openblt/Target/Demo/HCS12_Evbplus_Dragon12p_Cod.../Prog/boot.c

434 lines
18 KiB
C

/************************************************************************************//**
* \file Demo\HCS12_Evbplus_Dragon12p_CodeWarrior\Prog\boot.c
* \brief Demo program bootloader interface source file.
* \ingroup Prog_HCS12_Evbplus_Dragon12p_CodeWarrior
* \internal
*----------------------------------------------------------------------------------------
* C O P Y R I G H T
*----------------------------------------------------------------------------------------
* Copyright (c) 2013 by Feaser http://www.feaser.com All rights reserved
*
*----------------------------------------------------------------------------------------
* L I C E N S E
*----------------------------------------------------------------------------------------
* This file is part of OpenBLT. OpenBLT is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* OpenBLT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You have received a copy of the GNU General Public License along with OpenBLT. It
* should be located in ".\Doc\license.html". If not, contact Feaser to obtain a copy.
*
* \endinternal
****************************************************************************************/
/****************************************************************************************
* Include files
****************************************************************************************/
#include "header.h" /* generic header */
/****************************************************************************************
* Function prototypes
****************************************************************************************/
#if (BOOT_COM_UART_ENABLE > 0)
static void BootComUartInit(void);
static void BootComUartCheckActivationRequest(void);
#endif
#if (BOOT_COM_CAN_ENABLE > 0)
static void BootComCanInit(void);
static void BootComCanCheckActivationRequest(void);
#endif
/************************************************************************************//**
** \brief Initializes the communication interface.
** \return none.
**
****************************************************************************************/
void BootComInit(void)
{
#if (BOOT_COM_UART_ENABLE > 0)
BootComUartInit();
#endif
#if (BOOT_COM_CAN_ENABLE > 0)
BootComCanInit();
#endif
} /*** end of BootComInit ***/
/************************************************************************************//**
** \brief Receives the CONNECT request from the host, which indicates that the
** bootloader should be activated and, if so, activates it.
** \return none.
**
****************************************************************************************/
void BootComCheckActivationRequest(void)
{
#if (BOOT_COM_UART_ENABLE > 0)
BootComUartCheckActivationRequest();
#endif
#if (BOOT_COM_CAN_ENABLE > 0)
BootComCanCheckActivationRequest();
#endif
} /*** end of BootComCheckActivationRequest ***/
/************************************************************************************//**
** \brief Bootloader activation function.
** \return none.
**
****************************************************************************************/
void BootActivate(void)
{
/* perform a software reset by letting the watchdog time out. make sure it is enbled */
if ( (COPCTL & 0x07) == 0)
{
/* enable the watchdog */
COPCTL = 0x71;
}
/* wait for the watchdog to time out which triggers a reset */
while (1==1)
{
;
}
} /*** end of BootActivate ***/
#if (BOOT_COM_UART_ENABLE > 0)
/****************************************************************************************
* U N I V E R S A L A S Y N C H R O N O U S R X T X I N T E R F A C E
****************************************************************************************/
/****************************************************************************************
* Function prototypes
****************************************************************************************/
static unsigned char UartReceiveByte(unsigned char *data);
/************************************************************************************//**
** \brief Initializes the UART communication interface.
** \return none.
**
****************************************************************************************/
static void BootComUartInit(void)
{
unsigned short baudrate_sbr0_12;
/* reset the SCI subsystem's configuration, which automatically configures it for
* 8,n,1 communication mode.
*/
SCI0CR2 = 0;
SCI0CR1 = 0;
SCI0BDH = 0;
SCI0BDL = 0;
/* configure the baudrate from BOOT_COM_UART_BAUDRATE */
baudrate_sbr0_12 = (BOOT_CPU_SYSTEM_SPEED_KHZ * 1000ul) / 16 / BOOT_COM_UART_BAUDRATE;
baudrate_sbr0_12 &= SCI0BD_SBR_MASK;
/* write first MSB then LSB for the baudrate to latch */
SCI0BDH = (unsigned char)(baudrate_sbr0_12 >> 8);
SCI0BDL = (unsigned char)baudrate_sbr0_12;
/* enable the receiver */
SCI0CR2 |= (SCI0CR2_RE_MASK);
} /*** end of BootComUartInit ***/
/************************************************************************************//**
** \brief Receives the CONNECT request from the host, which indicates that the
** bootloader should be activated and, if so, activates it.
** \return none.
**
****************************************************************************************/
static void BootComUartCheckActivationRequest(void)
{
static unsigned char xcpCtoReqPacket[BOOT_COM_UART_RX_MAX_DATA+1];
static unsigned char xcpCtoRxLength;
static unsigned char xcpCtoRxInProgress = 0;
/* start of cto packet received? */
if (xcpCtoRxInProgress == 0)
{
/* store the message length when received */
if (UartReceiveByte(&xcpCtoReqPacket[0]) == 1)
{
/* indicate that a cto packet is being received */
xcpCtoRxInProgress = 1;
/* reset packet data count */
xcpCtoRxLength = 0;
}
}
else
{
/* store the next packet byte */
if (UartReceiveByte(&xcpCtoReqPacket[xcpCtoRxLength+1]) == 1)
{
/* increment the packet data count */
xcpCtoRxLength++;
/* check to see if the entire packet was received */
if (xcpCtoRxLength == xcpCtoReqPacket[0])
{
/* done with cto packet reception */
xcpCtoRxInProgress = 0;
/* check if this was an XCP CONNECT command */
if ((xcpCtoReqPacket[1] == 0xff) && (xcpCtoReqPacket[2] == 0x00))
{
/* connection request received so start the bootloader */
BootActivate();
}
}
}
}
} /*** end of BootComUartCheckActivationRequest ***/
/************************************************************************************//**
** \brief Receives a communication interface byte if one is present.
** \param data Pointer to byte where the data is to be stored.
** \return 1 if a byte was received, 0 otherwise.
**
****************************************************************************************/
static unsigned char UartReceiveByte(unsigned char *data)
{
/* check if a new byte was received by means of the RDRF-bit */
if((SCI0SR1 & SCI0SR1_RDRF_MASK) != 0)
{
/* store the received byte */
data[0] = SCI0DRL;
/* inform caller of the newly received byte */
return 1;
}
/* inform caller that no new data was received */
return 0;
} /*** end of UartReceiveByte ***/
#endif /* BOOT_COM_UART_ENABLE > 0 */
#if (BOOT_COM_CAN_ENABLE > 0)
/****************************************************************************************
* C O N T R O L L E R A R E A N E T W O R K I N T E R F A C E
****************************************************************************************/
/****************************************************************************************
* Type definitions
****************************************************************************************/
/** \brief Structure type with the layout of the CAN bus timing registers. */
typedef struct
{
unsigned char tseg1; /**< CAN time segment 1 */
unsigned char tseg2; /**< CAN time segment 2 */
} tCanBusTiming;
/****************************************************************************************
* Macro definitions
****************************************************************************************/
#define CONVERT_STD_ID_TO_REG0(id) ((unsigned char)(((unsigned short)id & 0x07f8) >> 3))
#define CONVERT_STD_ID_TO_REG1(id) ((unsigned char)(id & 0x07) << 5)
#define CONVERT_STD_ID_TO_REG2(id) (0)
#define CONVERT_STD_ID_TO_REG3(id) (0)
#define CONVERT_EXT_ID_TO_REG0(id) ((unsigned char)(id >> 21))
#define CONVERT_EXT_ID_TO_REG1(id) ((((unsigned char)(id >> 15)) & 0x07) | \
(((unsigned char)(id >> 13)) & 0xe0) | CAN0RXIDR1_IDE_MASK)
#define CONVERT_EXT_ID_TO_REG2(id) ((unsigned char)(((unsigned short)id & 0x7f80) >> 7))
#define CONVERT_EXT_ID_TO_REG3(id) ((unsigned char)(id & 0x7f) << 1)
/****************************************************************************************
* Local constant declarations
****************************************************************************************/
/**
* \brief Array with possible time quanta configurations.
* \details According to the CAN protocol 1 bit-time can be made up of between 8..25
* time quanta (TQ). The total TQ in a bit is SYNC + TSEG1 + TSEG2 with SYNC
* always being 1. The sample point is (SYNC + TSEG1) / (SYNC + TSEG1 + SEG2)
* * 100%. This array contains possible and valid time quanta configurations
* with a sample point between 68..78%.
*/
static const tCanBusTiming canTiming[] =
{ /* TQ | TSEG1 | TSEG2 | SP */
/* ------------------------- */
{ 5, 2 }, /* 8 | 5 | 2 | 75% */
{ 6, 2 }, /* 9 | 6 | 2 | 78% */
{ 6, 3 }, /* 10 | 6 | 3 | 70% */
{ 7, 3 }, /* 11 | 7 | 3 | 73% */
{ 8, 3 }, /* 12 | 8 | 3 | 75% */
{ 9, 3 }, /* 13 | 9 | 3 | 77% */
{ 9, 4 }, /* 14 | 9 | 4 | 71% */
{ 10, 4 }, /* 15 | 10 | 4 | 73% */
{ 11, 4 }, /* 16 | 11 | 4 | 75% */
{ 12, 4 }, /* 17 | 12 | 4 | 76% */
{ 12, 5 }, /* 18 | 12 | 5 | 72% */
{ 13, 5 }, /* 19 | 13 | 5 | 74% */
{ 14, 5 }, /* 20 | 14 | 5 | 75% */
{ 15, 5 }, /* 21 | 15 | 5 | 76% */
{ 15, 6 }, /* 22 | 15 | 6 | 73% */
{ 16, 6 }, /* 23 | 16 | 6 | 74% */
{ 16, 7 }, /* 24 | 16 | 7 | 71% */
{ 16, 8 } /* 25 | 16 | 8 | 68% */
};
/************************************************************************************//**
** \brief Search algorithm to match the desired baudrate to a possible bus timing
** configuration.
** \param baud The desired baudrate in kbps. Valid values are 10..1000.
** \param btr0 Pointer to where the value for register CANxBTR0 will be stored.
** \param btr1 Pointer to where the value for register CANxBTR1 will be stored.
** \return 1 if the CAN bustiming register values were found, 0 otherwise.
**
****************************************************************************************/
static unsigned char CanGetSpeedConfig(unsigned short baud, unsigned char *btr0, unsigned char *btr1)
{
unsigned char prescaler;
unsigned char cnt;
/* loop through all possible time quanta configurations to find a match */
for (cnt=0; cnt < sizeof(canTiming)/sizeof(canTiming[0]); cnt++)
{
if ((BOOT_CPU_XTAL_SPEED_KHZ % (baud*(canTiming[cnt].tseg1+canTiming[cnt].tseg2+1))) == 0)
{
/* compute the prescaler that goes with this TQ configuration */
prescaler = (unsigned char)(BOOT_CPU_XTAL_SPEED_KHZ/(baud*(canTiming[cnt].tseg1+canTiming[cnt].tseg2+1)));
/* make sure the prescaler is valid */
if ( (prescaler > 0) && (prescaler <= 64) )
{
/* store the MSCAN bustiming register values */
*btr0 = prescaler - 1;
*btr1 = ((canTiming[cnt].tseg2 - 1) << 4) | (canTiming[cnt].tseg1 - 1);
/* found a good bus timing configuration */
return 1;
}
}
}
/* could not find a good bus timing configuration */
return 0;
} /*** end of CanGetSpeedConfig ***/
/************************************************************************************//**
** \brief Initializes the CAN communication interface.
** \return none.
**
****************************************************************************************/
static void BootComCanInit(void)
{
unsigned char btrRegValues[2];
unsigned long accept_code;
unsigned long accept_mask;
/* enter initialization mode. note that this automatically disables CAN interrupts */
CAN0CTL0 = CAN0CTL0_INITRQ_MASK;
/* wait for initialization mode entry handshake from the hardware */
while ((CAN0CTL1 & CAN0CTL1_INITAK_MASK) == 0)
{
;
}
/* enable the CAN controller, disable wake up and listen modes and set the
* crystal oscillator as the clock source.
*/
CAN0CTL1 = CAN0CTL1_CANE_MASK;
/* configure baudrate */
if (CanGetSpeedConfig(BOOT_COM_CAN_BAUDRATE/1000, &btrRegValues[0], &btrRegValues[1]) == 1)
{
/* configure the baudrate */
CAN0BTR0 = btrRegValues[0];
CAN0BTR1 = btrRegValues[1];
}
/* enable 2 32-bit acceptance filters. both will be configured for the same code and
* mask. the only difference is that filter 0 will be setup to receive extended 29-bit
* identifiers and filter 0 to receive standard 11-bit identifiers.
*/
CAN0IDAC_IDAM0 = 0;
CAN0IDAC_IDAM1 = 0;
/* set the acceptance filter code and mask to receive all messages */
accept_code = 0x00000000;
accept_mask = 0x1fffffff;
/* configure acceptance filter 0 for 29-bit extended identifiers */
CAN0IDAR0 = CONVERT_EXT_ID_TO_REG0(accept_code);
CAN0IDAR1 = CONVERT_EXT_ID_TO_REG1(accept_code);
CAN0IDAR2 = CONVERT_EXT_ID_TO_REG2(accept_code);
CAN0IDAR3 = CONVERT_EXT_ID_TO_REG3(accept_code);
CAN0IDMR0 = CONVERT_EXT_ID_TO_REG0(accept_mask);
CAN0IDMR1 = (CONVERT_EXT_ID_TO_REG1(accept_mask) | 0x10) & (unsigned char)(~0x08);
CAN0IDMR2 = CONVERT_EXT_ID_TO_REG2(accept_mask);
CAN0IDMR3 = CONVERT_EXT_ID_TO_REG3(accept_mask);
/* configure acceptance filter 1 for 11-bit standard identifiers */
CAN0IDAR4 = CONVERT_STD_ID_TO_REG0(accept_code);
CAN0IDAR5 = CONVERT_STD_ID_TO_REG1(accept_code);
CAN0IDAR6 = CONVERT_STD_ID_TO_REG2(accept_code);
CAN0IDAR7 = CONVERT_STD_ID_TO_REG3(accept_code);
CAN0IDMR4 = CONVERT_STD_ID_TO_REG0(accept_mask);
CAN0IDMR5 = CONVERT_STD_ID_TO_REG1(accept_mask) | (0x04 | 0x02 | 0x01);
CAN0IDMR6 = CONVERT_STD_ID_TO_REG2(accept_mask);
CAN0IDMR7 = CONVERT_STD_ID_TO_REG3(accept_mask);
/* leave initialization mode and synchronize to the CAN bus */
CAN0CTL0_INITRQ = 0;
/* wait for CAN bus synchronization handshake from the hardware */
while ((CAN0CTL1 & CAN0CTL1_INITAK_MASK) != 0)
{
;
}
} /*** end of BootComCanInit ***/
/************************************************************************************//**
** \brief Receives the CONNECT request from the host, which indicates that the
** bootloader should be activated and, if so, activates it.
** \return none.
**
****************************************************************************************/
static void BootComCanCheckActivationRequest(void)
{
unsigned long rxMsgId;
/* check if a new message was received */
if ((CAN0RFLG & CAN0RFLG_RXF_MASK) == CAN0RFLG_RXF_MASK)
{
/* check IDE-bit to determine if it is a 11-bit or 29-bit identifier */
if ((CAN0RXIDR1 & CAN0RXIDR1_IDE_MASK) == 0)
{
/* 11-bit id */
rxMsgId = (*(unsigned short*)(&CAN0RXIDR0)) >> 5;
}
else
{
/* 29-bit id */
rxMsgId = (unsigned long)(((*(unsigned long*)(&CAN0RXIDR0)) & 0x0007ffff) >> 1) |
(unsigned long)(((*(unsigned long*)(&CAN0RXIDR0)) & 0xffe00000) >> 3);
}
/* is this the packet identifier? */
if (rxMsgId == BOOT_COM_CAN_RX_MSG_ID)
{
/* check if this was an XCP CONNECT command */
if ( (CAN0RXDSR0 == 0xff) && (CAN0RXDSR1 == 0x00) )
{
/* release the receive object by clearing the rx flag */
CAN0RFLG &= CAN0RFLG_RXF_MASK;
/* connection request received so start the bootloader */
BootActivate();
}
}
/* release the receive object by clearing the rx flag */
CAN0RFLG &= CAN0RFLG_RXF_MASK;
}
} /*** end of BootComCanCheckActivationRequest ***/
#endif /* BOOT_COM_CAN_ENABLE > 0 */
/*********************************** end of boot.c *************************************/