_place_detached(
[0u8; 12][..].into(),
&[],
&mut plaintext.0,
enc_ciphertext[NOTE_PLAINTEXT_SIZE..].into(),
)
.ok()?;
let (note, to) = parse_note_plaintext_without_memo_ivk(
domain,
ivk,
ephemeral_key,
&output.cmstar_bytes(),
&plaintext.0,
)?;
let memo = domain.extract_memo(&plaintext);
Some((note, to, memo))
}
fn parse_note_plaintext_without_memo_ivk<D: Domain>(
domain: &D,
ivk: &D::IncomingViewingKey,
ephemeral_key: &EphemeralKeyBytes,
cmstar_bytes: &D::ExtractedCommitmentBytes,
plaintext: &[u8],
) -> Option<(D::Note, D::Recipient)> {
let (note, to) = domain.parse_note_plaintext_without_memo_ivk(ivk, plaintext)?;
if let NoteValidity::Valid = check_note_validity::<D>(&note, ephemeral_key, cmstar_bytes) {
Some((note, to))
} else {
None
}
}
fn check_note_validity<D: Domain>(
note: &D::Note,
ephemeral_key: &EphemeralKeyBytes,
cmstar_bytes: &D::ExtractedCommitmentBytes,
) -> NoteValidity {
if &D::ExtractedCommitmentBytes::from(&D::cmstar(note)) == cmstar_bytes {
// In the case corresponding to specification section 4.19.3, we check that `esk` is equal
// to `D::derive_esk(note)` prior to calling this method.
if let Some(derived_esk) = D::derive_esk(note) {
if D::epk_bytes(&D::ka_derive_public(note, &derived_esk))
.ct_eq(ephemeral_key)
.into()
{
NoteValidity::Valid
} else {
NoteValidity::Invalid
}
} else {
// Before ZIP 212
NoteValidity::Valid
}
} else {
// Published commitment doesn't match calculated commitment
NoteValidity::Invalid
}
}
/// Trial decryption of the compact note plaintext by the recipient for light clients.
///
/// Attempts to decrypt and validate the given compact shielded output using the
/// given `ivk`. If successful, the corresponding note is returned, along with the address
/// to which the note was sent.
///
/// Implements the procedure specified in [`ZIP 307`].
///
/// [`ZIP 307`]: https://zips.z.cash/zip-0307
pub fn try_compact_note_decryption<D: Domain, Output: ShieldedOutput<D, COMPACT_NOTE_SIZE>>(
domain: &D,
ivk: &D::IncomingViewingKey,
output: &Output,
) -> Option<(D::Note, D::Recipient)> {
let ephemeral_key = output.ephemeral_key();
let epk = D::prepare_epk(D::epk(&ephemeral_key)?);
let shared_secret = D::ka_agree_dec(ivk, &epk);
let key = D::kdf(shared_secret, &ephemeral_key);
try_compact_note_decryption_inner(domain, ivk, &ephemeral_key, output, &key)
}
fn try_compact_note_decryption_inner<D: Domain, Output: ShieldedOutput<D, COMPACT_NOTE_SIZE>>(
domain: &D,
ivk: &D::IncomingViewingKey,
ephemeral_key: &EphemeralKeyBytes,
output: &Output,
key: &D::SymmetricKey,
) -> Option<(D::Note, D::Recipient)> {
// Start from block 1 to skip over Poly1305 keying output
let mut plaintext = [0; COMPACT_NOTE_SIZE];
plaintext.copy_from_slice(output.enc_ciphertext());
let mut keystream = ChaCha20::new(key.as_ref().into(), [0u8; 12][..].into());
keystream.seek(64);
keystream.apply_keystream(&mut plaintext);
parse_note_plaintext_without_memo_ivk(
domain,
ivk,
ephemeral_key,
&output.cmstar_bytes(),
&plaintext,
)
}
/// Recovery of the full note plaintext by the sender.
///
/// Attempts to decrypt and validate the given shielded output using the given `ovk`.
/// If successful, the corresponding note and memo are returned, along with the address to
/// which the note was sent.
///
/// Implements [Zcash Protocol Specification section 4.19.3][decryptovk].
///
/// [decryptovk]: https://zips.z.cash/protocol/nu5.pdf#decryptovk
pub fn try_output_recovery_with_ovk<D: Domain, Output: ShieldedOutput<D, ENC_CIPHERTEXT_SIZE>>(
domain: &D,
ovk: &D::OutgoingViewingKey,
output: &Output,
cv: &D::ValueCommitment,
out_ciphertext: &[u8; OUT_CIPHERTEXT_SIZE],
) -> Option<(D::Note, D::Recipient, D::Memo)> {
let ock = D::derive_ock(ovk, cv, &output.cmstar_bytes(), &output.ephemeral_key());
try_output_recovery_with_ock(domain, &ock, output, out_ciphertext)
}
/// Recovery of the full note plaintext by the sender.
///
/// Attempts to decrypt and validate the given shielded output using the given `ock`.
/// If successful, the corresponding note and memo are returned, along with the address to
/// which the note was sent.
///
/// Implements part of section 4.19.3 of the
/// [Zcash Protocol Specification](https://zips.z.cash/protocol/nu5.pdf#decryptovk).
/// For decryption using a Full Viewing Key see [`try_output_recovery_with_ovk`].
pub fn try_output_recovery_with_ock<D: Domain, Output: ShieldedOutput<D, ENC_CIPHERTEXT_SIZE>>(
domain: &D,
ock: &OutgoingCipherKey,
output: &Output,
out_ciphertext: &[u8; OUT_CIPHERTEXT_SIZE],
) -> Option<(D::Note, D::Recipient, D::Memo)> {
let enc_ciphertext = output.enc_ciphertext();
let mut op = OutPlaintextBytes([0; OUT_PLAINTEXT_SIZE]);
op.0.copy_from_slice(&out_ciphertext[..OUT_PLAINTEXT_SIZE]);
ChaCha20Poly1305::new(ock.as_ref().into())
.decrypt_in_place_detached(
[0u8; 12][..].into(),
&[],
&mut op.0,
out_ciphertext[OUT_PLAINTEXT_SIZE..].into(),
)
.ok()?;
let pk_d = D::extract_pk_d(&op)?;
let esk = D::extract_esk(&op)?;
let ephemeral_key = output.ephemeral_key();
let shared_secret = D::ka_agree_enc(&esk, &pk_d);
// The small-order point check at the point of output parsing rejects
// non-canonical encodings, so reencoding here for the KDF should
// be okay.
let key = D::kdf(shared_secret, &ephemeral_key);
let mut plaintext = NotePlaintextBytes([0; NOTE_PLAINTEXT_SIZE]);
plaintext
.0
.copy_from_slice(&enc_ciphertext[..NOTE_PLAINTEXT_SIZE]);
ChaCha20Poly1305::new(key.as_ref().into())
.decrypt_in_place_detached(
[0u8; 12][..].into(),
&[],
&mut plaintext.0,
enc_ciphertext[NOTE_PLAINTEXT_SIZE..].into(),
)
.ok()?;
let (note, to) = domain.parse_note_plaintext_without_memo_ovk(&pk_d, &plaintext)?;
let memo = domain.extract_memo(&plaintext);
// ZIP 212: Check that the esk provided to this function is consistent with the esk we can
// derive from the note. This check corresponds to `ToScalar(PRF^{expand}_{rseed}([4]) = esk`
// in https://zips.z.cash/protocol/protocol.pdf#decryptovk. (`ρ^opt = []` for Sapling.)
if let Some(derived_esk) = D::derive_esk(&note) {
if (!derived_esk.ct_eq(&esk)).into() {
return None;
}
}
if let NoteValidity::Valid =
check_note_validity::<D>(&note, &ephemeral_key, &output.cmstar_bytes())
{
Some((note, to, memo))
} else {
None
}
}