731 lines
24 KiB
C++
731 lines
24 KiB
C++
/**
|
|
* @file trigger_decoder.cpp
|
|
*
|
|
* @date Dec 24, 2013
|
|
* @author Andrey Belomutskiy, (c) 2012-2020
|
|
*
|
|
*
|
|
*
|
|
* enable trigger_details
|
|
* DBG_TRIGGER_COUNTERS = 5
|
|
* set debug_mode 5
|
|
*
|
|
* This file is part of rusEfi - see http://rusefi.com
|
|
*
|
|
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
|
|
* the GNU General Public License as published by the Free Software Foundation; either
|
|
* version 3 of the License, or (at your option) any later version.
|
|
*
|
|
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
|
|
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with this program.
|
|
* If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <rusefi/isnan.h>
|
|
#include <rusefi/math.h>
|
|
|
|
#include "global_shared.h"
|
|
#include "loggingcentral.h"
|
|
#include "error_handling.h"
|
|
#include "perf_trace.h"
|
|
|
|
#include "engine_configuration.h"
|
|
|
|
#include "trigger_central.h"
|
|
#include "trigger_decoder.h"
|
|
/**
|
|
* decoder depends on current RPM for error condition logic
|
|
*/
|
|
#include "sensor.h"
|
|
#include "engine_state.h"
|
|
#include "engine_math.h"
|
|
/**
|
|
* decoder uses TriggerStimulatorHelper in findTriggerZeroEventIndex
|
|
*/
|
|
#include "trigger_simulator.h"
|
|
|
|
#ifndef NOISE_RATIO_THRESHOLD
|
|
#define NOISE_RATIO_THRESHOLD 3000
|
|
#endif
|
|
|
|
TriggerDecoderBase::TriggerDecoderBase(const char* name)
|
|
: name(name)
|
|
{
|
|
TriggerDecoderBase::resetState();
|
|
}
|
|
|
|
bool TriggerDecoderBase::getShaftSynchronized() {
|
|
return shaft_is_synchronized;
|
|
}
|
|
|
|
void TriggerDecoderBase::setShaftSynchronized(bool value) {
|
|
if (value) {
|
|
if (!shaft_is_synchronized) {
|
|
// just got synchronized
|
|
mostRecentSyncTime = getTimeNowNt();
|
|
}
|
|
} else {
|
|
// sync loss
|
|
mostRecentSyncTime = 0;
|
|
}
|
|
shaft_is_synchronized = value;
|
|
}
|
|
|
|
void TriggerDecoderBase::resetState() {
|
|
setShaftSynchronized(false);
|
|
toothed_previous_time = 0;
|
|
|
|
memset(toothDurations, 0, sizeof(toothDurations));
|
|
|
|
crankSynchronizationCounter = 0;
|
|
totalTriggerErrorCounter = 0;
|
|
orderingErrorCounter = 0;
|
|
m_timeSinceDecodeError.init();
|
|
|
|
prevSignal = SHAFT_PRIMARY_FALLING;
|
|
startOfCycleNt = 0;
|
|
|
|
resetCurrentCycleState();
|
|
|
|
totalEventCountBase = 0;
|
|
isFirstEvent = true;
|
|
}
|
|
|
|
void TriggerDecoderBase::setTriggerErrorState(int errorIncrement) {
|
|
m_timeSinceDecodeError.reset();
|
|
totalTriggerErrorCounter += errorIncrement;
|
|
}
|
|
|
|
void TriggerDecoderBase::resetCurrentCycleState() {
|
|
memset(currentCycle.eventCount, 0, sizeof(currentCycle.eventCount));
|
|
currentCycle.current_index = 0;
|
|
}
|
|
|
|
#if EFI_SHAFT_POSITION_INPUT
|
|
|
|
PrimaryTriggerDecoder::PrimaryTriggerDecoder(const char* name)
|
|
: TriggerDecoderBase(name)
|
|
{
|
|
}
|
|
|
|
#if ! EFI_PROD_CODE
|
|
bool printTriggerDebug = false;
|
|
bool printTriggerTrace = false;
|
|
#endif /* ! EFI_PROD_CODE */
|
|
|
|
void TriggerWaveform::initializeSyncPoint(TriggerDecoderBase& state,
|
|
const TriggerConfiguration& triggerConfiguration) {
|
|
triggerShapeSynchPointIndex = state.findTriggerZeroEventIndex(*this, triggerConfiguration);
|
|
}
|
|
|
|
void TriggerFormDetails::prepareEventAngles(TriggerWaveform *shape) {
|
|
int triggerShapeSynchPointIndex = shape->triggerShapeSynchPointIndex;
|
|
if (triggerShapeSynchPointIndex == EFI_ERROR_CODE) {
|
|
return;
|
|
}
|
|
angle_t firstAngle = shape->getAngle(triggerShapeSynchPointIndex);
|
|
assertAngleRange(firstAngle, "firstAngle", ObdCode::CUSTOM_TRIGGER_SYNC_ANGLE);
|
|
|
|
int riseOnlyIndex = 0;
|
|
|
|
size_t length = shape->getLength();
|
|
|
|
memset(eventAngles, 0, sizeof(eventAngles));
|
|
|
|
// this may be <length for some triggers like symmetrical crank Miata NB
|
|
size_t triggerShapeLength = shape->getSize();
|
|
|
|
assertAngleRange(shape->triggerShapeSynchPointIndex, "triggerShapeSynchPointIndex", ObdCode::CUSTOM_TRIGGER_SYNC_ANGLE2);
|
|
efiAssertVoid(ObdCode::CUSTOM_TRIGGER_CYCLE, getTriggerCentral()->engineCycleEventCount != 0, "zero engineCycleEventCount");
|
|
|
|
for (size_t eventIndex = 0; eventIndex < length; eventIndex++) {
|
|
if (eventIndex == 0) {
|
|
// explicit check for zero to avoid issues where logical zero is not exactly zero due to float nature
|
|
eventAngles[0] = 0;
|
|
// this value would be used in case of front-only
|
|
eventAngles[1] = 0;
|
|
} else {
|
|
// Rotate the trigger around so that the sync point is at position 0
|
|
auto wrappedIndex = (shape->triggerShapeSynchPointIndex + eventIndex) % length;
|
|
|
|
// Compute this tooth's position within the trigger definition
|
|
// (wrap, as the trigger def may be smaller than total trigger length)
|
|
auto triggerDefinitionIndex = wrappedIndex % triggerShapeLength;
|
|
|
|
// Compute the relative angle of this tooth to the sync point's tooth
|
|
float angle = shape->getAngle(wrappedIndex) - firstAngle;
|
|
|
|
efiAssertVoid(ObdCode::CUSTOM_TRIGGER_CYCLE, !cisnan(angle), "trgSyncNaN");
|
|
// Wrap the angle back in to [0, 720)
|
|
fixAngle(angle, "trgSync", ObdCode::CUSTOM_TRIGGER_SYNC_ANGLE_RANGE);
|
|
|
|
if (shape->useOnlyRisingEdges) {
|
|
efiAssertVoid(ObdCode::OBD_PCM_Processor_Fault, triggerDefinitionIndex < triggerShapeLength, "trigger shape fail");
|
|
assertIsInBounds(triggerDefinitionIndex, shape->isRiseEvent, "isRise");
|
|
|
|
// In case this is a rising event, replace the following fall event with the rising as well
|
|
if (shape->isRiseEvent[triggerDefinitionIndex]) {
|
|
riseOnlyIndex += 2;
|
|
eventAngles[riseOnlyIndex] = angle;
|
|
eventAngles[riseOnlyIndex + 1] = angle;
|
|
}
|
|
} else {
|
|
eventAngles[eventIndex] = angle;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int64_t TriggerDecoderBase::getTotalEventCounter() const {
|
|
return totalEventCountBase + currentCycle.current_index;
|
|
}
|
|
|
|
int TriggerDecoderBase::getCrankSynchronizationCounter() const {
|
|
return crankSynchronizationCounter;
|
|
}
|
|
|
|
void PrimaryTriggerDecoder::resetState() {
|
|
TriggerDecoderBase::resetState();
|
|
|
|
resetHasFullSync();
|
|
}
|
|
|
|
|
|
bool TriggerDecoderBase::isValidIndex(const TriggerWaveform& triggerShape) const {
|
|
return currentCycle.current_index < triggerShape.getSize();
|
|
}
|
|
|
|
static TriggerWheel eventIndex[4] = { TriggerWheel::T_PRIMARY, TriggerWheel::T_PRIMARY, TriggerWheel::T_SECONDARY, TriggerWheel:: T_SECONDARY };
|
|
static TriggerValue eventType[4] = { TriggerValue::FALL, TriggerValue::RISE, TriggerValue::FALL, TriggerValue::RISE };
|
|
|
|
#if EFI_UNIT_TEST
|
|
#define PRINT_INC_INDEX if (printTriggerTrace) {\
|
|
printf("nextTriggerEvent index=%d\r\n", currentCycle.current_index); \
|
|
}
|
|
#else
|
|
#define PRINT_INC_INDEX {}
|
|
#endif /* EFI_UNIT_TEST */
|
|
|
|
#define nextTriggerEvent() \
|
|
{ \
|
|
if (useOnlyRisingEdgeForTrigger) {currentCycle.current_index++;} \
|
|
currentCycle.current_index++; \
|
|
PRINT_INC_INDEX; \
|
|
}
|
|
|
|
int TriggerDecoderBase::getCurrentIndex() const {
|
|
return currentCycle.current_index;
|
|
}
|
|
|
|
angle_t PrimaryTriggerDecoder::syncEnginePhase(int divider, int remainder, angle_t engineCycle) {
|
|
efiAssert(ObdCode::OBD_PCM_Processor_Fault, remainder < divider, "syncEnginePhase", false);
|
|
angle_t totalShift = 0;
|
|
while (getCrankSynchronizationCounter() % divider != remainder) {
|
|
/**
|
|
* we are here if we've detected the cam sensor within the wrong crank phase
|
|
* let's increase the trigger event counter, that would adjust the state of
|
|
* virtual crank-based trigger
|
|
*/
|
|
incrementShaftSynchronizationCounter();
|
|
totalShift += engineCycle / divider;
|
|
}
|
|
|
|
// Allow injection/ignition to happen, we've now fully sync'd the crank based on new cam information
|
|
m_hasSynchronizedPhase = true;
|
|
|
|
if (totalShift > 0) {
|
|
camResyncCounter++;
|
|
}
|
|
|
|
return totalShift;
|
|
}
|
|
|
|
void TriggerDecoderBase::incrementShaftSynchronizationCounter() {
|
|
crankSynchronizationCounter++;
|
|
}
|
|
|
|
void PrimaryTriggerDecoder::onTriggerError() {
|
|
// On trigger error, we've lost full sync
|
|
resetHasFullSync();
|
|
}
|
|
|
|
void PrimaryTriggerDecoder::onNotEnoughTeeth(int /*actual*/, int /*expected*/) {
|
|
warning(ObdCode::CUSTOM_PRIMARY_NOT_ENOUGH_TEETH, "primary trigger error: not enough teeth between sync points: expected %d/%d got %d/%d",
|
|
getTriggerCentral()->triggerShape.getExpectedEventCount(TriggerWheel::T_PRIMARY),
|
|
getTriggerCentral()->triggerShape.getExpectedEventCount(TriggerWheel::T_SECONDARY),
|
|
currentCycle.eventCount[0],
|
|
currentCycle.eventCount[1]);
|
|
}
|
|
|
|
void PrimaryTriggerDecoder::onTooManyTeeth(int /*actual*/, int /*expected*/) {
|
|
warning(ObdCode::CUSTOM_PRIMARY_TOO_MANY_TEETH, "primary trigger error: too many teeth between sync points: expected %d/%d got %d/%d",
|
|
getTriggerCentral()->triggerShape.getExpectedEventCount(TriggerWheel::T_PRIMARY),
|
|
getTriggerCentral()->triggerShape.getExpectedEventCount(TriggerWheel::T_SECONDARY),
|
|
currentCycle.eventCount[0],
|
|
currentCycle.eventCount[1]);
|
|
}
|
|
|
|
const char *getTrigger_event_e(trigger_event_e value){
|
|
switch(value) {
|
|
case SHAFT_PRIMARY_FALLING:
|
|
return "SHAFT_PRIMARY_FALLING";
|
|
case SHAFT_PRIMARY_RISING:
|
|
return "SHAFT_PRIMARY_RISING";
|
|
case SHAFT_SECONDARY_FALLING:
|
|
return "SHAFT_SECONDARY_FALLING";
|
|
case SHAFT_SECONDARY_RISING:
|
|
return "SHAFT_SECONDARY_RISING";
|
|
}
|
|
return NULL;
|
|
}
|
|
const char *getTrigger_value_e(TriggerValue value){
|
|
switch(value) {
|
|
case TriggerValue::FALL:
|
|
return "TriggerValue::FALL";
|
|
case TriggerValue::RISE:
|
|
return "TriggerValue::RISE";
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void VvtTriggerDecoder::onNotEnoughTeeth(int actual, int expected) {
|
|
warning(ObdCode::CUSTOM_CAM_NOT_ENOUGH_TEETH, "cam %s trigger error: not enough teeth between sync points: actual %d expected %d", name, actual, expected);
|
|
}
|
|
|
|
void VvtTriggerDecoder::onTooManyTeeth(int actual, int expected) {
|
|
warning(ObdCode::CUSTOM_CAM_TOO_MANY_TEETH, "cam %s trigger error: too many teeth between sync points: %d > %d", name, actual, expected);
|
|
}
|
|
|
|
bool TriggerDecoderBase::validateEventCounters(const TriggerWaveform& triggerShape) const {
|
|
// We can check if things are fine by comparing the number of events in a cycle with the expected number of event.
|
|
bool isDecodingError = false;
|
|
for (int i = 0;i < PWM_PHASE_MAX_WAVE_PER_PWM;i++) {
|
|
isDecodingError |= (currentCycle.eventCount[i] != triggerShape.getExpectedEventCount((TriggerWheel)i));
|
|
}
|
|
|
|
#if EFI_UNIT_TEST
|
|
printf("validateEventCounters: isDecodingError=%d\n", isDecodingError);
|
|
if (isDecodingError) {
|
|
for (int i = 0;i < PWM_PHASE_MAX_WAVE_PER_PWM;i++) {
|
|
printf("count: cur=%d exp=%d\n", currentCycle.eventCount[i], triggerShape.getExpectedEventCount((TriggerWheel)i));
|
|
}
|
|
}
|
|
#endif /* EFI_UNIT_TEST */
|
|
|
|
return isDecodingError;
|
|
}
|
|
|
|
void TriggerDecoderBase::onShaftSynchronization(
|
|
bool wasSynchronized,
|
|
const efitick_t nowNt,
|
|
const TriggerWaveform& triggerShape) {
|
|
startOfCycleNt = nowNt;
|
|
resetCurrentCycleState();
|
|
|
|
if (wasSynchronized) {
|
|
incrementShaftSynchronizationCounter();
|
|
} else {
|
|
// We have just synchronized, this is the zeroth revolution
|
|
crankSynchronizationCounter = 0;
|
|
}
|
|
|
|
totalEventCountBase += triggerShape.getSize();
|
|
|
|
#if EFI_UNIT_TEST
|
|
if (printTriggerDebug) {
|
|
printf("onShaftSynchronization index=%d %d\r\n",
|
|
currentCycle.current_index,
|
|
crankSynchronizationCounter);
|
|
}
|
|
#endif /* EFI_UNIT_TEST */
|
|
}
|
|
|
|
static bool shouldConsiderEdge(const TriggerWaveform& triggerShape, TriggerWheel triggerWheel, TriggerValue edge) {
|
|
if (triggerWheel != TriggerWheel::T_PRIMARY && triggerShape.useOnlyPrimaryForSync) {
|
|
// Non-primary events ignored
|
|
return false;
|
|
}
|
|
|
|
switch (triggerShape.syncEdge) {
|
|
case SyncEdge::Both: return true;
|
|
case SyncEdge::RiseOnly:
|
|
case SyncEdge::Rise: return edge == TriggerValue::RISE;
|
|
case SyncEdge::Fall: return edge == TriggerValue::FALL;
|
|
}
|
|
|
|
// how did we get here?
|
|
// assert(false)?
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* @brief Trigger decoding happens here
|
|
* VR falls are filtered out and some VR noise detection happens prior to invoking this method, for
|
|
* Hall this method is invoked every time we have a fall or rise on one of the trigger sensors.
|
|
* This method changes the state of trigger_state_s data structure according to the trigger event
|
|
* @param signal type of event which just happened
|
|
* @param nowNt current time
|
|
*/
|
|
expected<TriggerDecodeResult> TriggerDecoderBase::decodeTriggerEvent(
|
|
const char *msg,
|
|
const TriggerWaveform& triggerShape,
|
|
TriggerStateListener* triggerStateListener,
|
|
const TriggerConfiguration& triggerConfiguration,
|
|
const trigger_event_e signal,
|
|
const efitick_t nowNt) {
|
|
ScopePerf perf(PE::DecodeTriggerEvent);
|
|
|
|
if (previousEventTimer.getElapsedSecondsAndReset(nowNt) > 1) {
|
|
/**
|
|
* We are here if there is a time gap between now and previous shaft event - that means the engine is not running.
|
|
* That means we have lost synchronization since the engine is not running :)
|
|
*/
|
|
setShaftSynchronized(false);
|
|
if (triggerStateListener) {
|
|
triggerStateListener->OnTriggerSynchronizationLost();
|
|
}
|
|
}
|
|
|
|
bool useOnlyRisingEdgeForTrigger = triggerShape.useOnlyRisingEdges;
|
|
|
|
efiAssert(ObdCode::CUSTOM_TRIGGER_UNEXPECTED, signal <= SHAFT_SECONDARY_RISING, "unexpected signal", unexpected);
|
|
|
|
TriggerWheel triggerWheel = eventIndex[signal];
|
|
TriggerValue type = eventType[signal];
|
|
|
|
// Check that we didn't get the same edge twice in a row - that should be impossible
|
|
if (!useOnlyRisingEdgeForTrigger && prevSignal == signal) {
|
|
orderingErrorCounter++;
|
|
}
|
|
|
|
prevSignal = signal;
|
|
|
|
currentCycle.eventCount[(int)triggerWheel]++;
|
|
|
|
if (toothed_previous_time > nowNt) {
|
|
firmwareError(ObdCode::CUSTOM_OBD_93, "[%s] toothed_previous_time after nowNt prev=%d now=%d", msg, toothed_previous_time, nowNt);
|
|
}
|
|
|
|
efitick_t currentDurationLong = isFirstEvent ? 0 : nowNt - toothed_previous_time;
|
|
|
|
/**
|
|
* For performance reasons, we want to work with 32 bit values. If there has been more then
|
|
* 10 seconds since previous trigger event we do not really care.
|
|
*/
|
|
toothDurations[0] =
|
|
currentDurationLong > 10 * NT_PER_SECOND ? 10 * NT_PER_SECOND : currentDurationLong;
|
|
|
|
if (!shouldConsiderEdge(triggerShape, triggerWheel, type)) {
|
|
#if EFI_UNIT_TEST
|
|
if (printTriggerTrace) {
|
|
printf("%s isLessImportant %s now=%d index=%d\r\n",
|
|
getTrigger_type_e(triggerConfiguration.TriggerType.type),
|
|
getTrigger_event_e(signal),
|
|
(int)nowNt,
|
|
currentCycle.current_index);
|
|
}
|
|
#endif /* EFI_UNIT_TEST */
|
|
|
|
// For less important events we simply increment the index.
|
|
nextTriggerEvent();
|
|
} else {
|
|
#if !EFI_PROD_CODE
|
|
if (printTriggerTrace) {
|
|
printf("%s event %s %lld\r\n",
|
|
getTrigger_type_e(triggerConfiguration.TriggerType.type),
|
|
getTrigger_event_e(signal),
|
|
nowNt);
|
|
printf("decodeTriggerEvent ratio %.2f: current=%d previous=%d\r\n", 1.0 * toothDurations[0] / toothDurations[1],
|
|
toothDurations[0], toothDurations[1]);
|
|
}
|
|
#endif
|
|
|
|
isFirstEvent = false;
|
|
bool isSynchronizationPoint;
|
|
bool wasSynchronized = getShaftSynchronized();
|
|
|
|
if (triggerShape.isSynchronizationNeeded) {
|
|
triggerSyncGapRatio = (float)toothDurations[0] / toothDurations[1];
|
|
|
|
if (wasSynchronized && triggerSyncGapRatio > NOISE_RATIO_THRESHOLD) {
|
|
setTriggerErrorState(100);
|
|
}
|
|
|
|
isSynchronizationPoint = isSyncPoint(triggerShape, triggerConfiguration.TriggerType.type);
|
|
if (isSynchronizationPoint) {
|
|
enginePins.debugTriggerSync.toggle();
|
|
}
|
|
|
|
/**
|
|
* todo: technically we can afford detailed logging even with 60/2 as long as low RPM
|
|
* todo: figure out exact threshold as a function of RPM and tooth count?
|
|
* Open question what is 'triggerShape.getSize()' for 60/2 is it 58 or 58*2 or 58*4?
|
|
*/
|
|
bool silentTriggerError = triggerShape.getSize() > 40 && engineConfiguration->silentTriggerError;
|
|
|
|
#if EFI_PROD_CODE || EFI_SIMULATOR
|
|
bool verbose = getTriggerCentral()->isEngineSnifferEnabled && triggerConfiguration.VerboseTriggerSynchDetails;
|
|
|
|
if (verbose || (someSortOfTriggerError() && !silentTriggerError)) {
|
|
const char * prefix = verbose ? "[vrb]" : "[err]";
|
|
|
|
for (int i = 0;i<triggerShape.gapTrackingLength;i++) {
|
|
float ratioFrom = triggerShape.syncronizationRatioFrom[i];
|
|
if (cisnan(ratioFrom)) {
|
|
// we do not track gap at this depth
|
|
continue;
|
|
}
|
|
|
|
float gap = 1.0 * toothDurations[i] / toothDurations[i + 1];
|
|
if (cisnan(gap)) {
|
|
efiPrintf("%s index=%d NaN gap, you have noise issues?",
|
|
i,
|
|
prefix
|
|
);
|
|
} else {
|
|
float ratioTo = triggerShape.syncronizationRatioTo[i];
|
|
|
|
bool gapOk = isInRange(ratioFrom, gap, ratioTo);
|
|
|
|
efiPrintf("%s %srpm=%d time=%d eventIndex=%d gapIndex=%d: %s gap=%.3f expected from %.3f to %.3f error=%s",
|
|
prefix,
|
|
triggerConfiguration.PrintPrefix,
|
|
(int)Sensor::getOrZero(SensorType::Rpm),
|
|
/* cast is needed to make sure we do not put 64 bit value to stack*/ (int)getTimeNowS(),
|
|
currentCycle.current_index,
|
|
i,
|
|
gapOk ? "Y" : "n",
|
|
gap,
|
|
ratioFrom,
|
|
ratioTo,
|
|
boolToString(someSortOfTriggerError()));
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
if (printTriggerTrace) {
|
|
float gap = 1.0 * toothDurations[0] / toothDurations[1];
|
|
for (int i = 0;i<triggerShape.gapTrackingLength;i++) {
|
|
float gap = 1.0 * toothDurations[i] / toothDurations[i + 1];
|
|
printf("%sindex=%d: gap=%.2f expected from %.2f to %.2f error=%s\r\n",
|
|
triggerConfiguration.PrintPrefix,
|
|
i,
|
|
gap,
|
|
triggerShape.syncronizationRatioFrom[i],
|
|
triggerShape.syncronizationRatioTo[i],
|
|
boolToString(someSortOfTriggerError()));
|
|
}
|
|
}
|
|
#endif /* EFI_PROD_CODE */
|
|
} else {
|
|
/**
|
|
* We are here in case of a wheel without synchronization - we just need to count events,
|
|
* synchronization point simply happens once we have the right number of events
|
|
*
|
|
* in case of noise the counter could be above the expected number of events, that's why 'more or equals' and not just 'equals'
|
|
*/
|
|
|
|
unsigned int endOfCycleIndex = triggerShape.getSize() - (useOnlyRisingEdgeForTrigger ? 2 : 1);
|
|
|
|
isSynchronizationPoint = !getShaftSynchronized() || (currentCycle.current_index >= endOfCycleIndex);
|
|
|
|
#if EFI_UNIT_TEST
|
|
if (printTriggerTrace) {
|
|
printf("decodeTriggerEvent sync=%d isSynchronizationPoint=%d index=%d size=%d\r\n",
|
|
getShaftSynchronized(),
|
|
isSynchronizationPoint,
|
|
currentCycle.current_index,
|
|
triggerShape.getSize());
|
|
}
|
|
#endif /* EFI_UNIT_TEST */
|
|
}
|
|
#if EFI_UNIT_TEST
|
|
if (printTriggerTrace) {
|
|
printf("decodeTriggerEvent %s isSynchronizationPoint=%d index=%d %s\r\n",
|
|
getTrigger_type_e(triggerConfiguration.TriggerType.type),
|
|
isSynchronizationPoint, currentCycle.current_index,
|
|
getTrigger_event_e(signal));
|
|
}
|
|
#endif /* EFI_UNIT_TEST */
|
|
|
|
if (isSynchronizationPoint) {
|
|
bool isDecodingError = validateEventCounters(triggerShape);
|
|
|
|
if (triggerStateListener) {
|
|
triggerStateListener->OnTriggerSyncronization(wasSynchronized, isDecodingError);
|
|
}
|
|
|
|
// If we got a sync point, but the wrong number of events since the last sync point
|
|
// One of two things has happened:
|
|
// - We missed a tooth, and this is the real sync point
|
|
// - Due to some mistake in timing, we found what looks like a sync point but actually isn't
|
|
// In either case, we should wait for another sync point before doing anything to try and run an engine,
|
|
// so we clear the synchronized flag.
|
|
if (wasSynchronized && isDecodingError) {
|
|
setTriggerErrorState();
|
|
onNotEnoughTeeth(currentCycle.current_index, triggerShape.getSize());
|
|
|
|
// Something wrong, no longer synchronized
|
|
setShaftSynchronized(false);
|
|
|
|
// This is a decoding error
|
|
onTriggerError();
|
|
} else {
|
|
// If this was the first sync point OR no decode error, we're synchronized!
|
|
setShaftSynchronized(true);
|
|
}
|
|
|
|
// this call would update duty cycle values
|
|
nextTriggerEvent();
|
|
|
|
onShaftSynchronization(wasSynchronized, nowNt, triggerShape);
|
|
} else { /* if (!isSynchronizationPoint) */
|
|
nextTriggerEvent();
|
|
}
|
|
|
|
for (int i = triggerShape.gapTrackingLength; i > 0; i--) {
|
|
toothDurations[i] = toothDurations[i - 1];
|
|
}
|
|
|
|
toothed_previous_time = nowNt;
|
|
|
|
#if EFI_UNIT_TEST
|
|
if (wasSynchronized) {
|
|
int uiGapIndex = (currentCycle.current_index) % triggerShape.getLength();
|
|
gapRatio[uiGapIndex] = triggerSyncGapRatio;
|
|
}
|
|
#endif // EFI_UNIT_TEST
|
|
}
|
|
|
|
if (getShaftSynchronized() && !isValidIndex(triggerShape)) {
|
|
// We've had too many events since the last sync point, we should have seen a sync point by now.
|
|
// This is a trigger error.
|
|
|
|
// let's not show a warning if we are just starting to spin
|
|
if (Sensor::getOrZero(SensorType::Rpm) != 0) {
|
|
setTriggerErrorState();
|
|
onTooManyTeeth(currentCycle.current_index, triggerShape.getSize());
|
|
}
|
|
|
|
onTriggerError();
|
|
|
|
setShaftSynchronized(false);
|
|
|
|
return unexpected;
|
|
}
|
|
|
|
// Needed for early instant-RPM detection
|
|
if (triggerStateListener) {
|
|
triggerStateListener->OnTriggerStateProperState(nowNt);
|
|
}
|
|
|
|
triggerStateIndex = currentCycle.current_index;
|
|
|
|
if (getShaftSynchronized()) {
|
|
return TriggerDecodeResult{ currentCycle.current_index };
|
|
} else {
|
|
return unexpected;
|
|
}
|
|
}
|
|
|
|
bool TriggerDecoderBase::isSyncPoint(const TriggerWaveform& triggerShape, trigger_type_e triggerType) const {
|
|
// Miata NB needs a special decoder.
|
|
// The problem is that the crank wheel only has 4 teeth, also symmetrical, so the pattern
|
|
// is long-short-long-short for one crank rotation.
|
|
// A quick acceleration can result in two successive "short gaps", so we see
|
|
// long-short-short-short-long instead of the correct long-short-long-short-long
|
|
// This logic expands the lower bound on a "long" tooth, then compares the last
|
|
// tooth to the current one.
|
|
|
|
// Instead of detecting short/long, this logic first checks for "maybe short" and "maybe long",
|
|
// then simply tests longer vs. shorter instead of absolute value.
|
|
if (triggerType == trigger_type_e::TT_MIATA_VVT) {
|
|
auto secondGap = (float)toothDurations[1] / toothDurations[2];
|
|
|
|
bool currentGapOk = isInRange(triggerShape.syncronizationRatioFrom[0], (float)triggerSyncGapRatio, triggerShape.syncronizationRatioTo[0]);
|
|
bool secondGapOk = isInRange(triggerShape.syncronizationRatioFrom[1], secondGap, triggerShape.syncronizationRatioTo[1]);
|
|
|
|
// One or both teeth was impossible range, this is not the sync point
|
|
if (!currentGapOk || !secondGapOk) {
|
|
return false;
|
|
}
|
|
|
|
// If both teeth are in the range of possibility, return whether this gap is
|
|
// shorter than the last or not. If it is, this is the sync point.
|
|
return triggerSyncGapRatio < secondGap;
|
|
}
|
|
|
|
for (int i = 0; i < triggerShape.gapTrackingLength; i++) {
|
|
auto from = triggerShape.syncronizationRatioFrom[i];
|
|
auto to = triggerShape.syncronizationRatioTo[i];
|
|
|
|
if (cisnan(from)) {
|
|
// don't check this gap, skip it
|
|
continue;
|
|
}
|
|
|
|
// This is transformed to avoid a division and use a cheaper multiply instead
|
|
// toothDurations[i] / toothDurations[i+1] > from
|
|
// is an equivalent comparison to
|
|
// toothDurations[i] > toothDurations[i+1] * from
|
|
bool isGapCondition =
|
|
(toothDurations[i] > toothDurations[i + 1] * from
|
|
&& toothDurations[i] < toothDurations[i + 1] * to);
|
|
|
|
if (!isGapCondition) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Trigger shape is defined in a way which is convenient for trigger shape definition
|
|
* On the other hand, trigger decoder indexing begins from synchronization event.
|
|
*
|
|
* This function finds the index of synchronization event within TriggerWaveform
|
|
*/
|
|
uint32_t TriggerDecoderBase::findTriggerZeroEventIndex(
|
|
TriggerWaveform& shape,
|
|
const TriggerConfiguration& triggerConfiguration) {
|
|
#if EFI_PROD_CODE
|
|
efiAssert(ObdCode::CUSTOM_ERR_ASSERT, assertRemainingStack(), "findPos", -1);
|
|
#endif
|
|
|
|
|
|
resetState();
|
|
|
|
if (shape.shapeDefinitionError) {
|
|
return 0;
|
|
}
|
|
|
|
expected<uint32_t> syncIndex = TriggerStimulatorHelper::findTriggerSyncPoint(shape,
|
|
triggerConfiguration,
|
|
*this);
|
|
if (!syncIndex) {
|
|
return EFI_ERROR_CODE;
|
|
}
|
|
|
|
// Assert that we found the sync point on the very first revolution
|
|
efiAssert(ObdCode::CUSTOM_ERR_ASSERT, getCrankSynchronizationCounter() == 0, "findZero_revCounter", EFI_ERROR_CODE);
|
|
|
|
#if EFI_UNIT_TEST
|
|
if (printTriggerDebug) {
|
|
printf("findTriggerZeroEventIndex: syncIndex located %d!\r\n", syncIndex);
|
|
}
|
|
#endif /* EFI_UNIT_TEST */
|
|
|
|
TriggerStimulatorHelper::assertSyncPosition(triggerConfiguration,
|
|
syncIndex.Value, *this, shape);
|
|
|
|
return syncIndex.Value % shape.getSize();
|
|
}
|
|
|
|
#endif /* EFI_SHAFT_POSITION_INPUT */
|
|
|