1124 lines
33 KiB
C++
1124 lines
33 KiB
C++
/**
|
||
* @file electronic_throttle.cpp
|
||
* @brief Electronic Throttle driver
|
||
*
|
||
* @see test test_etb.cpp
|
||
*
|
||
*
|
||
* Limited user documentation at https://github.com/rusefi/rusefi/wiki/HOWTO_electronic_throttle_body
|
||
*
|
||
*
|
||
* ETB is controlled according to pedal position input (pedal position sensor is a potentiometer)
|
||
* pedal 0% means pedal not pressed / idle
|
||
* pedal 100% means pedal all the way down
|
||
* (not TPS - not the one you can calibrate in TunerStudio)
|
||
*
|
||
*
|
||
* See also pid.cpp
|
||
*
|
||
* Relevant console commands:
|
||
*
|
||
* ETB_BENCH_ENGINE
|
||
* set engine_type 58
|
||
*
|
||
* enable verbose_etb
|
||
* disable verbose_etb
|
||
* etbinfo
|
||
*
|
||
* http://rusefi.com/forum/viewtopic.php?f=5&t=592
|
||
*
|
||
* @date Dec 7, 2013
|
||
* @author Andrey Belomutskiy, (c) 2012-2020
|
||
*
|
||
* This file is part of rusEfi - see http://rusefi.com
|
||
*
|
||
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
|
||
* the GNU General Public License as published by the Free Software Foundation; either
|
||
* version 3 of the License, or (at your option) any later version.
|
||
*
|
||
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
|
||
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
* GNU General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU General Public License along with this program.
|
||
* If not, see <http://www.gnu.org/licenses/>.
|
||
*/
|
||
|
||
#include "pch.h"
|
||
|
||
#include "electronic_throttle_impl.h"
|
||
|
||
#if EFI_ELECTRONIC_THROTTLE_BODY
|
||
|
||
#include "dc_motor.h"
|
||
#include "dc_motors.h"
|
||
#include "defaults.h"
|
||
|
||
#if defined(HAS_OS_ACCESS)
|
||
#error "Unexpected OS ACCESS HERE"
|
||
#endif
|
||
|
||
#if HW_PROTEUS
|
||
#include "proteus_meta.h"
|
||
#endif // HW_PROTEUS
|
||
|
||
#ifndef ETB_MAX_COUNT
|
||
#define ETB_MAX_COUNT 2
|
||
#endif /* ETB_MAX_COUNT */
|
||
|
||
static pedal2tps_t pedal2tpsMap{"p2t"};
|
||
static Map3D<ETB2_TRIM_SIZE, ETB2_TRIM_SIZE, int8_t, uint8_t, uint8_t> throttle2TrimTable{"t2t"};
|
||
static Map3D<TRACTION_CONTROL_ETB_DROP_SIZE, TRACTION_CONTROL_ETB_DROP_SIZE, int8_t, uint16_t, uint8_t> tcEtbDropTable{"tce"};
|
||
|
||
constexpr float etbPeriodSeconds = 1.0f / ETB_LOOP_FREQUENCY;
|
||
|
||
//static bool startupPositionError = false;
|
||
|
||
//#define STARTUP_NEUTRAL_POSITION_ERROR_THRESHOLD 5
|
||
|
||
static const float hardCodedetbHitachiBiasBins[8] = {0.0, 19.0, 21.0, 22.0, 23.0, 25.0, 30.0, 100.0};
|
||
|
||
static const float hardCodedetbHitachiBiasValues[8] = {-18.0, -17.0, -15.0, 0.0, 16.0, 20.0, 20.0, 20.0};
|
||
|
||
/* Generated by TS2C on Thu Aug 20 21:10:02 EDT 2020*/
|
||
void setHitachiEtbBiasBins() {
|
||
copyArray(config->etbBiasBins, hardCodedetbHitachiBiasBins);
|
||
copyArray(config->etbBiasValues, hardCodedetbHitachiBiasValues);
|
||
}
|
||
|
||
static SensorType functionToPositionSensor(dc_function_e func) {
|
||
switch(func) {
|
||
case DC_Throttle1: return SensorType::Tps1;
|
||
case DC_Throttle2: return SensorType::Tps2;
|
||
case DC_IdleValve: return SensorType::IdlePosition;
|
||
case DC_Wastegate: return SensorType::WastegatePosition;
|
||
default: return SensorType::Invalid;
|
||
}
|
||
}
|
||
|
||
static SensorType functionToTpsSensor(dc_function_e func) {
|
||
switch(func) {
|
||
case DC_Throttle1: return SensorType::Tps1;
|
||
default: return SensorType::Tps2;
|
||
}
|
||
}
|
||
|
||
static SensorType functionToTpsSensorPrimary(dc_function_e func) {
|
||
switch(func) {
|
||
case DC_Throttle1: return SensorType::Tps1Primary;
|
||
default: return SensorType::Tps2Primary;
|
||
}
|
||
}
|
||
|
||
static SensorType functionToTpsSensorSecondary(dc_function_e func) {
|
||
switch(func) {
|
||
case DC_Throttle1: return SensorType::Tps1Secondary;
|
||
default: return SensorType::Tps2Secondary;
|
||
}
|
||
}
|
||
|
||
#if EFI_TUNER_STUDIO
|
||
static TsCalMode functionToCalModePriMin(dc_function_e func) {
|
||
switch (func) {
|
||
case DC_Throttle1: return TsCalMode::Tps1Min;
|
||
default: return TsCalMode::Tps2Min;
|
||
}
|
||
}
|
||
|
||
static TsCalMode functionToCalModePriMax(dc_function_e func) {
|
||
switch (func) {
|
||
case DC_Throttle1: return TsCalMode::Tps1Max;
|
||
default: return TsCalMode::Tps2Max;
|
||
}
|
||
}
|
||
|
||
static TsCalMode functionToCalModeSecMin(dc_function_e func) {
|
||
switch (func) {
|
||
case DC_Throttle1: return TsCalMode::Tps1SecondaryMin;
|
||
default: return TsCalMode::Tps2SecondaryMin;
|
||
}
|
||
}
|
||
|
||
static TsCalMode functionToCalModeSecMax(dc_function_e func) {
|
||
switch (func) {
|
||
case DC_Throttle1: return TsCalMode::Tps1SecondaryMax;
|
||
default: return TsCalMode::Tps2SecondaryMax;
|
||
}
|
||
}
|
||
#endif // EFI_TUNER_STUDIO
|
||
|
||
static percent_t directPwmValue = NAN;
|
||
|
||
#define ETB_DUTY_LIMIT 0.9
|
||
// this macro clamps both positive and negative percentages from about -100% to 100%
|
||
#define ETB_PERCENT_TO_DUTY(x) (clampF(-ETB_DUTY_LIMIT, 0.01f * (x), ETB_DUTY_LIMIT))
|
||
|
||
bool EtbController::init(dc_function_e function, DcMotor *motor, pid_s *pidParameters, const ValueProvider3D* pedalProvider, bool hasPedal) {
|
||
if (function == DC_None) {
|
||
// if not configured, don't init.
|
||
etbErrorCode = (int8_t)TpsState::None;
|
||
return false;
|
||
}
|
||
|
||
m_function = function;
|
||
m_positionSensor = functionToPositionSensor(function);
|
||
|
||
// If we are a throttle, require redundant TPS sensor
|
||
if (isEtbMode()) {
|
||
// We don't need to init throttles, so nothing to do here.
|
||
if (!hasPedal) {
|
||
etbErrorCode = (int8_t)TpsState::None;
|
||
return false;
|
||
}
|
||
|
||
// If no sensor is configured for this throttle, skip initialization.
|
||
if (!Sensor::hasSensor(functionToTpsSensor(function))) {
|
||
etbErrorCode = (int8_t)TpsState::TpsError;
|
||
return false;
|
||
}
|
||
|
||
if (!Sensor::isRedundant(m_positionSensor)) {
|
||
firmwareError(
|
||
ObdCode::OBD_TPS_Configuration,
|
||
"Use of electronic throttle requires %s to be redundant.",
|
||
Sensor::getSensorName(m_positionSensor)
|
||
);
|
||
|
||
etbErrorCode = (int8_t)TpsState::Redundancy;
|
||
return false;
|
||
}
|
||
|
||
if (!Sensor::isRedundant(SensorType::AcceleratorPedal)) {
|
||
firmwareError(
|
||
ObdCode::OBD_TPS_Configuration,
|
||
"Use of electronic throttle requires accelerator pedal to be redundant."
|
||
);
|
||
etbErrorCode = (int8_t)TpsState::Redundancy;
|
||
return false;
|
||
}
|
||
}
|
||
|
||
m_motor = motor;
|
||
m_pid.initPidClass(pidParameters);
|
||
m_pedalProvider = pedalProvider;
|
||
|
||
// Ignore 3% position error before complaining
|
||
m_errorAccumulator.init(3.0f, etbPeriodSeconds);
|
||
|
||
reset();
|
||
|
||
return true;
|
||
}
|
||
|
||
void EtbController::reset() {
|
||
m_shouldResetPid = true;
|
||
etbDutyRateOfChange = etbDutyAverage = 0;
|
||
m_dutyRocAverage.reset();
|
||
m_dutyAverage.reset();
|
||
etbTpsErrorCounter = 0;
|
||
etbPpsErrorCounter = 0;
|
||
}
|
||
|
||
void EtbController::onConfigurationChange(pid_s* previousConfiguration) {
|
||
if (m_motor && !m_pid.isSame(previousConfiguration)) {
|
||
m_shouldResetPid = true;
|
||
}
|
||
m_dutyRocAverage.init(engineConfiguration->etbRocExpAverageLength);
|
||
m_dutyAverage.init(engineConfiguration->etbExpAverageLength);
|
||
doInitElectronicThrottle();
|
||
}
|
||
|
||
void EtbController::showStatus() {
|
||
m_pid.showPidStatus("ETB");
|
||
}
|
||
|
||
expected<percent_t> EtbController::observePlant() {
|
||
return Sensor::get(m_positionSensor);
|
||
}
|
||
|
||
void EtbController::setIdlePosition(percent_t pos) {
|
||
m_idlePosition = pos;
|
||
}
|
||
|
||
void EtbController::setWastegatePosition(percent_t pos) {
|
||
m_wastegatePosition = pos;
|
||
}
|
||
|
||
expected<percent_t> EtbController::getSetpoint() {
|
||
switch (m_function) {
|
||
case DC_Throttle1:
|
||
case DC_Throttle2:
|
||
return getSetpointEtb();
|
||
case DC_IdleValve:
|
||
return getSetpointIdleValve();
|
||
case DC_Wastegate:
|
||
return getSetpointWastegate();
|
||
default:
|
||
return unexpected;
|
||
}
|
||
}
|
||
|
||
expected<percent_t> EtbController::getSetpointIdleValve() const {
|
||
// VW ETB idle mode uses an ETB only for idle (a mini-ETB sets the lower stop, and a normal cable
|
||
// can pull the throttle up off the stop.), so we directly control the throttle with the idle position.
|
||
#if EFI_TUNER_STUDIO && (EFI_PROD_CODE || EFI_SIMULATOR)
|
||
engine->outputChannels.etbTarget = m_idlePosition;
|
||
#endif // EFI_TUNER_STUDIO
|
||
return clampPercentValue(m_idlePosition);
|
||
}
|
||
|
||
expected<percent_t> EtbController::getSetpointWastegate() const {
|
||
return clampPercentValue(m_wastegatePosition);
|
||
}
|
||
|
||
float getSanitizedPedal() {
|
||
auto pedalPosition = Sensor::get(SensorType::AcceleratorPedal);
|
||
// If the pedal has failed, just use 0 position.
|
||
// This is safer than disabling throttle control - we can at least push the throttle closed
|
||
// and let the engine idle.
|
||
return clampPercentValue(pedalPosition.value_or(0));
|
||
}
|
||
|
||
BOARD_WEAK float boardAdjustEtbTarget(float currentEtbTarget) {
|
||
return currentEtbTarget;
|
||
}
|
||
|
||
expected<percent_t> EtbController::getSetpointEtb() {
|
||
// Autotune runs with 50% target position
|
||
if (m_isAutotune) {
|
||
return 50.0f;
|
||
}
|
||
|
||
// // A few extra preconditions if throttle control is invalid
|
||
// if (startupPositionError) {
|
||
// return unexpected;
|
||
// }
|
||
|
||
// If the pedal map hasn't been set, we can't provide a setpoint.
|
||
if (!m_pedalProvider) {
|
||
return unexpected;
|
||
}
|
||
|
||
float sanitizedPedal = getSanitizedPedal();
|
||
|
||
float rpm = Sensor::getOrZero(SensorType::Rpm);
|
||
etbCurrentTarget = m_pedalProvider->getValue(rpm, sanitizedPedal);
|
||
|
||
percent_t etbIdlePosition = clampPercentValue(m_idlePosition);
|
||
percent_t etbIdleAddition = PERCENT_DIV * engineConfiguration->etbIdleThrottleRange * etbIdlePosition;
|
||
|
||
// Interpolate so that the idle adder just "compresses" the throttle's range upward.
|
||
// [0, 100] -> [idle, 100]
|
||
// 0% target from table -> idle position as target
|
||
// 100% target from table -> 100% target position
|
||
targetWithIdlePosition = interpolateClamped(0, etbIdleAddition, 100, 100, etbCurrentTarget);
|
||
|
||
percent_t targetPosition = boardAdjustEtbTarget(targetWithIdlePosition + getLuaAdjustment());
|
||
|
||
#if EFI_ANTILAG_SYSTEM
|
||
if (engine->antilagController.isAntilagCondition) {
|
||
targetPosition += engineConfiguration->ALSEtbAdd;
|
||
}
|
||
#endif /* EFI_ANTILAG_SYSTEM */
|
||
|
||
float vehicleSpeed = Sensor::getOrZero(SensorType::VehicleSpeed);
|
||
float wheelSlip = Sensor::getOrZero(SensorType::WheelSlipRatio);
|
||
tcEtbDrop = tcEtbDropTable.getValue(wheelSlip, vehicleSpeed);
|
||
|
||
// Apply any adjustment that this throttle alone needs
|
||
// Clamped to +-10 to prevent anything too wild
|
||
trim = clampF(-10, getThrottleTrim(rpm, targetPosition), 10);
|
||
targetPosition += trim + tcEtbDrop;
|
||
|
||
// Clamp before rev limiter to avoid ineffective rev limit due to crazy out of range position target
|
||
targetPosition = clampPercentValue(targetPosition);
|
||
|
||
// Lastly, apply ETB rev limiter
|
||
auto etbRpmLimit = engineConfiguration->etbRevLimitStart;
|
||
if (etbRpmLimit != 0) {
|
||
auto fullyLimitedRpm = etbRpmLimit + engineConfiguration->etbRevLimitRange;
|
||
|
||
float targetPositionBefore = targetPosition;
|
||
// Linearly taper throttle to closed from the limit across the range
|
||
targetPosition = interpolateClamped(etbRpmLimit, targetPosition, fullyLimitedRpm, 0, rpm);
|
||
|
||
// rev limit active if the position was changed by rev limiter
|
||
etbRevLimitActive = absF(targetPosition - targetPositionBefore) > 0.1f;
|
||
}
|
||
|
||
float minPosition = engineConfiguration->etbMinimumPosition;
|
||
|
||
// Keep the throttle just barely off the lower stop, and less than the user-configured maximum
|
||
float maxPosition = engineConfiguration->etbMaximumPosition;
|
||
// Don't allow max position over 100
|
||
maxPosition = minF(maxPosition, 100);
|
||
|
||
targetPosition = clampF(minPosition, targetPosition, maxPosition);
|
||
etbCurrentAdjustedTarget = targetPosition;
|
||
|
||
#if EFI_TUNER_STUDIO
|
||
if (m_function == DC_Throttle1) {
|
||
engine->outputChannels.etbTarget = targetPosition;
|
||
}
|
||
#endif // EFI_TUNER_STUDIO
|
||
|
||
return targetPosition;
|
||
}
|
||
|
||
void EtbController::setLuaAdjustment(float adjustment) {
|
||
luaAdjustment = adjustment;
|
||
m_luaAdjustmentTimer.reset();
|
||
}
|
||
|
||
/**
|
||
* positive adjustment opens TPS, negative closes TPS
|
||
*/
|
||
float EtbController::getLuaAdjustment() const {
|
||
// If the lua position hasn't been set in 0.2 second, don't adjust!
|
||
// This avoids a stuck throttle due to hung/rogue/etc Lua script
|
||
if (m_luaAdjustmentTimer.getElapsedSeconds() > 0.2f) {
|
||
return 0;
|
||
} else {
|
||
return luaAdjustment;
|
||
}
|
||
}
|
||
|
||
percent_t EtbController2::getThrottleTrim(float rpm, percent_t targetPosition) const {
|
||
return m_throttle2Trim.getValue(rpm, targetPosition);
|
||
}
|
||
|
||
expected<percent_t> EtbController::getOpenLoop(percent_t target) {
|
||
// Don't apply open loop for wastegate/idle valve, only real ETB
|
||
if (m_function != DC_Wastegate
|
||
&& m_function != DC_IdleValve) {
|
||
etbFeedForward = interpolate2d(target, config->etbBiasBins, config->etbBiasValues);
|
||
} else {
|
||
etbFeedForward = 0;
|
||
}
|
||
|
||
return etbFeedForward;
|
||
}
|
||
|
||
expected<percent_t> EtbController::getClosedLoopAutotune(percent_t target, percent_t actualThrottlePosition) {
|
||
// Estimate gain at current position - this should be well away from the spring and in the linear region
|
||
// GetSetpoint sets this to 50%
|
||
bool isPositive = actualThrottlePosition > target;
|
||
|
||
float autotuneAmplitude = 20;
|
||
|
||
// End of cycle - record & reset
|
||
if (!isPositive && m_lastIsPositive) {
|
||
efitick_t now = getTimeNowNt();
|
||
|
||
// Determine period
|
||
float tu = m_autotuneCycleStart.getElapsedSecondsAndReset(now);
|
||
|
||
// Determine amplitude
|
||
float a = m_maxCycleTps - m_minCycleTps;
|
||
|
||
// Filter - it's pretty noisy since the ultimate period is not very many loop periods
|
||
constexpr float alpha = 0.05;
|
||
m_a = alpha * a + (1 - alpha) * m_a;
|
||
m_tu = alpha * tu + (1 - alpha) * m_tu;
|
||
|
||
// Reset bounds
|
||
m_minCycleTps = 100;
|
||
m_maxCycleTps = 0;
|
||
|
||
// Math is for Åström–Hägglund (relay) auto tuning
|
||
// https://warwick.ac.uk/fac/cross_fac/iatl/reinvention/archive/volume5issue2/hornsey
|
||
|
||
// Publish to TS state
|
||
#if EFI_TUNER_STUDIO
|
||
// Amplitude of input (duty cycle %)
|
||
float b = 2 * autotuneAmplitude;
|
||
|
||
// Ultimate gain per A-H relay tuning rule
|
||
float ku = 4 * b / (CONST_PI * m_a);
|
||
|
||
// The multipliers below are somewhere near the "no overshoot"
|
||
// and "some overshoot" flavors of the Ziegler-Nichols method
|
||
// Kp
|
||
float kp = 0.35f * ku;
|
||
float ki = 0.25f * ku / m_tu;
|
||
float kd = 0.08f * ku * m_tu;
|
||
|
||
// Every 5 cycles (of the throttle), cycle to the next value
|
||
if (m_autotuneCounter >= 5) {
|
||
m_autotuneCounter = 0;
|
||
m_autotuneCurrentParam = (m_autotuneCurrentParam + 1) % 3; // three ETB calibs: P-I-D
|
||
}
|
||
|
||
m_autotuneCounter++;
|
||
|
||
// Multiplex 3 signals on to the {mode, value} format
|
||
engine->outputChannels.calibrationMode = (uint8_t)static_cast<TsCalMode>((uint8_t)TsCalMode::EtbKp + m_autotuneCurrentParam);
|
||
|
||
switch (m_autotuneCurrentParam) {
|
||
case 0:
|
||
engine->outputChannels.calibrationValue = kp;
|
||
break;
|
||
case 1:
|
||
engine->outputChannels.calibrationValue = ki;
|
||
break;
|
||
case 2:
|
||
engine->outputChannels.calibrationValue = kd;
|
||
break;
|
||
}
|
||
|
||
// Also output to debug channels if configured
|
||
if (engineConfiguration->debugMode == DBG_ETB_AUTOTUNE) {
|
||
// a - amplitude of output (TPS %)
|
||
engine->outputChannels.debugFloatField1 = m_a;
|
||
// b - amplitude of input (Duty cycle %)
|
||
engine->outputChannels.debugFloatField2 = b;
|
||
// Tu - oscillation period (seconds)
|
||
engine->outputChannels.debugFloatField3 = m_tu;
|
||
|
||
engine->outputChannels.debugFloatField4 = ku;
|
||
engine->outputChannels.debugFloatField5 = kp;
|
||
engine->outputChannels.debugFloatField6 = ki;
|
||
engine->outputChannels.debugFloatField7 = kd;
|
||
}
|
||
#endif
|
||
}
|
||
|
||
m_lastIsPositive = isPositive;
|
||
|
||
// Find the min/max of each cycle
|
||
if (actualThrottlePosition < m_minCycleTps) {
|
||
m_minCycleTps = actualThrottlePosition;
|
||
}
|
||
|
||
if (actualThrottlePosition > m_maxCycleTps) {
|
||
m_maxCycleTps = actualThrottlePosition;
|
||
}
|
||
|
||
// Bang-bang control the output to induce oscillation
|
||
return autotuneAmplitude * (isPositive ? -1 : 1);
|
||
}
|
||
|
||
expected<percent_t> EtbController::getClosedLoop(percent_t target, percent_t observation) {
|
||
if (m_shouldResetPid) {
|
||
m_pid.reset();
|
||
m_shouldResetPid = false;
|
||
}
|
||
|
||
if (m_isAutotune) {
|
||
return getClosedLoopAutotune(target, observation);
|
||
} else {
|
||
// Check that we're not over the error limit
|
||
etbIntegralError = m_errorAccumulator.accumulate(target - observation);
|
||
|
||
// Allow up to 10 percent-seconds of error
|
||
if (etbIntegralError > 10.0f) {
|
||
// TODO: figure out how to handle uncalibrated ETB
|
||
//getLimpManager()->reportEtbProblem();
|
||
}
|
||
|
||
// Normal case - use PID to compute closed loop part
|
||
return m_pid.getOutput(target, observation, etbPeriodSeconds);
|
||
}
|
||
}
|
||
|
||
void EtbController::setOutput(expected<percent_t> outputValue) {
|
||
#if EFI_TUNER_STUDIO
|
||
// Only report first-throttle stats
|
||
if (m_function == DC_Throttle1) {
|
||
engine->outputChannels.etb1DutyCycle = outputValue.value_or(0);
|
||
}
|
||
#endif
|
||
|
||
if (!m_motor) {
|
||
return;
|
||
}
|
||
|
||
// If not ETB, or ETB is allowed, output is valid, and we aren't paused, output to motor.
|
||
if (!isEtbMode() ||
|
||
(getLimpManager()->allowElectronicThrottle()
|
||
&& outputValue
|
||
&& !engineConfiguration->pauseEtbControl)) {
|
||
m_motor->enable();
|
||
m_motor->set(ETB_PERCENT_TO_DUTY(outputValue.Value));
|
||
} else {
|
||
// Otherwise disable the motor.
|
||
m_motor->disable("no-ETB");
|
||
}
|
||
}
|
||
|
||
bool EtbController::checkStatus() {
|
||
#if EFI_TUNER_STUDIO
|
||
// Only debug throttle #1
|
||
if (m_function == DC_Throttle1) {
|
||
m_pid.postState(engine->outputChannels.etbStatus);
|
||
} else if (m_function == DC_Wastegate) {
|
||
m_pid.postState(engine->outputChannels.wastegateDcStatus);
|
||
}
|
||
#endif /* EFI_TUNER_STUDIO */
|
||
|
||
if (!isEtbMode()) {
|
||
// no validation for h-bridge or idle mode
|
||
return true;
|
||
}
|
||
// ETB-specific code belo. The whole mix-up between DC and ETB is shameful :(
|
||
|
||
m_pid.iTermMin = engineConfiguration->etb_iTermMin;
|
||
m_pid.iTermMax = engineConfiguration->etb_iTermMax;
|
||
|
||
// Only allow autotune with stopped engine, and on the first throttle
|
||
// Update local state about autotune
|
||
m_isAutotune = Sensor::getOrZero(SensorType::Rpm) == 0
|
||
&& engine->etbAutoTune
|
||
&& m_function == DC_Throttle1;
|
||
|
||
bool shouldCheckSensorFunction = engine->module<SensorChecker>()->analogSensorsShouldWork();
|
||
|
||
if (!m_isAutotune && shouldCheckSensorFunction) {
|
||
bool isTpsError = !Sensor::get(m_positionSensor).Valid;
|
||
|
||
// If we have an error that's new, increment the counter
|
||
if (isTpsError && !hadTpsError) {
|
||
etbTpsErrorCounter++;
|
||
}
|
||
|
||
hadTpsError = isTpsError;
|
||
|
||
bool isPpsError = !Sensor::get(SensorType::AcceleratorPedal).Valid;
|
||
|
||
// If we have an error that's new, increment the counter
|
||
if (isPpsError && !hadPpsError) {
|
||
etbPpsErrorCounter++;
|
||
}
|
||
|
||
hadPpsError = isPpsError;
|
||
} else {
|
||
// Either sensors are expected to not work, or autotune is running, so reset the error counter
|
||
etbTpsErrorCounter = 0;
|
||
etbPpsErrorCounter = 0;
|
||
}
|
||
|
||
#ifndef ETB_INTERMITTENT_LIMIT
|
||
#define ETB_INTERMITTENT_LIMIT 50
|
||
#endif
|
||
|
||
TpsState localReason = TpsState::None;
|
||
if (etbTpsErrorCounter > ETB_INTERMITTENT_LIMIT) {
|
||
localReason = TpsState::IntermittentTps;
|
||
#if EFI_SHAFT_POSITION_INPUT
|
||
} else if (engineConfiguration->disableEtbWhenEngineStopped && !engine->triggerCentral.engineMovedRecently()) {
|
||
localReason = TpsState::EngineStopped;
|
||
#endif // EFI_SHAFT_POSITION_INPUT
|
||
} else if (etbPpsErrorCounter > ETB_INTERMITTENT_LIMIT) {
|
||
localReason = TpsState::IntermittentPps;
|
||
} else if (engine->engineState.lua.luaDisableEtb) {
|
||
localReason = TpsState::Lua;
|
||
}
|
||
|
||
etbErrorCode = (int8_t)localReason;
|
||
|
||
return localReason == TpsState::None;
|
||
}
|
||
|
||
void EtbController::update() {
|
||
#if !EFI_UNIT_TEST
|
||
// If we didn't get initialized, fail fast
|
||
if (!m_motor) {
|
||
return;
|
||
}
|
||
#endif // EFI_UNIT_TEST
|
||
|
||
if (!cisnan(directPwmValue)) {
|
||
m_motor->set(directPwmValue);
|
||
etbErrorCode = (int8_t)TpsState::Manual;
|
||
return;
|
||
}
|
||
|
||
bool isOk = checkStatus();
|
||
|
||
if (!isOk) {
|
||
// If engine is stopped and so configured, skip the ETB update entirely
|
||
// This is quieter and pulls less power than leaving it on all the time
|
||
m_motor->disable("etb status");
|
||
return;
|
||
}
|
||
|
||
auto output = ClosedLoopController::update();
|
||
|
||
if (!output) {
|
||
return;
|
||
}
|
||
|
||
checkOutput(output.Value);
|
||
}
|
||
|
||
void EtbController::checkOutput(percent_t output) {
|
||
etbDutyAverage = m_dutyAverage.average(absF(output));
|
||
|
||
etbDutyRateOfChange = m_dutyRocAverage.average(absF(output - prevOutput));
|
||
prevOutput = output;
|
||
|
||
#if EFI_UNIT_TEST
|
||
auto integratorLimit = engineConfiguration->etbJamIntegratorLimit;
|
||
|
||
if (integratorLimit != 0) {
|
||
float integrator = absF(m_pid.getIntegration());
|
||
auto nowNt = getTimeNowNt();
|
||
|
||
if (integrator > integratorLimit) {
|
||
if (m_jamDetectTimer.hasElapsedSec(engineConfiguration->etbJamTimeout)) {
|
||
// ETB is jammed!
|
||
jamDetected = true;
|
||
|
||
// TODO: do something about it!
|
||
}
|
||
} else {
|
||
m_jamDetectTimer.reset(getTimeNowNt());
|
||
jamDetected = false;
|
||
}
|
||
|
||
jamTimer = m_jamDetectTimer.getElapsedSeconds(nowNt);
|
||
}
|
||
#endif // EFI_UNIT_TEST
|
||
|
||
}
|
||
|
||
void EtbController::autoCalibrateTps() {
|
||
// Only auto calibrate throttles
|
||
if (m_function == DC_Throttle1 || m_function == DC_Throttle2) {
|
||
m_isAutocal = true;
|
||
}
|
||
}
|
||
|
||
#if !EFI_UNIT_TEST
|
||
/**
|
||
* Things running on a timer (instead of a thread) don't participate it the RTOS's thread priority system,
|
||
* and operate essentially "first come first serve", which risks starvation.
|
||
* Since ETB is a safety critical device, we need the hard RTOS guarantee that it will be scheduled over other less important tasks.
|
||
*/
|
||
#include "periodic_thread_controller.h"
|
||
#else
|
||
#define chThdSleepMilliseconds(x) {}
|
||
#endif // EFI_UNIT_TEST
|
||
|
||
#include <utility>
|
||
|
||
template <typename TBase>
|
||
struct EtbImpl final : public TBase {
|
||
template <typename... TArgs>
|
||
EtbImpl(TArgs&&... args) : TBase(std::forward<TArgs>(args)...) { }
|
||
|
||
void update() override {
|
||
#if EFI_TUNER_STUDIO
|
||
if (TBase::m_isAutocal) {
|
||
// Don't allow if engine is running!
|
||
if (Sensor::getOrZero(SensorType::Rpm) > 0) {
|
||
TBase::m_isAutocal = false;
|
||
return;
|
||
}
|
||
|
||
auto motor = TBase::getMotor();
|
||
if (!motor) {
|
||
TBase::m_isAutocal = false;
|
||
return;
|
||
}
|
||
|
||
auto myFunction = TBase::getFunction();
|
||
|
||
// First grab open
|
||
motor->set(0.5f);
|
||
motor->enable();
|
||
chThdSleepMilliseconds(1000);
|
||
float primaryMax = Sensor::getRaw(functionToTpsSensorPrimary(myFunction));
|
||
float secondaryMax = Sensor::getRaw(functionToTpsSensorSecondary(myFunction));
|
||
|
||
// Let it return
|
||
motor->set(0);
|
||
chThdSleepMilliseconds(200);
|
||
|
||
// Now grab closed
|
||
motor->set(-0.5f);
|
||
chThdSleepMilliseconds(1000);
|
||
float primaryMin = Sensor::getRaw(functionToTpsSensorPrimary(myFunction));
|
||
float secondaryMin = Sensor::getRaw(functionToTpsSensorSecondary(myFunction));
|
||
|
||
// Finally disable and reset state
|
||
motor->disable("autotune");
|
||
|
||
// Check that the calibrate actually moved the throttle
|
||
if (absF(primaryMax - primaryMin) < 0.5f) {
|
||
firmwareError(ObdCode::OBD_TPS_Configuration, "Auto calibrate failed, check your wiring!\r\nClosed voltage: %.1fv Open voltage: %.1fv", primaryMin, primaryMax);
|
||
TBase::m_isAutocal = false;
|
||
return;
|
||
}
|
||
|
||
// Write out the learned values to TS, waiting briefly after setting each to let TS grab it
|
||
engine->outputChannels.calibrationMode = (uint8_t)functionToCalModePriMax(myFunction);
|
||
engine->outputChannels.calibrationValue = convertVoltageTo10bitADC(primaryMax);
|
||
chThdSleepMilliseconds(500);
|
||
engine->outputChannels.calibrationMode = (uint8_t)functionToCalModePriMin(myFunction);
|
||
engine->outputChannels.calibrationValue = convertVoltageTo10bitADC(primaryMin);
|
||
chThdSleepMilliseconds(500);
|
||
|
||
engine->outputChannels.calibrationMode = (uint8_t)functionToCalModeSecMax(myFunction);
|
||
engine->outputChannels.calibrationValue = convertVoltageTo10bitADC(secondaryMax);
|
||
chThdSleepMilliseconds(500);
|
||
engine->outputChannels.calibrationMode = (uint8_t)functionToCalModeSecMin(myFunction);
|
||
engine->outputChannels.calibrationValue = convertVoltageTo10bitADC(secondaryMin);
|
||
chThdSleepMilliseconds(500);
|
||
|
||
engine->outputChannels.calibrationMode = (uint8_t)TsCalMode::None;
|
||
|
||
TBase::m_isAutocal = false;
|
||
return;
|
||
}
|
||
#endif /* EFI_TUNER_STUDIO */
|
||
|
||
TBase::update();
|
||
}
|
||
};
|
||
|
||
// real implementation (we mock for some unit tests)
|
||
static EtbImpl<EtbController1> etb1;
|
||
static EtbImpl<EtbController2> etb2(throttle2TrimTable);
|
||
|
||
static_assert(ETB_COUNT == 2);
|
||
static EtbController* etbControllers[] = { &etb1, &etb2 };
|
||
|
||
#if !EFI_UNIT_TEST
|
||
|
||
struct DcThread final : public PeriodicController<512> {
|
||
DcThread() : PeriodicController("DC", PRIO_ETB, ETB_LOOP_FREQUENCY) {}
|
||
|
||
void PeriodicTask(efitick_t) override {
|
||
// Simply update all controllers
|
||
for (int i = 0 ; i < ETB_COUNT; i++) {
|
||
etbControllers[i]->update();
|
||
}
|
||
}
|
||
};
|
||
|
||
static DcThread dcThread CCM_OPTIONAL;
|
||
|
||
#endif // !EFI_UNIT_TEST
|
||
|
||
void etbPidReset() {
|
||
for (int i = 0 ; i < ETB_COUNT; i++) {
|
||
if (auto controller = engine->etbControllers[i]) {
|
||
controller->reset();
|
||
}
|
||
}
|
||
}
|
||
|
||
#if !EFI_UNIT_TEST
|
||
|
||
/**
|
||
* At the moment there are TWO ways to use this
|
||
* set_etb_duty X
|
||
* set etb X
|
||
* manual duty cycle control without PID. Percent value from 0 to 100
|
||
*/
|
||
void setThrottleDutyCycle(percent_t level) {
|
||
efiPrintf("setting ETB duty=%f%%", level);
|
||
if (cisnan(level)) {
|
||
directPwmValue = NAN;
|
||
return;
|
||
}
|
||
|
||
float dc = ETB_PERCENT_TO_DUTY(level);
|
||
directPwmValue = dc;
|
||
for (int i = 0 ; i < ETB_COUNT; i++) {
|
||
setDcMotorDuty(i, dc);
|
||
}
|
||
efiPrintf("duty ETB duty=%f", dc);
|
||
}
|
||
#endif /* EFI_PROD_CODE */
|
||
|
||
void etbAutocal(size_t throttleIndex) {
|
||
if (throttleIndex >= ETB_COUNT) {
|
||
return;
|
||
}
|
||
|
||
if (auto etb = engine->etbControllers[throttleIndex]) {
|
||
etb->autoCalibrateTps();
|
||
}
|
||
}
|
||
|
||
/**
|
||
* This specific throttle has default position of about 7% open
|
||
*/
|
||
static const float boschBiasBins[] = {
|
||
0, 1, 5, 7, 14, 65, 66, 100
|
||
};
|
||
static const float boschBiasValues[] = {
|
||
-15, -15, -10, 0, 19, 20, 26, 28
|
||
};
|
||
|
||
void setBoschVAGETB() {
|
||
engineConfiguration->tpsMin = 890; // convert 12to10 bit (ADC/4)
|
||
engineConfiguration->tpsMax = 70; // convert 12to10 bit (ADC/4)
|
||
|
||
engineConfiguration->tps1SecondaryMin = 102;
|
||
engineConfiguration->tps1SecondaryMax = 891;
|
||
|
||
engineConfiguration->etb.pFactor = 5.12;
|
||
engineConfiguration->etb.iFactor = 47;
|
||
engineConfiguration->etb.dFactor = 0.088;
|
||
engineConfiguration->etb.offset = 0;
|
||
}
|
||
|
||
void setBoschVNH2SP30Curve() {
|
||
copyArray(config->etbBiasBins, boschBiasBins);
|
||
copyArray(config->etbBiasValues, boschBiasValues);
|
||
}
|
||
|
||
void setDefaultEtbParameters() {
|
||
engineConfiguration->etbIdleThrottleRange = 15;
|
||
|
||
engineConfiguration->etbExpAverageLength = 50;
|
||
engineConfiguration->etbRocExpAverageLength = 50;
|
||
|
||
setLinearCurve(config->pedalToTpsPedalBins, /*from*/0, /*to*/100, 1);
|
||
setRpmTableBin(config->pedalToTpsRpmBins);
|
||
|
||
for (int pedalIndex = 0;pedalIndex<PEDAL_TO_TPS_SIZE;pedalIndex++) {
|
||
for (int rpmIndex = 0;rpmIndex<PEDAL_TO_TPS_SIZE;rpmIndex++) {
|
||
config->pedalToTpsTable[pedalIndex][rpmIndex] = config->pedalToTpsPedalBins[pedalIndex];
|
||
}
|
||
}
|
||
|
||
// Default is to run each throttle off its respective hbridge
|
||
engineConfiguration->etbFunctions[0] = DC_Throttle1;
|
||
engineConfiguration->etbFunctions[1] = DC_Throttle2;
|
||
|
||
engineConfiguration->etbFreq = DEFAULT_ETB_PWM_FREQUENCY;
|
||
|
||
// voltage, not ADC like with TPS
|
||
setPPSCalibration(0, 5, 5, 0);
|
||
|
||
engineConfiguration->etb = {
|
||
1, // Kp
|
||
10, // Ki
|
||
0.05, // Kd
|
||
0, // offset
|
||
0, // Update rate, unused
|
||
-100, 100 // min/max
|
||
};
|
||
|
||
engineConfiguration->etb_iTermMin = -30;
|
||
engineConfiguration->etb_iTermMax = 30;
|
||
}
|
||
|
||
void onConfigurationChangeElectronicThrottleCallback(engine_configuration_s *previousConfiguration) {
|
||
for (int i = 0; i < ETB_COUNT; i++) {
|
||
etbControllers[i]->onConfigurationChange(&previousConfiguration->etb);
|
||
}
|
||
}
|
||
|
||
static const float defaultBiasBins[] = {
|
||
0, 1, 2, 4, 7, 98, 99, 100
|
||
};
|
||
static const float defaultBiasValues[] = {
|
||
-20, -18, -17, 0, 20, 21, 22, 25
|
||
};
|
||
|
||
void setDefaultEtbBiasCurve() {
|
||
copyArray(config->etbBiasBins, defaultBiasBins);
|
||
copyArray(config->etbBiasValues, defaultBiasValues);
|
||
}
|
||
|
||
void unregisterEtbPins() {
|
||
// todo: we probably need an implementation here?!
|
||
}
|
||
|
||
static pid_s* getPidForDcFunction(dc_function_e function) {
|
||
switch (function) {
|
||
case DC_Wastegate: return &engineConfiguration->etbWastegatePid;
|
||
default: return &engineConfiguration->etb;
|
||
}
|
||
}
|
||
|
||
BOARD_WEAK ValueProvider3D* pedal2TpsProvider() {
|
||
return &pedal2tpsMap;
|
||
}
|
||
|
||
void doInitElectronicThrottle() {
|
||
bool hasPedal = Sensor::hasSensor(SensorType::AcceleratorPedalPrimary);
|
||
|
||
#if EFI_UNIT_TEST
|
||
printf("doInitElectronicThrottle %s\n", boolToString(hasPedal));
|
||
#endif // EFI_UNIT_TEST
|
||
|
||
// these status flags are consumed by TS see tunerstudio.template.ini TODO should those be outputs/live data not configuration?!
|
||
engineConfiguration->etb1configured = engineConfiguration->etb2configured = false;
|
||
|
||
// todo: technical debt: we still have DC motor code initialization in ETB-specific file while DC motors are used not just as ETB
|
||
// like DC motor wastegate code flow should probably NOT go through electronic_throttle.cpp right?
|
||
// todo: rename etbFunctions to something-without-etb for same reason?
|
||
for (int i = 0 ; i < ETB_COUNT; i++) {
|
||
auto func = engineConfiguration->etbFunctions[i];
|
||
if (func == DC_None) {
|
||
// do not touch HW pins if function not selected, this way Lua can use DC motor hardware pins directly
|
||
continue;
|
||
}
|
||
auto motor = initDcMotor("ETB disable",
|
||
engineConfiguration->etbIo[i], i, engineConfiguration->etb_use_two_wires);
|
||
|
||
auto controller = engine->etbControllers[i];
|
||
criticalAssertVoid(controller != nullptr, "null ETB");
|
||
|
||
auto pid = getPidForDcFunction(func);
|
||
|
||
bool dcConfigured = controller->init(func, motor, pid, pedal2TpsProvider(), hasPedal);
|
||
bool etbConfigured = dcConfigured && controller->isEtbMode();
|
||
if (i == 0) {
|
||
engineConfiguration->etb1configured = etbConfigured;
|
||
} else if (i == 1) {
|
||
engineConfiguration->etb2configured = etbConfigured;
|
||
}
|
||
}
|
||
|
||
if (!engineConfiguration->etb1configured && !engineConfiguration->etb2configured) {
|
||
// It's not valid to have a PPS without any ETBs - check that at least one ETB was enabled along with the pedal
|
||
if (hasPedal) {
|
||
criticalError("A pedal position sensor was configured, but no electronic throttles are configured.");
|
||
}
|
||
}
|
||
|
||
#if 0 && ! EFI_UNIT_TEST
|
||
percent_t startupThrottlePosition = getTPS();
|
||
if (absF(startupThrottlePosition - engineConfiguration->etbNeutralPosition) > STARTUP_NEUTRAL_POSITION_ERROR_THRESHOLD) {
|
||
/**
|
||
* Unexpected electronic throttle start-up position is worth a critical error
|
||
*/
|
||
firmwareError(ObdCode::OBD_Throttle_Actuator_Control_Range_Performance_Bank_1, "startup ETB position %.2f not %d",
|
||
startupThrottlePosition,
|
||
engineConfiguration->etbNeutralPosition);
|
||
startupPositionError = true;
|
||
}
|
||
#endif /* EFI_UNIT_TEST */
|
||
|
||
#if !EFI_UNIT_TEST
|
||
static bool started = false;
|
||
if (started == false) {
|
||
dcThread.start();
|
||
started = true;
|
||
}
|
||
#endif
|
||
}
|
||
|
||
void initElectronicThrottle() {
|
||
if (hasFirmwareError()) {
|
||
return;
|
||
}
|
||
|
||
for (int i = 0; i < ETB_COUNT; i++) {
|
||
engine->etbControllers[i] = etbControllers[i];
|
||
}
|
||
|
||
#if EFI_PROD_CODE
|
||
addConsoleAction("etbinfo", [](){
|
||
efiPrintf("etbAutoTune=%d", engine->etbAutoTune);
|
||
efiPrintf("TPS=%.2f", Sensor::getOrZero(SensorType::Tps1));
|
||
|
||
efiPrintf("ETB1 duty=%.2f",
|
||
(float)engine->outputChannels.etb1DutyCycle);
|
||
|
||
efiPrintf("ETB freq=%d",
|
||
engineConfiguration->etbFreq);
|
||
|
||
for (int i = 0; i < ETB_COUNT; i++) {
|
||
efiPrintf("ETB%d", i);
|
||
efiPrintf(" dir1=%s", hwPortname(engineConfiguration->etbIo[i].directionPin1));
|
||
efiPrintf(" dir2=%s", hwPortname(engineConfiguration->etbIo[i].directionPin2));
|
||
efiPrintf(" control=%s", hwPortname(engineConfiguration->etbIo[i].controlPin));
|
||
efiPrintf(" disable=%s", hwPortname(engineConfiguration->etbIo[i].disablePin));
|
||
showDcMotorInfo(i);
|
||
}
|
||
});
|
||
|
||
#endif /* EFI_PROD_CODE */
|
||
|
||
pedal2tpsMap.initTable(config->pedalToTpsTable, config->pedalToTpsRpmBins, config->pedalToTpsPedalBins);
|
||
throttle2TrimTable.initTable(config->throttle2TrimTable, config->throttle2TrimRpmBins, config->throttle2TrimTpsBins);
|
||
tcEtbDropTable.initTable(engineConfiguration->tractionControlEtbDrop, engineConfiguration->tractionControlSlipBins, engineConfiguration->tractionControlSpeedBins);
|
||
|
||
doInitElectronicThrottle();
|
||
}
|
||
|
||
void setEtbIdlePosition(percent_t pos) {
|
||
for (int i = 0; i < ETB_COUNT; i++) {
|
||
if (auto etb = engine->etbControllers[i]) {
|
||
etb->setIdlePosition(pos);
|
||
}
|
||
}
|
||
}
|
||
|
||
void setEtbWastegatePosition(percent_t pos) {
|
||
for (int i = 0; i < ETB_COUNT; i++) {
|
||
if (auto etb = engine->etbControllers[i]) {
|
||
etb->setWastegatePosition(pos);
|
||
}
|
||
}
|
||
}
|
||
|
||
void setEtbLuaAdjustment(percent_t pos) {
|
||
for (int i = 0; i < ETB_COUNT; i++) {
|
||
if (auto etb = engine->etbControllers[i]) {
|
||
etb->setLuaAdjustment(pos);
|
||
}
|
||
}
|
||
}
|
||
|
||
void setToyota89281_33010_pedal_position_sensor() {
|
||
setPPSCalibration(0, 4.1, 0.73, 4.9);
|
||
}
|
||
|
||
void setHitachiEtbCalibration() {
|
||
setToyota89281_33010_pedal_position_sensor();
|
||
|
||
setHitachiEtbBiasBins();
|
||
|
||
engineConfiguration->etb.pFactor = 2.7999;
|
||
engineConfiguration->etb.iFactor = 25.5;
|
||
engineConfiguration->etb.dFactor = 0.053;
|
||
engineConfiguration->etb.offset = 0.0;
|
||
engineConfiguration->etb.periodMs = 5.0;
|
||
engineConfiguration->etb.minValue = -100.0;
|
||
engineConfiguration->etb.maxValue = 100.0;
|
||
|
||
// Nissan 60mm throttle
|
||
engineConfiguration->tpsMin = engineConfiguration->tps2Min = 113;
|
||
engineConfiguration->tpsMax = engineConfiguration->tps2Max = 846;
|
||
engineConfiguration->tps1SecondaryMin = engineConfiguration->tps2SecondaryMin = 897;
|
||
engineConfiguration->tps1SecondaryMax = engineConfiguration->tps2SecondaryMax = 161;
|
||
}
|
||
|
||
void setProteusHitachiEtbDefaults() {
|
||
#if HW_PROTEUS
|
||
setHitachiEtbCalibration();
|
||
|
||
// EFI_ADC_12: "Analog Volt 3"
|
||
engineConfiguration->tps1_2AdcChannel = PROTEUS_IN_TPS1_2;
|
||
// EFI_ADC_13: "Analog Volt 4"
|
||
engineConfiguration->tps2_1AdcChannel = PROTEUS_IN_TPS2_1;
|
||
// EFI_ADC_0: "Analog Volt 5"
|
||
engineConfiguration->tps2_2AdcChannel = PROTEUS_IN_ANALOG_VOLT_5;
|
||
setPPSInputs(PROTEUS_IN_ANALOG_VOLT_6, PROTEUS_IN_PPS2);
|
||
#endif // HW_PROTEUS
|
||
}
|
||
|
||
#endif /* EFI_ELECTRONIC_THROTTLE_BODY */
|
||
|
||
template<>
|
||
const electronic_throttle_s* getLiveData(size_t idx) {
|
||
#if EFI_ELECTRONIC_THROTTLE_BODY
|
||
if (idx >= efi::size(etbControllers)) {
|
||
return nullptr;
|
||
}
|
||
|
||
return etbControllers[idx];
|
||
#else
|
||
return nullptr;
|
||
#endif
|
||
}
|