solana/core/src/repair_service.rs

361 lines
12 KiB
Rust
Raw Normal View History

//! The `repair_service` module implements the tools necessary to generate a thread which
//! regularly finds missing blobs in the ledger and sends repair requests for those blobs
2019-02-07 20:52:39 -08:00
use crate::blocktree::{Blocktree, SlotMeta};
use crate::cluster_info::ClusterInfo;
use crate::result::Result;
use crate::service::Service;
use solana_metrics::{influxdb, submit};
use std::net::UdpSocket;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::{Arc, RwLock};
use std::thread::sleep;
use std::thread::{self, Builder, JoinHandle};
use std::time::Duration;
pub const MAX_REPAIR_LENGTH: usize = 16;
pub const REPAIR_MS: u64 = 100;
pub const MAX_REPAIR_TRIES: u64 = 128;
#[derive(Serialize, Deserialize, Debug, Clone, Copy, PartialEq, Eq)]
pub enum RepairType {
HighestBlob(u64, u64),
Blob(u64, u64),
}
#[derive(Default)]
struct RepairInfo {
max_slot: u64,
repair_tries: u64,
}
impl RepairInfo {
fn new() -> Self {
RepairInfo {
max_slot: 0,
repair_tries: 0,
}
}
}
pub struct RepairService {
t_repair: JoinHandle<()>,
}
impl RepairService {
fn run(
2019-02-07 20:52:39 -08:00
blocktree: &Arc<Blocktree>,
2019-03-04 20:50:02 -08:00
exit: Arc<AtomicBool>,
repair_socket: &Arc<UdpSocket>,
cluster_info: &Arc<RwLock<ClusterInfo>>,
) {
let mut repair_info = RepairInfo::new();
let id = cluster_info.read().unwrap().id();
loop {
if exit.load(Ordering::Relaxed) {
break;
}
2019-02-07 20:52:39 -08:00
let repairs = Self::generate_repairs(blocktree, MAX_REPAIR_LENGTH, &mut repair_info);
if let Ok(repairs) = repairs {
let reqs: Vec<_> = repairs
.into_iter()
.filter_map(|repair_request| {
let (slot, blob_index, is_highest_request) = {
match repair_request {
RepairType::Blob(s, i) => (s, i, false),
RepairType::HighestBlob(s, i) => (s, i, true),
}
};
cluster_info
.read()
.unwrap()
.window_index_request(slot, blob_index, is_highest_request)
.map(|result| (result, slot, blob_index))
.ok()
})
.collect();
for ((to, req), slot, blob_index) in reqs {
if let Ok(local_addr) = repair_socket.local_addr() {
submit(
influxdb::Point::new("repair_service")
.add_field("repair_slot", influxdb::Value::Integer(slot as i64))
.to_owned()
.add_field(
"repair_blob",
influxdb::Value::Integer(blob_index as i64),
)
.to_owned()
.add_field("to", influxdb::Value::String(to.to_string()))
.to_owned()
.add_field("from", influxdb::Value::String(local_addr.to_string()))
.to_owned()
.add_field("id", influxdb::Value::String(id.to_string()))
.to_owned(),
);
}
repair_socket.send_to(&req, to).unwrap_or_else(|e| {
info!("{} repair req send_to({}) error {:?}", id, to, e);
0
});
}
}
sleep(Duration::from_millis(REPAIR_MS));
}
}
pub fn new(
2019-02-07 20:52:39 -08:00
blocktree: Arc<Blocktree>,
2019-03-04 20:50:02 -08:00
exit: &Arc<AtomicBool>,
repair_socket: Arc<UdpSocket>,
cluster_info: Arc<RwLock<ClusterInfo>>,
) -> Self {
2019-03-04 20:50:02 -08:00
let exit = exit.clone();
let t_repair = Builder::new()
.name("solana-repair-service".to_string())
2019-03-04 20:50:02 -08:00
.spawn(move || Self::run(&blocktree, exit, &repair_socket, &cluster_info))
.unwrap();
RepairService { t_repair }
}
fn process_slot(
2019-02-07 20:52:39 -08:00
blocktree: &Blocktree,
slot: u64,
slot_meta: &SlotMeta,
max_repairs: usize,
) -> Vec<RepairType> {
if slot_meta.is_full() {
vec![]
} else if slot_meta.consumed == slot_meta.received {
vec![RepairType::HighestBlob(slot, slot_meta.received)]
} else {
let reqs = blocktree.find_missing_data_indexes(
slot,
slot_meta.consumed,
slot_meta.received,
max_repairs,
);
reqs.into_iter()
.map(|i| RepairType::Blob(slot, i))
.collect()
}
}
fn generate_repairs(
2019-02-07 20:52:39 -08:00
blocktree: &Blocktree,
max_repairs: usize,
repair_info: &mut RepairInfo,
) -> Result<(Vec<RepairType>)> {
// Slot height and blob indexes for blobs we want to repair
let mut repairs: Vec<RepairType> = vec![];
let mut current_slot = Some(0);
while repairs.len() < max_repairs && current_slot.is_some() {
if current_slot.unwrap() > repair_info.max_slot {
repair_info.repair_tries = 0;
repair_info.max_slot = current_slot.unwrap();
}
let slot = blocktree.meta(current_slot.unwrap())?;
if slot.is_some() {
let slot = slot.unwrap();
let new_repairs = Self::process_slot(
blocktree,
current_slot.unwrap(),
&slot,
max_repairs - repairs.len(),
);
repairs.extend(new_repairs);
}
current_slot = blocktree.get_next_slot(current_slot.unwrap())?;
}
// Only increment repair_tries if the ledger contains every blob for every slot
if repairs.is_empty() {
repair_info.repair_tries += 1;
}
// Optimistically try the next slot if we haven't gotten any repairs
// for a while
if repair_info.repair_tries >= MAX_REPAIR_TRIES {
repairs.push(RepairType::HighestBlob(repair_info.max_slot + 1, 0))
}
Ok(repairs)
}
}
impl Service for RepairService {
type JoinReturnType = ();
fn join(self) -> thread::Result<()> {
self.t_repair.join()
}
}
#[cfg(test)]
mod test {
use super::*;
2019-02-18 18:41:31 -08:00
use crate::blocktree::tests::{make_many_slot_entries, make_slot_entries};
use crate::blocktree::{get_tmp_ledger_path, Blocktree};
use crate::entry::create_ticks;
use crate::entry::{make_tiny_test_entries, EntrySlice};
use solana_sdk::hash::Hash;
#[test]
pub fn test_repair_missed_future_slot() {
let blocktree_path = get_tmp_ledger_path!();
{
2019-02-18 18:41:31 -08:00
let blocktree = Blocktree::open(&blocktree_path).unwrap();
let mut blobs = create_ticks(1, Hash::default()).to_blobs();
blobs[0].set_index(0);
blobs[0].set_slot(0);
2019-02-18 18:41:31 -08:00
blobs[0].set_is_last_in_slot();
2019-02-07 20:52:39 -08:00
blocktree.write_blobs(&blobs).unwrap();
let mut repair_info = RepairInfo::new();
// We have all the blobs for all the slots in the ledger, wait for optimistic
// future repair after MAX_REPAIR_TRIES
for i in 0..MAX_REPAIR_TRIES {
// Check that repair tries to patch the empty slot
assert_eq!(repair_info.repair_tries, i);
assert_eq!(repair_info.max_slot, 0);
let expected = if i == MAX_REPAIR_TRIES - 1 {
2019-02-18 18:41:31 -08:00
vec![RepairType::HighestBlob(1, 0)]
} else {
vec![]
};
assert_eq!(
2019-02-07 20:52:39 -08:00
RepairService::generate_repairs(&blocktree, 2, &mut repair_info).unwrap(),
expected
);
}
2019-02-18 18:41:31 -08:00
// Insert a bigger blob, see that we the MAX_REPAIR_TRIES gets reset
let mut blobs = create_ticks(1, Hash::default()).to_blobs();
blobs[0].set_index(0);
blobs[0].set_slot(1);
2019-02-18 18:41:31 -08:00
blobs[0].set_is_last_in_slot();
2019-02-07 20:52:39 -08:00
blocktree.write_blobs(&blobs).unwrap();
assert_eq!(
2019-02-07 20:52:39 -08:00
RepairService::generate_repairs(&blocktree, 2, &mut repair_info).unwrap(),
vec![]
);
assert_eq!(repair_info.repair_tries, 1);
assert_eq!(repair_info.max_slot, 1);
}
2019-02-07 20:52:39 -08:00
Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction");
}
#[test]
pub fn test_repair_empty_slot() {
let blocktree_path = get_tmp_ledger_path!();
{
2019-02-18 18:41:31 -08:00
let blocktree = Blocktree::open(&blocktree_path).unwrap();
let mut blobs = make_tiny_test_entries(1).to_blobs();
blobs[0].set_index(1);
blobs[0].set_slot(2);
let mut repair_info = RepairInfo::new();
// Write this blob to slot 2, should chain to slot 1, which we haven't received
// any blobs for
2019-02-07 20:52:39 -08:00
blocktree.write_blobs(&blobs).unwrap();
// Check that repair tries to patch the empty slot
assert_eq!(
2019-02-07 20:52:39 -08:00
RepairService::generate_repairs(&blocktree, 2, &mut repair_info).unwrap(),
2019-02-18 20:50:43 -08:00
vec![RepairType::HighestBlob(0, 0), RepairType::Blob(2, 0)]
);
}
2019-02-07 20:52:39 -08:00
Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction");
}
#[test]
pub fn test_generate_repairs() {
let blocktree_path = get_tmp_ledger_path!();
{
2019-02-18 18:41:31 -08:00
let blocktree = Blocktree::open(&blocktree_path).unwrap();
2019-02-18 18:41:31 -08:00
let nth = 3;
let num_entries_per_slot = 5 * nth;
let num_slots = 2;
let mut repair_info = RepairInfo::new();
2019-02-18 18:41:31 -08:00
// Create some blobs
let (blobs, _) =
make_many_slot_entries(0, num_slots as u64, num_entries_per_slot as u64);
2019-02-18 18:41:31 -08:00
// write every nth blob
let blobs_to_write: Vec<_> = blobs.iter().step_by(nth as usize).collect();
2019-02-18 18:41:31 -08:00
blocktree.write_blobs(blobs_to_write).unwrap();
let missing_indexes_per_slot: Vec<u64> = (0..num_entries_per_slot / nth - 1)
.flat_map(|x| ((nth * x + 1) as u64..(nth * x + nth) as u64))
.collect();
let expected: Vec<RepairType> = (0..num_slots)
.flat_map(|slot| {
missing_indexes_per_slot
.iter()
.map(move |blob_index| RepairType::Blob(slot as u64, *blob_index))
})
.collect();
2019-02-18 18:41:31 -08:00
// Across all slots, find all missing indexes in the range [0, num_entries_per_slot]
assert_eq!(
2019-02-07 20:52:39 -08:00
RepairService::generate_repairs(&blocktree, std::usize::MAX, &mut repair_info)
.unwrap(),
expected
);
assert_eq!(
2019-02-07 20:52:39 -08:00
RepairService::generate_repairs(&blocktree, expected.len() - 2, &mut repair_info)
.unwrap()[..],
expected[0..expected.len() - 2]
);
2019-02-18 18:41:31 -08:00
}
Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction");
}
2019-02-18 18:41:31 -08:00
#[test]
pub fn test_generate_highest_repair() {
let blocktree_path = get_tmp_ledger_path!();
2019-02-18 18:41:31 -08:00
{
let blocktree = Blocktree::open(&blocktree_path).unwrap();
2019-02-18 18:41:31 -08:00
let num_entries_per_slot = 10;
let mut repair_info = RepairInfo::new();
// Create some blobs
let (mut blobs, _) = make_slot_entries(0, 0, num_entries_per_slot as u64);
// Remove is_last flag on last blob
blobs.last_mut().unwrap().set_flags(0);
blocktree.write_blobs(&blobs).unwrap();
2019-02-18 20:50:43 -08:00
// We didn't get the last blob for this slot, so ask for the highest blob for that slot
2019-02-18 19:49:43 -08:00
let expected: Vec<RepairType> = vec![RepairType::HighestBlob(0, num_entries_per_slot)];
assert_eq!(
2019-02-07 20:52:39 -08:00
RepairService::generate_repairs(&blocktree, std::usize::MAX, &mut repair_info)
.unwrap(),
expected
);
}
2019-02-07 20:52:39 -08:00
Blocktree::destroy(&blocktree_path).expect("Expected successful database destruction");
}
}