solana/sdk/src/timing.rs

227 lines
8.3 KiB
Rust

//! The `timing` module provides std::time utility functions.
use {
crate::unchecked_div_by_const,
std::{
sync::atomic::{AtomicU64, Ordering},
time::{Duration, SystemTime, UNIX_EPOCH},
},
};
pub fn duration_as_ns(d: &Duration) -> u64 {
d.as_secs()
.saturating_mul(1_000_000_000)
.saturating_add(u64::from(d.subsec_nanos()))
}
pub fn duration_as_us(d: &Duration) -> u64 {
d.as_secs()
.saturating_mul(1_000_000)
.saturating_add(unchecked_div_by_const!(u64::from(d.subsec_nanos()), 1_000))
}
pub fn duration_as_ms(d: &Duration) -> u64 {
d.as_secs()
.saturating_mul(1000)
.saturating_add(unchecked_div_by_const!(
u64::from(d.subsec_nanos()),
1_000_000
))
}
pub fn duration_as_s(d: &Duration) -> f32 {
d.as_secs() as f32 + (d.subsec_nanos() as f32 / 1_000_000_000.0)
}
/// return timestamp as ms
pub fn timestamp() -> u64 {
let now = SystemTime::now()
.duration_since(UNIX_EPOCH)
.expect("create timestamp in timing");
duration_as_ms(&now)
}
pub const SECONDS_PER_YEAR: f64 = 365.242_199 * 24.0 * 60.0 * 60.0;
/// from years to slots
pub fn years_as_slots(years: f64, tick_duration: &Duration, ticks_per_slot: u64) -> f64 {
// slots is years * slots/year
years *
// slots/year is seconds/year ...
SECONDS_PER_YEAR
// * (ns/s)/(ns/tick) / ticks/slot = 1/s/1/tick = ticks/s
* (1_000_000_000.0 / duration_as_ns(tick_duration) as f64)
// / ticks/slot
/ ticks_per_slot as f64
}
/// From slots per year to slot duration
pub fn slot_duration_from_slots_per_year(slots_per_year: f64) -> Duration {
// Recently, rust changed from infinity as usize being zero to 2^64-1; ensure it's zero here
let slot_in_ns = if slots_per_year != 0.0 {
(SECONDS_PER_YEAR * 1_000_000_000.0) / slots_per_year
} else {
0.0
};
Duration::from_nanos(slot_in_ns as u64)
}
#[derive(Debug, Default)]
pub struct AtomicInterval {
last_update: AtomicU64,
}
impl AtomicInterval {
/// true if 'interval_time_ms' has elapsed since last time we returned true as long as it has been 'interval_time_ms' since this struct was created
pub fn should_update(&self, interval_time_ms: u64) -> bool {
self.should_update_ext(interval_time_ms, true)
}
/// a primary use case is periodic metric reporting, potentially from different threads
/// true if 'interval_time_ms' has elapsed since last time we returned true
/// except, if skip_first=false, false until 'interval_time_ms' has elapsed since this struct was created
pub fn should_update_ext(&self, interval_time_ms: u64, skip_first: bool) -> bool {
let now = timestamp();
let last = self.last_update.load(Ordering::Relaxed);
now.saturating_sub(last) > interval_time_ms
&& self
.last_update
.compare_exchange(last, now, Ordering::Relaxed, Ordering::Relaxed)
== Ok(last)
&& !(skip_first && last == 0)
}
/// return ms elapsed since the last time the time was set
pub fn elapsed_ms(&self) -> u64 {
let now = timestamp();
let last = self.last_update.load(Ordering::Relaxed);
now.saturating_sub(last) // wrapping somehow?
}
/// return ms until the interval_time will have elapsed
pub fn remaining_until_next_interval(&self, interval_time: u64) -> u64 {
interval_time.saturating_sub(self.elapsed_ms())
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_interval_update() {
solana_logger::setup();
let i = AtomicInterval::default();
assert!(!i.should_update(1000));
let i = AtomicInterval::default();
assert!(i.should_update_ext(1000, false));
std::thread::sleep(Duration::from_millis(10));
assert!(i.elapsed_ms() > 9 && i.elapsed_ms() < 1000);
assert!(
i.remaining_until_next_interval(1000) > 9
&& i.remaining_until_next_interval(1000) < 991
);
assert!(i.should_update(9));
assert!(!i.should_update(100));
}
#[test]
#[allow(clippy::float_cmp)]
fn test_years_as_slots() {
let tick_duration = Duration::from_micros(1000 * 1000 / 160);
// interestingly large numbers with 160 ticks/second
assert_eq!(years_as_slots(0.0, &tick_duration, 4) as u64, 0);
assert_eq!(
years_as_slots(1.0 / 12f64, &tick_duration, 4) as u64,
105_189_753
);
assert_eq!(years_as_slots(1.0, &tick_duration, 4) as u64, 1_262_277_039);
let tick_duration = Duration::from_micros(1000 * 1000);
// one second in years with one tick per second + one tick per slot
assert_eq!(
years_as_slots(1.0 / SECONDS_PER_YEAR, &tick_duration, 1),
1.0
);
}
#[test]
fn test_slot_duration_from_slots_per_year() {
let slots_per_year = 1_262_277_039.0;
let ticks_per_slot = 4;
assert_eq!(
slot_duration_from_slots_per_year(slots_per_year),
Duration::from_micros(1000 * 1000 / 160) * ticks_per_slot
);
assert_eq!(
slot_duration_from_slots_per_year(0.0),
Duration::from_micros(0) * ticks_per_slot
);
let slots_per_year = SECONDS_PER_YEAR;
let ticks_per_slot = 1;
assert_eq!(
slot_duration_from_slots_per_year(slots_per_year),
Duration::from_millis(1000) * ticks_per_slot
);
}
#[test]
fn test_duration_as() {
// zero
let test_zero = Duration::from_nanos(0);
assert_eq!(duration_as_ns(&test_zero), 0);
assert_eq!(duration_as_us(&test_zero), 0);
assert_eq!(duration_as_ms(&test_zero), 0);
assert!((duration_as_s(&test_zero) - 0f32) <= f32::EPSILON);
// min non-zero for each unit
let test_1ns = Duration::from_nanos(1);
assert_eq!(duration_as_ns(&test_1ns), 1);
assert_eq!(duration_as_us(&test_1ns), 0);
assert_eq!(duration_as_ms(&test_1ns), 0);
assert!((duration_as_s(&test_1ns) - 0.000_000_001f32) <= f32::EPSILON);
let test_1ns = Duration::from_micros(1);
assert_eq!(duration_as_ns(&test_1ns), 1_000);
assert_eq!(duration_as_us(&test_1ns), 1);
assert_eq!(duration_as_ms(&test_1ns), 0);
assert!((duration_as_s(&test_1ns) - 0.000_001f32) <= f32::EPSILON);
let test_1ns = Duration::from_millis(1);
assert_eq!(duration_as_ns(&test_1ns), 1_000_000);
assert_eq!(duration_as_us(&test_1ns), 1_000);
assert_eq!(duration_as_ms(&test_1ns), 1);
assert!((duration_as_s(&test_1ns) - 0.001f32) <= f32::EPSILON);
let test_1ns = Duration::from_secs(1);
assert_eq!(duration_as_ns(&test_1ns), 1_000_000_000);
assert_eq!(duration_as_us(&test_1ns), 1_000_000);
assert_eq!(duration_as_ms(&test_1ns), 1_000);
assert!((duration_as_s(&test_1ns) - 1f32) <= f32::EPSILON);
// max without error for each unit (except secs, 'cause if you use floats
// you deserve to get got)
const DUR_MAX_SECS: u64 = Duration::MAX.as_secs();
const NS_PER_SEC: u64 = 1_000_000_000;
let max_as_ns_secs = DUR_MAX_SECS / NS_PER_SEC;
let max_as_ns_ns = (DUR_MAX_SECS % NS_PER_SEC) as u32;
let max_as_ns = Duration::new(max_as_ns_secs, max_as_ns_ns);
assert_eq!(max_as_ns_secs, 18_446_744_073);
assert_eq!(max_as_ns_ns, 709_551_615);
assert_eq!(duration_as_ns(&max_as_ns), u64::MAX);
const US_PER_SEC: u64 = 1_000_000;
let max_as_us_secs = DUR_MAX_SECS / US_PER_SEC;
let max_as_us_ns = (DUR_MAX_SECS % US_PER_SEC) as u32;
let max_as_us = Duration::new(max_as_us_secs, max_as_us_ns * 1_000);
assert_eq!(max_as_us_secs, 18_446_744_073_709);
assert_eq!(max_as_us_ns, 551_615);
assert_eq!(duration_as_us(&max_as_us), u64::MAX);
const MS_PER_SEC: u64 = 1_000;
let max_as_ms_secs = DUR_MAX_SECS / MS_PER_SEC;
let max_as_ms_ns = (DUR_MAX_SECS % MS_PER_SEC) as u32;
let max_as_ms = Duration::new(max_as_ms_secs, max_as_ms_ns * 1_000_000);
assert_eq!(max_as_ms_secs, 18_446_744_073_709_551);
assert_eq!(max_as_ms_ns, 615);
assert_eq!(duration_as_ms(&max_as_ms), u64::MAX);
}
}