rust-secp256k1/src/secp256k1.rs

448 lines
14 KiB
Rust
Raw Normal View History

// Bitcoin secp256k1 bindings
// Written in 2014 by
// Dawid Ciężarkiewicz
// Andrew Poelstra
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//
//! # Secp256k1
//! Rust bindings for Pieter Wuille's secp256k1 library, which is used for
//! fast and accurate manipulation of ECDSA signatures on the secp256k1
//! curve. Such signatures are used extensively by the Bitcoin network
//! and its derivatives.
//!
2014-07-06 22:41:22 -07:00
#![crate_type = "lib"]
#![crate_type = "rlib"]
#![crate_type = "dylib"]
#![crate_name = "secp256k1"]
// Keep this until 1.0 I guess; it's needed for `black_box` at least
#![cfg_attr(test, feature(test))]
2014-07-23 16:11:18 -07:00
// Coding conventions
#![deny(non_upper_case_globals)]
#![deny(non_camel_case_types)]
2014-08-30 07:24:44 -07:00
#![deny(non_snake_case)]
#![deny(unused_mut)]
#![warn(missing_docs)]
2014-07-06 22:41:22 -07:00
extern crate crypto;
extern crate "rustc-serialize" as serialize;
#[cfg(test)] extern crate test;
2014-07-06 22:41:22 -07:00
extern crate libc;
extern crate rand;
2014-07-06 22:41:22 -07:00
use std::intrinsics::copy_nonoverlapping;
2015-03-25 18:52:09 -07:00
use std::{io, ops};
use std::sync::{Once, ONCE_INIT};
use libc::c_int;
2015-03-25 16:57:16 -07:00
use rand::{OsRng, Rng, SeedableRng};
2014-07-06 22:41:22 -07:00
use crypto::fortuna::Fortuna;
#[macro_use]
2014-08-27 10:19:10 -07:00
mod macros;
pub mod constants;
pub mod ffi;
pub mod key;
2014-07-06 22:41:22 -07:00
/// I dunno where else to put this..
fn assert_type_is_copy<T: Copy>() { }
/// A tag used for recovering the public key from a compact signature
pub struct RecoveryId(i32);
impl Copy for RecoveryId {}
/// An ECDSA signature
pub struct Signature(usize, [u8; constants::MAX_SIGNATURE_SIZE]);
impl Copy for Signature {}
impl Signature {
/// Converts the signature to a raw pointer suitable for use
/// with the FFI functions
#[inline]
pub fn as_ptr(&self) -> *const u8 {
let &Signature(_, ref data) = self;
2015-03-25 18:36:57 -07:00
data.as_ptr()
}
/// Converts the signature to a mutable raw pointer suitable for use
/// with the FFI functions
#[inline]
pub fn as_mut_ptr(&mut self) -> *mut u8 {
let &mut Signature(_, ref mut data) = self;
2015-03-25 18:36:57 -07:00
data.as_mut_ptr()
}
/// Returns the length of the signature
#[inline]
pub fn len(&self) -> usize {
let &Signature(len, _) = self;
len
}
/// Converts a byte slice to a signature
#[inline]
pub fn from_slice(data: &[u8]) -> Result<Signature> {
if data.len() <= constants::MAX_SIGNATURE_SIZE {
let mut ret = [0; constants::MAX_SIGNATURE_SIZE];
unsafe {
copy_nonoverlapping(ret.as_mut_ptr(),
data.as_ptr(),
data.len());
}
Ok(Signature(data.len(), ret))
} else {
Err(Error::InvalidSignature)
}
}
2014-07-06 22:41:22 -07:00
}
2015-03-25 18:52:09 -07:00
impl ops::Index<usize> for Signature {
type Output = u8;
#[inline]
fn index(&self, index: usize) -> &u8 {
let &Signature(_, ref dat) = self;
&dat[index]
}
}
impl ops::Index<ops::Range<usize>> for Signature {
type Output = [u8];
#[inline]
fn index(&self, index: ops::Range<usize>) -> &[u8] {
let &Signature(_, ref dat) = self;
&dat[index.start..index.end]
}
}
impl ops::Index<ops::RangeFrom<usize>> for Signature {
type Output = [u8];
#[inline]
fn index(&self, index: ops::RangeFrom<usize>) -> &[u8] {
let &Signature(_, ref dat) = self;
&dat[index.start..]
}
}
impl ops::Index<ops::RangeFull> for Signature {
type Output = [u8];
#[inline]
fn index(&self, _: ops::RangeFull) -> &[u8] {
let &Signature(_, ref dat) = self;
&dat[..]
}
}
/// An ECDSA error
2015-03-25 11:59:54 -07:00
#[derive(PartialEq, Eq, Clone, Debug)]
2014-07-06 22:41:22 -07:00
pub enum Error {
/// Signature failed verification
IncorrectSignature,
/// Bad public key
2014-07-06 22:41:22 -07:00
InvalidPublicKey,
/// Bad signature
2014-07-06 22:41:22 -07:00
InvalidSignature,
/// Bad secret key
2014-07-06 22:41:22 -07:00
InvalidSecretKey,
/// Bad nonce
2014-07-06 22:41:22 -07:00
InvalidNonce,
/// Boolean-returning function returned the wrong boolean
Unknown
2014-07-06 22:41:22 -07:00
}
impl Copy for Error {}
2014-07-06 22:41:22 -07:00
/// Result type
pub type Result<T> = ::std::result::Result<T, Error>;
static mut Secp256k1_init: Once = ONCE_INIT;
2014-07-06 22:41:22 -07:00
/// The secp256k1 engine, used to execute all signature operations
pub struct Secp256k1 {
rng: Fortuna
}
/// Does one-time initialization of the secp256k1 engine. Can be called
/// multiple times, and is called by the `Secp256k1` constructor. This
/// only needs to be called directly if you are using the library without
/// a `Secp256k1` object, e.g. batch key generation through
/// `key::PublicKey::from_secret_key`.
pub fn init() {
unsafe {
Secp256k1_init.call_once(|| {
ffi::secp256k1_start(ffi::SECP256K1_START_VERIFY |
ffi::SECP256K1_START_SIGN);
});
}
}
impl Secp256k1 {
/// Constructs a new secp256k1 engine.
pub fn new() -> io::Result<Secp256k1> {
init();
let mut osrng = try!(OsRng::new());
let mut seed = [0; 2048];
osrng.fill_bytes(seed.as_mut_slice());
2015-03-25 18:36:57 -07:00
Ok(Secp256k1 { rng: SeedableRng::from_seed(&seed[..]) })
}
2014-07-06 22:41:22 -07:00
/// Generates a random keypair. Convenience function for `key::SecretKey::new`
/// and `key::PublicKey::from_secret_key`; call those functions directly for
/// batch key generation.
#[inline]
pub fn generate_keypair(&mut self, compressed: bool)
-> (key::SecretKey, key::PublicKey) {
let sk = key::SecretKey::new(&mut self.rng);
let pk = key::PublicKey::from_secret_key(&sk, compressed);
(sk, pk)
}
2014-07-06 22:41:22 -07:00
/// Generates a random nonce. Convenience function for `key::Nonce::new`; call
/// that function directly for batch nonce generation
#[inline]
pub fn generate_nonce(&mut self) -> key::Nonce {
key::Nonce::new(&mut self.rng)
}
2014-07-06 22:41:22 -07:00
/// Constructs a signature for `msg` using the secret key `sk` and nonce `nonce`
pub fn sign(&self, msg: &[u8], sk: &key::SecretKey, nonce: &key::Nonce)
-> Result<Signature> {
let mut sig = [0; constants::MAX_SIGNATURE_SIZE];
let mut len = constants::MAX_SIGNATURE_SIZE as c_int;
unsafe {
if ffi::secp256k1_ecdsa_sign(msg.as_ptr(), msg.len() as c_int,
sig.as_mut_slice().as_mut_ptr(), &mut len,
sk.as_ptr(), nonce.as_ptr()) != 1 {
return Err(Error::InvalidNonce);
}
// This assertation is probably too late :)
assert!(len as usize <= constants::MAX_SIGNATURE_SIZE);
};
Ok(Signature(len as usize, sig))
}
/// Constructs a compact signature for `msg` using the secret key `sk`
pub fn sign_compact(&self, msg: &[u8], sk: &key::SecretKey, nonce: &key::Nonce)
-> Result<(Signature, RecoveryId)> {
let mut sig = [0; constants::MAX_SIGNATURE_SIZE];
let mut recid = 0;
unsafe {
if ffi::secp256k1_ecdsa_sign_compact(msg.as_ptr(), msg.len() as c_int,
sig.as_mut_slice().as_mut_ptr(), sk.as_ptr(),
nonce.as_ptr(), &mut recid) != 1 {
return Err(Error::InvalidNonce);
}
};
Ok((Signature(constants::MAX_COMPACT_SIGNATURE_SIZE, sig), RecoveryId(recid)))
}
/// Determines the public key for which `sig` is a valid signature for
/// `msg`. Returns through the out-pointer `pubkey`.
pub fn recover_compact(&self, msg: &[u8], sig: &[u8],
compressed: bool, recid: RecoveryId)
-> Result<key::PublicKey> {
let mut pk = key::PublicKey::new(compressed);
let RecoveryId(recid) = recid;
unsafe {
let mut len = 0;
if ffi::secp256k1_ecdsa_recover_compact(msg.as_ptr(), msg.len() as c_int,
sig.as_ptr(), pk.as_mut_ptr(), &mut len,
if compressed {1} else {0},
recid) != 1 {
return Err(Error::InvalidSignature);
}
assert_eq!(len as usize, pk.len());
};
Ok(pk)
}
/// Checks that `sig` is a valid ECDSA signature for `msg` using the public
/// key `pubkey`. Returns `Ok(true)` on success. Note that this function cannot
/// be used for Bitcoin consensus checking since there are transactions out
/// there with zero-padded signatures that don't fit in the `Signature` type.
/// Use `verify_raw` instead.
#[inline]
pub fn verify(msg: &[u8], sig: &Signature, pk: &key::PublicKey) -> Result<()> {
2015-03-25 18:52:09 -07:00
Secp256k1::verify_raw(msg, &sig[..], pk)
}
/// Checks that `sig` is a valid ECDSA signature for `msg` using the public
/// key `pubkey`. Returns `Ok(true)` on success.
#[inline]
pub fn verify_raw(msg: &[u8], sig: &[u8], pk: &key::PublicKey) -> Result<()> {
init(); // This is a static function, so we have to init
let res = unsafe {
ffi::secp256k1_ecdsa_verify(msg.as_ptr(), msg.len() as c_int,
sig.as_ptr(), sig.len() as c_int,
pk.as_ptr(), pk.len() as c_int)
};
match res {
1 => Ok(()),
0 => Err(Error::IncorrectSignature),
-1 => Err(Error::InvalidPublicKey),
-2 => Err(Error::InvalidSignature),
_ => unreachable!()
}
2014-07-06 22:41:22 -07:00
}
}
2014-08-04 16:58:57 -07:00
#[cfg(test)]
mod tests {
use std::iter::repeat;
2015-03-25 16:57:16 -07:00
use rand::{Rng, thread_rng};
2014-07-06 22:41:22 -07:00
use test::{Bencher, black_box};
use key::{PublicKey, Nonce};
use super::{Secp256k1, Signature};
use super::Error::{InvalidPublicKey, IncorrectSignature, InvalidSignature};
2014-08-04 16:58:57 -07:00
#[test]
fn invalid_pubkey() {
let mut msg: Vec<u8> = repeat(0).take(32).collect();
let sig = Signature::from_slice(&[0; 72]).unwrap();
let pk = PublicKey::new(true);
2014-07-06 22:41:22 -07:00
thread_rng().fill_bytes(msg.as_mut_slice());
2014-07-06 22:41:22 -07:00
assert_eq!(Secp256k1::verify(msg.as_mut_slice(), &sig, &pk), Err(InvalidPublicKey));
2014-08-04 16:58:57 -07:00
}
2014-07-06 22:41:22 -07:00
2014-08-04 16:58:57 -07:00
#[test]
fn valid_pubkey_uncompressed() {
let mut s = Secp256k1::new().unwrap();
let (_, pk) = s.generate_keypair(false);
2014-07-06 22:41:22 -07:00
let mut msg: Vec<u8> = repeat(0).take(32).collect();
let sig = Signature::from_slice(&[0; 72]).unwrap();
2014-07-06 22:41:22 -07:00
thread_rng().fill_bytes(msg.as_mut_slice());
2014-07-06 22:41:22 -07:00
assert_eq!(Secp256k1::verify(msg.as_mut_slice(), &sig, &pk), Err(InvalidSignature));
2014-08-04 16:58:57 -07:00
}
2014-07-06 22:41:22 -07:00
2014-08-04 16:58:57 -07:00
#[test]
fn valid_pubkey_compressed() {
let mut s = Secp256k1::new().unwrap();
2014-07-06 22:41:22 -07:00
let (_, pk) = s.generate_keypair(true);
let mut msg: Vec<u8> = repeat(0).take(32).collect();
let sig = Signature::from_slice(&[0; 72]).unwrap();
2014-07-06 22:41:22 -07:00
thread_rng().fill_bytes(msg.as_mut_slice());
2014-07-06 22:41:22 -07:00
assert_eq!(Secp256k1::verify(msg.as_mut_slice(), &sig, &pk), Err(InvalidSignature));
2014-08-04 16:58:57 -07:00
}
2014-07-06 22:41:22 -07:00
2014-08-04 16:58:57 -07:00
#[test]
fn sign() {
let mut s = Secp256k1::new().unwrap();
2014-07-06 22:41:22 -07:00
let mut msg = [0u8; 32];
thread_rng().fill_bytes(&mut msg);
2014-07-06 22:41:22 -07:00
let (sk, _) = s.generate_keypair(false);
let nonce = s.generate_nonce();
s.sign(&msg, &sk, &nonce).unwrap();
2014-08-04 16:58:57 -07:00
}
2014-07-06 22:41:22 -07:00
2014-08-04 16:58:57 -07:00
#[test]
fn sign_and_verify() {
let mut s = Secp256k1::new().unwrap();
2014-07-06 22:41:22 -07:00
let mut msg: Vec<u8> = repeat(0).take(32).collect();
thread_rng().fill_bytes(msg.as_mut_slice());
let (sk, pk) = s.generate_keypair(false);
let nonce = s.generate_nonce();
let sig = s.sign(&msg, &sk, &nonce).unwrap();
2014-07-06 22:41:22 -07:00
assert_eq!(Secp256k1::verify(&msg, &sig, &pk), Ok(()));
2014-08-04 16:58:57 -07:00
}
2014-07-06 22:41:22 -07:00
2014-08-04 16:58:57 -07:00
#[test]
fn sign_and_verify_fail() {
let mut s = Secp256k1::new().unwrap();
2014-07-06 22:41:22 -07:00
let mut msg: Vec<u8> = repeat(0).take(32).collect();
thread_rng().fill_bytes(msg.as_mut_slice());
2014-07-06 22:41:22 -07:00
let (sk, pk) = s.generate_keypair(false);
let nonce = s.generate_nonce();
let sig = s.sign(&msg, &sk, &nonce).unwrap();
thread_rng().fill_bytes(msg.as_mut_slice());
assert_eq!(Secp256k1::verify(&msg, &sig, &pk), Err(IncorrectSignature));
2014-08-04 16:58:57 -07:00
}
2014-07-06 22:41:22 -07:00
2014-08-04 16:58:57 -07:00
#[test]
fn sign_compact_with_recovery() {
let mut s = Secp256k1::new().unwrap();
2014-07-06 22:41:22 -07:00
let mut msg = [0u8; 32];
thread_rng().fill_bytes(msg.as_mut_slice());
let (sk, pk) = s.generate_keypair(false);
let nonce = s.generate_nonce();
2014-07-06 22:41:22 -07:00
let (sig, recid) = s.sign_compact(&msg, &sk, &nonce).unwrap();
2014-07-06 22:41:22 -07:00
assert_eq!(s.recover_compact(&msg, &sig[..], false, recid), Ok(pk));
2014-08-04 16:58:57 -07:00
}
#[test]
fn deterministic_sign() {
let mut msg = [0u8; 32];
thread_rng().fill_bytes(msg.as_mut_slice());
let mut s = Secp256k1::new().unwrap();
let (sk, pk) = s.generate_keypair(true);
let nonce = Nonce::deterministic(&mut msg, &sk);
let sig = s.sign(&msg, &sk, &nonce).unwrap();
assert_eq!(Secp256k1::verify(&msg, &sig, &pk), Ok(()));
}
#[bench]
pub fn generate_compressed(bh: &mut Bencher) {
let mut s = Secp256k1::new().unwrap();
bh.iter( || {
let (sk, pk) = s.generate_keypair(true);
black_box(sk);
black_box(pk);
});
}
#[bench]
pub fn generate_uncompressed(bh: &mut Bencher) {
let mut s = Secp256k1::new().unwrap();
bh.iter( || {
let (sk, pk) = s.generate_keypair(false);
black_box(sk);
black_box(pk);
});
}
2014-08-04 16:58:57 -07:00
}