cosmos-sdk/api/cosmos/orm/v1alpha1/orm.pulsar.go

2646 lines
100 KiB
Go

package ormv1alpha1
import (
fmt "fmt"
io "io"
reflect "reflect"
sync "sync"
runtime "github.com/cosmos/cosmos-proto/runtime"
protoreflect "google.golang.org/protobuf/reflect/protoreflect"
protoiface "google.golang.org/protobuf/runtime/protoiface"
protoimpl "google.golang.org/protobuf/runtime/protoimpl"
descriptorpb "google.golang.org/protobuf/types/descriptorpb"
)
var _ protoreflect.List = (*_TableDescriptor_2_list)(nil)
type _TableDescriptor_2_list struct {
list *[]*SecondaryIndexDescriptor
}
func (x *_TableDescriptor_2_list) Len() int {
if x.list == nil {
return 0
}
return len(*x.list)
}
func (x *_TableDescriptor_2_list) Get(i int) protoreflect.Value {
return protoreflect.ValueOfMessage((*x.list)[i].ProtoReflect())
}
func (x *_TableDescriptor_2_list) Set(i int, value protoreflect.Value) {
valueUnwrapped := value.Message()
concreteValue := valueUnwrapped.Interface().(*SecondaryIndexDescriptor)
(*x.list)[i] = concreteValue
}
func (x *_TableDescriptor_2_list) Append(value protoreflect.Value) {
valueUnwrapped := value.Message()
concreteValue := valueUnwrapped.Interface().(*SecondaryIndexDescriptor)
*x.list = append(*x.list, concreteValue)
}
func (x *_TableDescriptor_2_list) AppendMutable() protoreflect.Value {
v := new(SecondaryIndexDescriptor)
*x.list = append(*x.list, v)
return protoreflect.ValueOfMessage(v.ProtoReflect())
}
func (x *_TableDescriptor_2_list) Truncate(n int) {
for i := n; i < len(*x.list); i++ {
(*x.list)[i] = nil
}
*x.list = (*x.list)[:n]
}
func (x *_TableDescriptor_2_list) NewElement() protoreflect.Value {
v := new(SecondaryIndexDescriptor)
return protoreflect.ValueOfMessage(v.ProtoReflect())
}
func (x *_TableDescriptor_2_list) IsValid() bool {
return x.list != nil
}
var (
md_TableDescriptor protoreflect.MessageDescriptor
fd_TableDescriptor_primary_key protoreflect.FieldDescriptor
fd_TableDescriptor_index protoreflect.FieldDescriptor
fd_TableDescriptor_id protoreflect.FieldDescriptor
)
func init() {
file_cosmos_orm_v1alpha1_orm_proto_init()
md_TableDescriptor = File_cosmos_orm_v1alpha1_orm_proto.Messages().ByName("TableDescriptor")
fd_TableDescriptor_primary_key = md_TableDescriptor.Fields().ByName("primary_key")
fd_TableDescriptor_index = md_TableDescriptor.Fields().ByName("index")
fd_TableDescriptor_id = md_TableDescriptor.Fields().ByName("id")
}
var _ protoreflect.Message = (*fastReflection_TableDescriptor)(nil)
type fastReflection_TableDescriptor TableDescriptor
func (x *TableDescriptor) ProtoReflect() protoreflect.Message {
return (*fastReflection_TableDescriptor)(x)
}
func (x *TableDescriptor) slowProtoReflect() protoreflect.Message {
mi := &file_cosmos_orm_v1alpha1_orm_proto_msgTypes[0]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
var _fastReflection_TableDescriptor_messageType fastReflection_TableDescriptor_messageType
var _ protoreflect.MessageType = fastReflection_TableDescriptor_messageType{}
type fastReflection_TableDescriptor_messageType struct{}
func (x fastReflection_TableDescriptor_messageType) Zero() protoreflect.Message {
return (*fastReflection_TableDescriptor)(nil)
}
func (x fastReflection_TableDescriptor_messageType) New() protoreflect.Message {
return new(fastReflection_TableDescriptor)
}
func (x fastReflection_TableDescriptor_messageType) Descriptor() protoreflect.MessageDescriptor {
return md_TableDescriptor
}
// Descriptor returns message descriptor, which contains only the protobuf
// type information for the message.
func (x *fastReflection_TableDescriptor) Descriptor() protoreflect.MessageDescriptor {
return md_TableDescriptor
}
// Type returns the message type, which encapsulates both Go and protobuf
// type information. If the Go type information is not needed,
// it is recommended that the message descriptor be used instead.
func (x *fastReflection_TableDescriptor) Type() protoreflect.MessageType {
return _fastReflection_TableDescriptor_messageType
}
// New returns a newly allocated and mutable empty message.
func (x *fastReflection_TableDescriptor) New() protoreflect.Message {
return new(fastReflection_TableDescriptor)
}
// Interface unwraps the message reflection interface and
// returns the underlying ProtoMessage interface.
func (x *fastReflection_TableDescriptor) Interface() protoreflect.ProtoMessage {
return (*TableDescriptor)(x)
}
// Range iterates over every populated field in an undefined order,
// calling f for each field descriptor and value encountered.
// Range returns immediately if f returns false.
// While iterating, mutating operations may only be performed
// on the current field descriptor.
func (x *fastReflection_TableDescriptor) Range(f func(protoreflect.FieldDescriptor, protoreflect.Value) bool) {
if x.PrimaryKey != nil {
value := protoreflect.ValueOfMessage(x.PrimaryKey.ProtoReflect())
if !f(fd_TableDescriptor_primary_key, value) {
return
}
}
if len(x.Index) != 0 {
value := protoreflect.ValueOfList(&_TableDescriptor_2_list{list: &x.Index})
if !f(fd_TableDescriptor_index, value) {
return
}
}
if x.Id != uint32(0) {
value := protoreflect.ValueOfUint32(x.Id)
if !f(fd_TableDescriptor_id, value) {
return
}
}
}
// Has reports whether a field is populated.
//
// Some fields have the property of nullability where it is possible to
// distinguish between the default value of a field and whether the field
// was explicitly populated with the default value. Singular message fields,
// member fields of a oneof, and proto2 scalar fields are nullable. Such
// fields are populated only if explicitly set.
//
// In other cases (aside from the nullable cases above),
// a proto3 scalar field is populated if it contains a non-zero value, and
// a repeated field is populated if it is non-empty.
func (x *fastReflection_TableDescriptor) Has(fd protoreflect.FieldDescriptor) bool {
switch fd.FullName() {
case "cosmos.orm.v1alpha1.TableDescriptor.primary_key":
return x.PrimaryKey != nil
case "cosmos.orm.v1alpha1.TableDescriptor.index":
return len(x.Index) != 0
case "cosmos.orm.v1alpha1.TableDescriptor.id":
return x.Id != uint32(0)
default:
if fd.IsExtension() {
panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.TableDescriptor"))
}
panic(fmt.Errorf("message cosmos.orm.v1alpha1.TableDescriptor does not contain field %s", fd.FullName()))
}
}
// Clear clears the field such that a subsequent Has call reports false.
//
// Clearing an extension field clears both the extension type and value
// associated with the given field number.
//
// Clear is a mutating operation and unsafe for concurrent use.
func (x *fastReflection_TableDescriptor) Clear(fd protoreflect.FieldDescriptor) {
switch fd.FullName() {
case "cosmos.orm.v1alpha1.TableDescriptor.primary_key":
x.PrimaryKey = nil
case "cosmos.orm.v1alpha1.TableDescriptor.index":
x.Index = nil
case "cosmos.orm.v1alpha1.TableDescriptor.id":
x.Id = uint32(0)
default:
if fd.IsExtension() {
panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.TableDescriptor"))
}
panic(fmt.Errorf("message cosmos.orm.v1alpha1.TableDescriptor does not contain field %s", fd.FullName()))
}
}
// Get retrieves the value for a field.
//
// For unpopulated scalars, it returns the default value, where
// the default value of a bytes scalar is guaranteed to be a copy.
// For unpopulated composite types, it returns an empty, read-only view
// of the value; to obtain a mutable reference, use Mutable.
func (x *fastReflection_TableDescriptor) Get(descriptor protoreflect.FieldDescriptor) protoreflect.Value {
switch descriptor.FullName() {
case "cosmos.orm.v1alpha1.TableDescriptor.primary_key":
value := x.PrimaryKey
return protoreflect.ValueOfMessage(value.ProtoReflect())
case "cosmos.orm.v1alpha1.TableDescriptor.index":
if len(x.Index) == 0 {
return protoreflect.ValueOfList(&_TableDescriptor_2_list{})
}
listValue := &_TableDescriptor_2_list{list: &x.Index}
return protoreflect.ValueOfList(listValue)
case "cosmos.orm.v1alpha1.TableDescriptor.id":
value := x.Id
return protoreflect.ValueOfUint32(value)
default:
if descriptor.IsExtension() {
panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.TableDescriptor"))
}
panic(fmt.Errorf("message cosmos.orm.v1alpha1.TableDescriptor does not contain field %s", descriptor.FullName()))
}
}
// Set stores the value for a field.
//
// For a field belonging to a oneof, it implicitly clears any other field
// that may be currently set within the same oneof.
// For extension fields, it implicitly stores the provided ExtensionType.
// When setting a composite type, it is unspecified whether the stored value
// aliases the source's memory in any way. If the composite value is an
// empty, read-only value, then it panics.
//
// Set is a mutating operation and unsafe for concurrent use.
func (x *fastReflection_TableDescriptor) Set(fd protoreflect.FieldDescriptor, value protoreflect.Value) {
switch fd.FullName() {
case "cosmos.orm.v1alpha1.TableDescriptor.primary_key":
x.PrimaryKey = value.Message().Interface().(*PrimaryKeyDescriptor)
case "cosmos.orm.v1alpha1.TableDescriptor.index":
lv := value.List()
clv := lv.(*_TableDescriptor_2_list)
x.Index = *clv.list
case "cosmos.orm.v1alpha1.TableDescriptor.id":
x.Id = uint32(value.Uint())
default:
if fd.IsExtension() {
panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.TableDescriptor"))
}
panic(fmt.Errorf("message cosmos.orm.v1alpha1.TableDescriptor does not contain field %s", fd.FullName()))
}
}
// Mutable returns a mutable reference to a composite type.
//
// If the field is unpopulated, it may allocate a composite value.
// For a field belonging to a oneof, it implicitly clears any other field
// that may be currently set within the same oneof.
// For extension fields, it implicitly stores the provided ExtensionType
// if not already stored.
// It panics if the field does not contain a composite type.
//
// Mutable is a mutating operation and unsafe for concurrent use.
func (x *fastReflection_TableDescriptor) Mutable(fd protoreflect.FieldDescriptor) protoreflect.Value {
switch fd.FullName() {
case "cosmos.orm.v1alpha1.TableDescriptor.primary_key":
if x.PrimaryKey == nil {
x.PrimaryKey = new(PrimaryKeyDescriptor)
}
return protoreflect.ValueOfMessage(x.PrimaryKey.ProtoReflect())
case "cosmos.orm.v1alpha1.TableDescriptor.index":
if x.Index == nil {
x.Index = []*SecondaryIndexDescriptor{}
}
value := &_TableDescriptor_2_list{list: &x.Index}
return protoreflect.ValueOfList(value)
case "cosmos.orm.v1alpha1.TableDescriptor.id":
panic(fmt.Errorf("field id of message cosmos.orm.v1alpha1.TableDescriptor is not mutable"))
default:
if fd.IsExtension() {
panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.TableDescriptor"))
}
panic(fmt.Errorf("message cosmos.orm.v1alpha1.TableDescriptor does not contain field %s", fd.FullName()))
}
}
// NewField returns a new value that is assignable to the field
// for the given descriptor. For scalars, this returns the default value.
// For lists, maps, and messages, this returns a new, empty, mutable value.
func (x *fastReflection_TableDescriptor) NewField(fd protoreflect.FieldDescriptor) protoreflect.Value {
switch fd.FullName() {
case "cosmos.orm.v1alpha1.TableDescriptor.primary_key":
m := new(PrimaryKeyDescriptor)
return protoreflect.ValueOfMessage(m.ProtoReflect())
case "cosmos.orm.v1alpha1.TableDescriptor.index":
list := []*SecondaryIndexDescriptor{}
return protoreflect.ValueOfList(&_TableDescriptor_2_list{list: &list})
case "cosmos.orm.v1alpha1.TableDescriptor.id":
return protoreflect.ValueOfUint32(uint32(0))
default:
if fd.IsExtension() {
panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.TableDescriptor"))
}
panic(fmt.Errorf("message cosmos.orm.v1alpha1.TableDescriptor does not contain field %s", fd.FullName()))
}
}
// WhichOneof reports which field within the oneof is populated,
// returning nil if none are populated.
// It panics if the oneof descriptor does not belong to this message.
func (x *fastReflection_TableDescriptor) WhichOneof(d protoreflect.OneofDescriptor) protoreflect.FieldDescriptor {
switch d.FullName() {
default:
panic(fmt.Errorf("%s is not a oneof field in cosmos.orm.v1alpha1.TableDescriptor", d.FullName()))
}
panic("unreachable")
}
// GetUnknown retrieves the entire list of unknown fields.
// The caller may only mutate the contents of the RawFields
// if the mutated bytes are stored back into the message with SetUnknown.
func (x *fastReflection_TableDescriptor) GetUnknown() protoreflect.RawFields {
return x.unknownFields
}
// SetUnknown stores an entire list of unknown fields.
// The raw fields must be syntactically valid according to the wire format.
// An implementation may panic if this is not the case.
// Once stored, the caller must not mutate the content of the RawFields.
// An empty RawFields may be passed to clear the fields.
//
// SetUnknown is a mutating operation and unsafe for concurrent use.
func (x *fastReflection_TableDescriptor) SetUnknown(fields protoreflect.RawFields) {
x.unknownFields = fields
}
// IsValid reports whether the message is valid.
//
// An invalid message is an empty, read-only value.
//
// An invalid message often corresponds to a nil pointer of the concrete
// message type, but the details are implementation dependent.
// Validity is not part of the protobuf data model, and may not
// be preserved in marshaling or other operations.
func (x *fastReflection_TableDescriptor) IsValid() bool {
return x != nil
}
// ProtoMethods returns optional fastReflectionFeature-path implementations of various operations.
// This method may return nil.
//
// The returned methods type is identical to
// "google.golang.org/protobuf/runtime/protoiface".Methods.
// Consult the protoiface package documentation for details.
func (x *fastReflection_TableDescriptor) ProtoMethods() *protoiface.Methods {
size := func(input protoiface.SizeInput) protoiface.SizeOutput {
x := input.Message.Interface().(*TableDescriptor)
if x == nil {
return protoiface.SizeOutput{
NoUnkeyedLiterals: input.NoUnkeyedLiterals,
Size: 0,
}
}
options := runtime.SizeInputToOptions(input)
_ = options
var n int
var l int
_ = l
if x.PrimaryKey != nil {
l = options.Size(x.PrimaryKey)
n += 1 + l + runtime.Sov(uint64(l))
}
if len(x.Index) > 0 {
for _, e := range x.Index {
l = options.Size(e)
n += 1 + l + runtime.Sov(uint64(l))
}
}
if x.Id != 0 {
n += 1 + runtime.Sov(uint64(x.Id))
}
if x.unknownFields != nil {
n += len(x.unknownFields)
}
return protoiface.SizeOutput{
NoUnkeyedLiterals: input.NoUnkeyedLiterals,
Size: n,
}
}
marshal := func(input protoiface.MarshalInput) (protoiface.MarshalOutput, error) {
x := input.Message.Interface().(*TableDescriptor)
if x == nil {
return protoiface.MarshalOutput{
NoUnkeyedLiterals: input.NoUnkeyedLiterals,
Buf: input.Buf,
}, nil
}
options := runtime.MarshalInputToOptions(input)
_ = options
size := options.Size(x)
dAtA := make([]byte, size)
i := len(dAtA)
_ = i
var l int
_ = l
if x.unknownFields != nil {
i -= len(x.unknownFields)
copy(dAtA[i:], x.unknownFields)
}
if x.Id != 0 {
i = runtime.EncodeVarint(dAtA, i, uint64(x.Id))
i--
dAtA[i] = 0x18
}
if len(x.Index) > 0 {
for iNdEx := len(x.Index) - 1; iNdEx >= 0; iNdEx-- {
encoded, err := options.Marshal(x.Index[iNdEx])
if err != nil {
return protoiface.MarshalOutput{
NoUnkeyedLiterals: input.NoUnkeyedLiterals,
Buf: input.Buf,
}, err
}
i -= len(encoded)
copy(dAtA[i:], encoded)
i = runtime.EncodeVarint(dAtA, i, uint64(len(encoded)))
i--
dAtA[i] = 0x12
}
}
if x.PrimaryKey != nil {
encoded, err := options.Marshal(x.PrimaryKey)
if err != nil {
return protoiface.MarshalOutput{
NoUnkeyedLiterals: input.NoUnkeyedLiterals,
Buf: input.Buf,
}, err
}
i -= len(encoded)
copy(dAtA[i:], encoded)
i = runtime.EncodeVarint(dAtA, i, uint64(len(encoded)))
i--
dAtA[i] = 0xa
}
if input.Buf != nil {
input.Buf = append(input.Buf, dAtA...)
} else {
input.Buf = dAtA
}
return protoiface.MarshalOutput{
NoUnkeyedLiterals: input.NoUnkeyedLiterals,
Buf: input.Buf,
}, nil
}
unmarshal := func(input protoiface.UnmarshalInput) (protoiface.UnmarshalOutput, error) {
x := input.Message.Interface().(*TableDescriptor)
if x == nil {
return protoiface.UnmarshalOutput{
NoUnkeyedLiterals: input.NoUnkeyedLiterals,
Flags: input.Flags,
}, nil
}
options := runtime.UnmarshalInputToOptions(input)
_ = options
dAtA := input.Buf
l := len(dAtA)
iNdEx := 0
for iNdEx < l {
preIndex := iNdEx
var wire uint64
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrIntOverflow
}
if iNdEx >= l {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF
}
b := dAtA[iNdEx]
iNdEx++
wire |= uint64(b&0x7F) << shift
if b < 0x80 {
break
}
}
fieldNum := int32(wire >> 3)
wireType := int(wire & 0x7)
if wireType == 4 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: TableDescriptor: wiretype end group for non-group")
}
if fieldNum <= 0 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: TableDescriptor: illegal tag %d (wire type %d)", fieldNum, wire)
}
switch fieldNum {
case 1:
if wireType != 2 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: wrong wireType = %d for field PrimaryKey", wireType)
}
var msglen int
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrIntOverflow
}
if iNdEx >= l {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF
}
b := dAtA[iNdEx]
iNdEx++
msglen |= int(b&0x7F) << shift
if b < 0x80 {
break
}
}
if msglen < 0 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrInvalidLength
}
postIndex := iNdEx + msglen
if postIndex < 0 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrInvalidLength
}
if postIndex > l {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF
}
if x.PrimaryKey == nil {
x.PrimaryKey = &PrimaryKeyDescriptor{}
}
if err := options.Unmarshal(dAtA[iNdEx:postIndex], x.PrimaryKey); err != nil {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, err
}
iNdEx = postIndex
case 2:
if wireType != 2 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: wrong wireType = %d for field Index", wireType)
}
var msglen int
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrIntOverflow
}
if iNdEx >= l {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF
}
b := dAtA[iNdEx]
iNdEx++
msglen |= int(b&0x7F) << shift
if b < 0x80 {
break
}
}
if msglen < 0 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrInvalidLength
}
postIndex := iNdEx + msglen
if postIndex < 0 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrInvalidLength
}
if postIndex > l {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF
}
x.Index = append(x.Index, &SecondaryIndexDescriptor{})
if err := options.Unmarshal(dAtA[iNdEx:postIndex], x.Index[len(x.Index)-1]); err != nil {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, err
}
iNdEx = postIndex
case 3:
if wireType != 0 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: wrong wireType = %d for field Id", wireType)
}
x.Id = 0
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrIntOverflow
}
if iNdEx >= l {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF
}
b := dAtA[iNdEx]
iNdEx++
x.Id |= uint32(b&0x7F) << shift
if b < 0x80 {
break
}
}
default:
iNdEx = preIndex
skippy, err := runtime.Skip(dAtA[iNdEx:])
if err != nil {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, err
}
if (skippy < 0) || (iNdEx+skippy) < 0 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrInvalidLength
}
if (iNdEx + skippy) > l {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF
}
if !options.DiscardUnknown {
x.unknownFields = append(x.unknownFields, dAtA[iNdEx:iNdEx+skippy]...)
}
iNdEx += skippy
}
}
if iNdEx > l {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF
}
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, nil
}
return &protoiface.Methods{
NoUnkeyedLiterals: struct{}{},
Flags: protoiface.SupportMarshalDeterministic | protoiface.SupportUnmarshalDiscardUnknown,
Size: size,
Marshal: marshal,
Unmarshal: unmarshal,
Merge: nil,
CheckInitialized: nil,
}
}
var (
md_PrimaryKeyDescriptor protoreflect.MessageDescriptor
fd_PrimaryKeyDescriptor_fields protoreflect.FieldDescriptor
fd_PrimaryKeyDescriptor_auto_increment protoreflect.FieldDescriptor
fd_PrimaryKeyDescriptor_references protoreflect.FieldDescriptor
)
func init() {
file_cosmos_orm_v1alpha1_orm_proto_init()
md_PrimaryKeyDescriptor = File_cosmos_orm_v1alpha1_orm_proto.Messages().ByName("PrimaryKeyDescriptor")
fd_PrimaryKeyDescriptor_fields = md_PrimaryKeyDescriptor.Fields().ByName("fields")
fd_PrimaryKeyDescriptor_auto_increment = md_PrimaryKeyDescriptor.Fields().ByName("auto_increment")
fd_PrimaryKeyDescriptor_references = md_PrimaryKeyDescriptor.Fields().ByName("references")
}
var _ protoreflect.Message = (*fastReflection_PrimaryKeyDescriptor)(nil)
type fastReflection_PrimaryKeyDescriptor PrimaryKeyDescriptor
func (x *PrimaryKeyDescriptor) ProtoReflect() protoreflect.Message {
return (*fastReflection_PrimaryKeyDescriptor)(x)
}
func (x *PrimaryKeyDescriptor) slowProtoReflect() protoreflect.Message {
mi := &file_cosmos_orm_v1alpha1_orm_proto_msgTypes[1]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
var _fastReflection_PrimaryKeyDescriptor_messageType fastReflection_PrimaryKeyDescriptor_messageType
var _ protoreflect.MessageType = fastReflection_PrimaryKeyDescriptor_messageType{}
type fastReflection_PrimaryKeyDescriptor_messageType struct{}
func (x fastReflection_PrimaryKeyDescriptor_messageType) Zero() protoreflect.Message {
return (*fastReflection_PrimaryKeyDescriptor)(nil)
}
func (x fastReflection_PrimaryKeyDescriptor_messageType) New() protoreflect.Message {
return new(fastReflection_PrimaryKeyDescriptor)
}
func (x fastReflection_PrimaryKeyDescriptor_messageType) Descriptor() protoreflect.MessageDescriptor {
return md_PrimaryKeyDescriptor
}
// Descriptor returns message descriptor, which contains only the protobuf
// type information for the message.
func (x *fastReflection_PrimaryKeyDescriptor) Descriptor() protoreflect.MessageDescriptor {
return md_PrimaryKeyDescriptor
}
// Type returns the message type, which encapsulates both Go and protobuf
// type information. If the Go type information is not needed,
// it is recommended that the message descriptor be used instead.
func (x *fastReflection_PrimaryKeyDescriptor) Type() protoreflect.MessageType {
return _fastReflection_PrimaryKeyDescriptor_messageType
}
// New returns a newly allocated and mutable empty message.
func (x *fastReflection_PrimaryKeyDescriptor) New() protoreflect.Message {
return new(fastReflection_PrimaryKeyDescriptor)
}
// Interface unwraps the message reflection interface and
// returns the underlying ProtoMessage interface.
func (x *fastReflection_PrimaryKeyDescriptor) Interface() protoreflect.ProtoMessage {
return (*PrimaryKeyDescriptor)(x)
}
// Range iterates over every populated field in an undefined order,
// calling f for each field descriptor and value encountered.
// Range returns immediately if f returns false.
// While iterating, mutating operations may only be performed
// on the current field descriptor.
func (x *fastReflection_PrimaryKeyDescriptor) Range(f func(protoreflect.FieldDescriptor, protoreflect.Value) bool) {
if x.Fields != "" {
value := protoreflect.ValueOfString(x.Fields)
if !f(fd_PrimaryKeyDescriptor_fields, value) {
return
}
}
if x.AutoIncrement != false {
value := protoreflect.ValueOfBool(x.AutoIncrement)
if !f(fd_PrimaryKeyDescriptor_auto_increment, value) {
return
}
}
if x.References != "" {
value := protoreflect.ValueOfString(x.References)
if !f(fd_PrimaryKeyDescriptor_references, value) {
return
}
}
}
// Has reports whether a field is populated.
//
// Some fields have the property of nullability where it is possible to
// distinguish between the default value of a field and whether the field
// was explicitly populated with the default value. Singular message fields,
// member fields of a oneof, and proto2 scalar fields are nullable. Such
// fields are populated only if explicitly set.
//
// In other cases (aside from the nullable cases above),
// a proto3 scalar field is populated if it contains a non-zero value, and
// a repeated field is populated if it is non-empty.
func (x *fastReflection_PrimaryKeyDescriptor) Has(fd protoreflect.FieldDescriptor) bool {
switch fd.FullName() {
case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.fields":
return x.Fields != ""
case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.auto_increment":
return x.AutoIncrement != false
case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.references":
return x.References != ""
default:
if fd.IsExtension() {
panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.PrimaryKeyDescriptor"))
}
panic(fmt.Errorf("message cosmos.orm.v1alpha1.PrimaryKeyDescriptor does not contain field %s", fd.FullName()))
}
}
// Clear clears the field such that a subsequent Has call reports false.
//
// Clearing an extension field clears both the extension type and value
// associated with the given field number.
//
// Clear is a mutating operation and unsafe for concurrent use.
func (x *fastReflection_PrimaryKeyDescriptor) Clear(fd protoreflect.FieldDescriptor) {
switch fd.FullName() {
case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.fields":
x.Fields = ""
case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.auto_increment":
x.AutoIncrement = false
case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.references":
x.References = ""
default:
if fd.IsExtension() {
panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.PrimaryKeyDescriptor"))
}
panic(fmt.Errorf("message cosmos.orm.v1alpha1.PrimaryKeyDescriptor does not contain field %s", fd.FullName()))
}
}
// Get retrieves the value for a field.
//
// For unpopulated scalars, it returns the default value, where
// the default value of a bytes scalar is guaranteed to be a copy.
// For unpopulated composite types, it returns an empty, read-only view
// of the value; to obtain a mutable reference, use Mutable.
func (x *fastReflection_PrimaryKeyDescriptor) Get(descriptor protoreflect.FieldDescriptor) protoreflect.Value {
switch descriptor.FullName() {
case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.fields":
value := x.Fields
return protoreflect.ValueOfString(value)
case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.auto_increment":
value := x.AutoIncrement
return protoreflect.ValueOfBool(value)
case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.references":
value := x.References
return protoreflect.ValueOfString(value)
default:
if descriptor.IsExtension() {
panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.PrimaryKeyDescriptor"))
}
panic(fmt.Errorf("message cosmos.orm.v1alpha1.PrimaryKeyDescriptor does not contain field %s", descriptor.FullName()))
}
}
// Set stores the value for a field.
//
// For a field belonging to a oneof, it implicitly clears any other field
// that may be currently set within the same oneof.
// For extension fields, it implicitly stores the provided ExtensionType.
// When setting a composite type, it is unspecified whether the stored value
// aliases the source's memory in any way. If the composite value is an
// empty, read-only value, then it panics.
//
// Set is a mutating operation and unsafe for concurrent use.
func (x *fastReflection_PrimaryKeyDescriptor) Set(fd protoreflect.FieldDescriptor, value protoreflect.Value) {
switch fd.FullName() {
case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.fields":
x.Fields = value.Interface().(string)
case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.auto_increment":
x.AutoIncrement = value.Bool()
case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.references":
x.References = value.Interface().(string)
default:
if fd.IsExtension() {
panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.PrimaryKeyDescriptor"))
}
panic(fmt.Errorf("message cosmos.orm.v1alpha1.PrimaryKeyDescriptor does not contain field %s", fd.FullName()))
}
}
// Mutable returns a mutable reference to a composite type.
//
// If the field is unpopulated, it may allocate a composite value.
// For a field belonging to a oneof, it implicitly clears any other field
// that may be currently set within the same oneof.
// For extension fields, it implicitly stores the provided ExtensionType
// if not already stored.
// It panics if the field does not contain a composite type.
//
// Mutable is a mutating operation and unsafe for concurrent use.
func (x *fastReflection_PrimaryKeyDescriptor) Mutable(fd protoreflect.FieldDescriptor) protoreflect.Value {
switch fd.FullName() {
case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.fields":
panic(fmt.Errorf("field fields of message cosmos.orm.v1alpha1.PrimaryKeyDescriptor is not mutable"))
case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.auto_increment":
panic(fmt.Errorf("field auto_increment of message cosmos.orm.v1alpha1.PrimaryKeyDescriptor is not mutable"))
case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.references":
panic(fmt.Errorf("field references of message cosmos.orm.v1alpha1.PrimaryKeyDescriptor is not mutable"))
default:
if fd.IsExtension() {
panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.PrimaryKeyDescriptor"))
}
panic(fmt.Errorf("message cosmos.orm.v1alpha1.PrimaryKeyDescriptor does not contain field %s", fd.FullName()))
}
}
// NewField returns a new value that is assignable to the field
// for the given descriptor. For scalars, this returns the default value.
// For lists, maps, and messages, this returns a new, empty, mutable value.
func (x *fastReflection_PrimaryKeyDescriptor) NewField(fd protoreflect.FieldDescriptor) protoreflect.Value {
switch fd.FullName() {
case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.fields":
return protoreflect.ValueOfString("")
case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.auto_increment":
return protoreflect.ValueOfBool(false)
case "cosmos.orm.v1alpha1.PrimaryKeyDescriptor.references":
return protoreflect.ValueOfString("")
default:
if fd.IsExtension() {
panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.PrimaryKeyDescriptor"))
}
panic(fmt.Errorf("message cosmos.orm.v1alpha1.PrimaryKeyDescriptor does not contain field %s", fd.FullName()))
}
}
// WhichOneof reports which field within the oneof is populated,
// returning nil if none are populated.
// It panics if the oneof descriptor does not belong to this message.
func (x *fastReflection_PrimaryKeyDescriptor) WhichOneof(d protoreflect.OneofDescriptor) protoreflect.FieldDescriptor {
switch d.FullName() {
default:
panic(fmt.Errorf("%s is not a oneof field in cosmos.orm.v1alpha1.PrimaryKeyDescriptor", d.FullName()))
}
panic("unreachable")
}
// GetUnknown retrieves the entire list of unknown fields.
// The caller may only mutate the contents of the RawFields
// if the mutated bytes are stored back into the message with SetUnknown.
func (x *fastReflection_PrimaryKeyDescriptor) GetUnknown() protoreflect.RawFields {
return x.unknownFields
}
// SetUnknown stores an entire list of unknown fields.
// The raw fields must be syntactically valid according to the wire format.
// An implementation may panic if this is not the case.
// Once stored, the caller must not mutate the content of the RawFields.
// An empty RawFields may be passed to clear the fields.
//
// SetUnknown is a mutating operation and unsafe for concurrent use.
func (x *fastReflection_PrimaryKeyDescriptor) SetUnknown(fields protoreflect.RawFields) {
x.unknownFields = fields
}
// IsValid reports whether the message is valid.
//
// An invalid message is an empty, read-only value.
//
// An invalid message often corresponds to a nil pointer of the concrete
// message type, but the details are implementation dependent.
// Validity is not part of the protobuf data model, and may not
// be preserved in marshaling or other operations.
func (x *fastReflection_PrimaryKeyDescriptor) IsValid() bool {
return x != nil
}
// ProtoMethods returns optional fastReflectionFeature-path implementations of various operations.
// This method may return nil.
//
// The returned methods type is identical to
// "google.golang.org/protobuf/runtime/protoiface".Methods.
// Consult the protoiface package documentation for details.
func (x *fastReflection_PrimaryKeyDescriptor) ProtoMethods() *protoiface.Methods {
size := func(input protoiface.SizeInput) protoiface.SizeOutput {
x := input.Message.Interface().(*PrimaryKeyDescriptor)
if x == nil {
return protoiface.SizeOutput{
NoUnkeyedLiterals: input.NoUnkeyedLiterals,
Size: 0,
}
}
options := runtime.SizeInputToOptions(input)
_ = options
var n int
var l int
_ = l
l = len(x.Fields)
if l > 0 {
n += 1 + l + runtime.Sov(uint64(l))
}
if x.AutoIncrement {
n += 2
}
l = len(x.References)
if l > 0 {
n += 1 + l + runtime.Sov(uint64(l))
}
if x.unknownFields != nil {
n += len(x.unknownFields)
}
return protoiface.SizeOutput{
NoUnkeyedLiterals: input.NoUnkeyedLiterals,
Size: n,
}
}
marshal := func(input protoiface.MarshalInput) (protoiface.MarshalOutput, error) {
x := input.Message.Interface().(*PrimaryKeyDescriptor)
if x == nil {
return protoiface.MarshalOutput{
NoUnkeyedLiterals: input.NoUnkeyedLiterals,
Buf: input.Buf,
}, nil
}
options := runtime.MarshalInputToOptions(input)
_ = options
size := options.Size(x)
dAtA := make([]byte, size)
i := len(dAtA)
_ = i
var l int
_ = l
if x.unknownFields != nil {
i -= len(x.unknownFields)
copy(dAtA[i:], x.unknownFields)
}
if len(x.References) > 0 {
i -= len(x.References)
copy(dAtA[i:], x.References)
i = runtime.EncodeVarint(dAtA, i, uint64(len(x.References)))
i--
dAtA[i] = 0x1a
}
if x.AutoIncrement {
i--
if x.AutoIncrement {
dAtA[i] = 1
} else {
dAtA[i] = 0
}
i--
dAtA[i] = 0x10
}
if len(x.Fields) > 0 {
i -= len(x.Fields)
copy(dAtA[i:], x.Fields)
i = runtime.EncodeVarint(dAtA, i, uint64(len(x.Fields)))
i--
dAtA[i] = 0xa
}
if input.Buf != nil {
input.Buf = append(input.Buf, dAtA...)
} else {
input.Buf = dAtA
}
return protoiface.MarshalOutput{
NoUnkeyedLiterals: input.NoUnkeyedLiterals,
Buf: input.Buf,
}, nil
}
unmarshal := func(input protoiface.UnmarshalInput) (protoiface.UnmarshalOutput, error) {
x := input.Message.Interface().(*PrimaryKeyDescriptor)
if x == nil {
return protoiface.UnmarshalOutput{
NoUnkeyedLiterals: input.NoUnkeyedLiterals,
Flags: input.Flags,
}, nil
}
options := runtime.UnmarshalInputToOptions(input)
_ = options
dAtA := input.Buf
l := len(dAtA)
iNdEx := 0
for iNdEx < l {
preIndex := iNdEx
var wire uint64
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrIntOverflow
}
if iNdEx >= l {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF
}
b := dAtA[iNdEx]
iNdEx++
wire |= uint64(b&0x7F) << shift
if b < 0x80 {
break
}
}
fieldNum := int32(wire >> 3)
wireType := int(wire & 0x7)
if wireType == 4 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: PrimaryKeyDescriptor: wiretype end group for non-group")
}
if fieldNum <= 0 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: PrimaryKeyDescriptor: illegal tag %d (wire type %d)", fieldNum, wire)
}
switch fieldNum {
case 1:
if wireType != 2 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: wrong wireType = %d for field Fields", wireType)
}
var stringLen uint64
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrIntOverflow
}
if iNdEx >= l {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF
}
b := dAtA[iNdEx]
iNdEx++
stringLen |= uint64(b&0x7F) << shift
if b < 0x80 {
break
}
}
intStringLen := int(stringLen)
if intStringLen < 0 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrInvalidLength
}
postIndex := iNdEx + intStringLen
if postIndex < 0 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrInvalidLength
}
if postIndex > l {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF
}
x.Fields = string(dAtA[iNdEx:postIndex])
iNdEx = postIndex
case 2:
if wireType != 0 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: wrong wireType = %d for field AutoIncrement", wireType)
}
var v int
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrIntOverflow
}
if iNdEx >= l {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF
}
b := dAtA[iNdEx]
iNdEx++
v |= int(b&0x7F) << shift
if b < 0x80 {
break
}
}
x.AutoIncrement = bool(v != 0)
case 3:
if wireType != 2 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: wrong wireType = %d for field References", wireType)
}
var stringLen uint64
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrIntOverflow
}
if iNdEx >= l {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF
}
b := dAtA[iNdEx]
iNdEx++
stringLen |= uint64(b&0x7F) << shift
if b < 0x80 {
break
}
}
intStringLen := int(stringLen)
if intStringLen < 0 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrInvalidLength
}
postIndex := iNdEx + intStringLen
if postIndex < 0 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrInvalidLength
}
if postIndex > l {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF
}
x.References = string(dAtA[iNdEx:postIndex])
iNdEx = postIndex
default:
iNdEx = preIndex
skippy, err := runtime.Skip(dAtA[iNdEx:])
if err != nil {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, err
}
if (skippy < 0) || (iNdEx+skippy) < 0 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrInvalidLength
}
if (iNdEx + skippy) > l {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF
}
if !options.DiscardUnknown {
x.unknownFields = append(x.unknownFields, dAtA[iNdEx:iNdEx+skippy]...)
}
iNdEx += skippy
}
}
if iNdEx > l {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF
}
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, nil
}
return &protoiface.Methods{
NoUnkeyedLiterals: struct{}{},
Flags: protoiface.SupportMarshalDeterministic | protoiface.SupportUnmarshalDiscardUnknown,
Size: size,
Marshal: marshal,
Unmarshal: unmarshal,
Merge: nil,
CheckInitialized: nil,
}
}
var (
md_SecondaryIndexDescriptor protoreflect.MessageDescriptor
fd_SecondaryIndexDescriptor_fields protoreflect.FieldDescriptor
fd_SecondaryIndexDescriptor_id protoreflect.FieldDescriptor
fd_SecondaryIndexDescriptor_unique protoreflect.FieldDescriptor
fd_SecondaryIndexDescriptor_references protoreflect.FieldDescriptor
)
func init() {
file_cosmos_orm_v1alpha1_orm_proto_init()
md_SecondaryIndexDescriptor = File_cosmos_orm_v1alpha1_orm_proto.Messages().ByName("SecondaryIndexDescriptor")
fd_SecondaryIndexDescriptor_fields = md_SecondaryIndexDescriptor.Fields().ByName("fields")
fd_SecondaryIndexDescriptor_id = md_SecondaryIndexDescriptor.Fields().ByName("id")
fd_SecondaryIndexDescriptor_unique = md_SecondaryIndexDescriptor.Fields().ByName("unique")
fd_SecondaryIndexDescriptor_references = md_SecondaryIndexDescriptor.Fields().ByName("references")
}
var _ protoreflect.Message = (*fastReflection_SecondaryIndexDescriptor)(nil)
type fastReflection_SecondaryIndexDescriptor SecondaryIndexDescriptor
func (x *SecondaryIndexDescriptor) ProtoReflect() protoreflect.Message {
return (*fastReflection_SecondaryIndexDescriptor)(x)
}
func (x *SecondaryIndexDescriptor) slowProtoReflect() protoreflect.Message {
mi := &file_cosmos_orm_v1alpha1_orm_proto_msgTypes[2]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
var _fastReflection_SecondaryIndexDescriptor_messageType fastReflection_SecondaryIndexDescriptor_messageType
var _ protoreflect.MessageType = fastReflection_SecondaryIndexDescriptor_messageType{}
type fastReflection_SecondaryIndexDescriptor_messageType struct{}
func (x fastReflection_SecondaryIndexDescriptor_messageType) Zero() protoreflect.Message {
return (*fastReflection_SecondaryIndexDescriptor)(nil)
}
func (x fastReflection_SecondaryIndexDescriptor_messageType) New() protoreflect.Message {
return new(fastReflection_SecondaryIndexDescriptor)
}
func (x fastReflection_SecondaryIndexDescriptor_messageType) Descriptor() protoreflect.MessageDescriptor {
return md_SecondaryIndexDescriptor
}
// Descriptor returns message descriptor, which contains only the protobuf
// type information for the message.
func (x *fastReflection_SecondaryIndexDescriptor) Descriptor() protoreflect.MessageDescriptor {
return md_SecondaryIndexDescriptor
}
// Type returns the message type, which encapsulates both Go and protobuf
// type information. If the Go type information is not needed,
// it is recommended that the message descriptor be used instead.
func (x *fastReflection_SecondaryIndexDescriptor) Type() protoreflect.MessageType {
return _fastReflection_SecondaryIndexDescriptor_messageType
}
// New returns a newly allocated and mutable empty message.
func (x *fastReflection_SecondaryIndexDescriptor) New() protoreflect.Message {
return new(fastReflection_SecondaryIndexDescriptor)
}
// Interface unwraps the message reflection interface and
// returns the underlying ProtoMessage interface.
func (x *fastReflection_SecondaryIndexDescriptor) Interface() protoreflect.ProtoMessage {
return (*SecondaryIndexDescriptor)(x)
}
// Range iterates over every populated field in an undefined order,
// calling f for each field descriptor and value encountered.
// Range returns immediately if f returns false.
// While iterating, mutating operations may only be performed
// on the current field descriptor.
func (x *fastReflection_SecondaryIndexDescriptor) Range(f func(protoreflect.FieldDescriptor, protoreflect.Value) bool) {
if x.Fields != "" {
value := protoreflect.ValueOfString(x.Fields)
if !f(fd_SecondaryIndexDescriptor_fields, value) {
return
}
}
if x.Id != uint32(0) {
value := protoreflect.ValueOfUint32(x.Id)
if !f(fd_SecondaryIndexDescriptor_id, value) {
return
}
}
if x.Unique != false {
value := protoreflect.ValueOfBool(x.Unique)
if !f(fd_SecondaryIndexDescriptor_unique, value) {
return
}
}
if x.References != "" {
value := protoreflect.ValueOfString(x.References)
if !f(fd_SecondaryIndexDescriptor_references, value) {
return
}
}
}
// Has reports whether a field is populated.
//
// Some fields have the property of nullability where it is possible to
// distinguish between the default value of a field and whether the field
// was explicitly populated with the default value. Singular message fields,
// member fields of a oneof, and proto2 scalar fields are nullable. Such
// fields are populated only if explicitly set.
//
// In other cases (aside from the nullable cases above),
// a proto3 scalar field is populated if it contains a non-zero value, and
// a repeated field is populated if it is non-empty.
func (x *fastReflection_SecondaryIndexDescriptor) Has(fd protoreflect.FieldDescriptor) bool {
switch fd.FullName() {
case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.fields":
return x.Fields != ""
case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.id":
return x.Id != uint32(0)
case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.unique":
return x.Unique != false
case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.references":
return x.References != ""
default:
if fd.IsExtension() {
panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.SecondaryIndexDescriptor"))
}
panic(fmt.Errorf("message cosmos.orm.v1alpha1.SecondaryIndexDescriptor does not contain field %s", fd.FullName()))
}
}
// Clear clears the field such that a subsequent Has call reports false.
//
// Clearing an extension field clears both the extension type and value
// associated with the given field number.
//
// Clear is a mutating operation and unsafe for concurrent use.
func (x *fastReflection_SecondaryIndexDescriptor) Clear(fd protoreflect.FieldDescriptor) {
switch fd.FullName() {
case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.fields":
x.Fields = ""
case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.id":
x.Id = uint32(0)
case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.unique":
x.Unique = false
case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.references":
x.References = ""
default:
if fd.IsExtension() {
panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.SecondaryIndexDescriptor"))
}
panic(fmt.Errorf("message cosmos.orm.v1alpha1.SecondaryIndexDescriptor does not contain field %s", fd.FullName()))
}
}
// Get retrieves the value for a field.
//
// For unpopulated scalars, it returns the default value, where
// the default value of a bytes scalar is guaranteed to be a copy.
// For unpopulated composite types, it returns an empty, read-only view
// of the value; to obtain a mutable reference, use Mutable.
func (x *fastReflection_SecondaryIndexDescriptor) Get(descriptor protoreflect.FieldDescriptor) protoreflect.Value {
switch descriptor.FullName() {
case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.fields":
value := x.Fields
return protoreflect.ValueOfString(value)
case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.id":
value := x.Id
return protoreflect.ValueOfUint32(value)
case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.unique":
value := x.Unique
return protoreflect.ValueOfBool(value)
case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.references":
value := x.References
return protoreflect.ValueOfString(value)
default:
if descriptor.IsExtension() {
panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.SecondaryIndexDescriptor"))
}
panic(fmt.Errorf("message cosmos.orm.v1alpha1.SecondaryIndexDescriptor does not contain field %s", descriptor.FullName()))
}
}
// Set stores the value for a field.
//
// For a field belonging to a oneof, it implicitly clears any other field
// that may be currently set within the same oneof.
// For extension fields, it implicitly stores the provided ExtensionType.
// When setting a composite type, it is unspecified whether the stored value
// aliases the source's memory in any way. If the composite value is an
// empty, read-only value, then it panics.
//
// Set is a mutating operation and unsafe for concurrent use.
func (x *fastReflection_SecondaryIndexDescriptor) Set(fd protoreflect.FieldDescriptor, value protoreflect.Value) {
switch fd.FullName() {
case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.fields":
x.Fields = value.Interface().(string)
case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.id":
x.Id = uint32(value.Uint())
case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.unique":
x.Unique = value.Bool()
case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.references":
x.References = value.Interface().(string)
default:
if fd.IsExtension() {
panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.SecondaryIndexDescriptor"))
}
panic(fmt.Errorf("message cosmos.orm.v1alpha1.SecondaryIndexDescriptor does not contain field %s", fd.FullName()))
}
}
// Mutable returns a mutable reference to a composite type.
//
// If the field is unpopulated, it may allocate a composite value.
// For a field belonging to a oneof, it implicitly clears any other field
// that may be currently set within the same oneof.
// For extension fields, it implicitly stores the provided ExtensionType
// if not already stored.
// It panics if the field does not contain a composite type.
//
// Mutable is a mutating operation and unsafe for concurrent use.
func (x *fastReflection_SecondaryIndexDescriptor) Mutable(fd protoreflect.FieldDescriptor) protoreflect.Value {
switch fd.FullName() {
case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.fields":
panic(fmt.Errorf("field fields of message cosmos.orm.v1alpha1.SecondaryIndexDescriptor is not mutable"))
case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.id":
panic(fmt.Errorf("field id of message cosmos.orm.v1alpha1.SecondaryIndexDescriptor is not mutable"))
case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.unique":
panic(fmt.Errorf("field unique of message cosmos.orm.v1alpha1.SecondaryIndexDescriptor is not mutable"))
case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.references":
panic(fmt.Errorf("field references of message cosmos.orm.v1alpha1.SecondaryIndexDescriptor is not mutable"))
default:
if fd.IsExtension() {
panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.SecondaryIndexDescriptor"))
}
panic(fmt.Errorf("message cosmos.orm.v1alpha1.SecondaryIndexDescriptor does not contain field %s", fd.FullName()))
}
}
// NewField returns a new value that is assignable to the field
// for the given descriptor. For scalars, this returns the default value.
// For lists, maps, and messages, this returns a new, empty, mutable value.
func (x *fastReflection_SecondaryIndexDescriptor) NewField(fd protoreflect.FieldDescriptor) protoreflect.Value {
switch fd.FullName() {
case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.fields":
return protoreflect.ValueOfString("")
case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.id":
return protoreflect.ValueOfUint32(uint32(0))
case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.unique":
return protoreflect.ValueOfBool(false)
case "cosmos.orm.v1alpha1.SecondaryIndexDescriptor.references":
return protoreflect.ValueOfString("")
default:
if fd.IsExtension() {
panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.SecondaryIndexDescriptor"))
}
panic(fmt.Errorf("message cosmos.orm.v1alpha1.SecondaryIndexDescriptor does not contain field %s", fd.FullName()))
}
}
// WhichOneof reports which field within the oneof is populated,
// returning nil if none are populated.
// It panics if the oneof descriptor does not belong to this message.
func (x *fastReflection_SecondaryIndexDescriptor) WhichOneof(d protoreflect.OneofDescriptor) protoreflect.FieldDescriptor {
switch d.FullName() {
default:
panic(fmt.Errorf("%s is not a oneof field in cosmos.orm.v1alpha1.SecondaryIndexDescriptor", d.FullName()))
}
panic("unreachable")
}
// GetUnknown retrieves the entire list of unknown fields.
// The caller may only mutate the contents of the RawFields
// if the mutated bytes are stored back into the message with SetUnknown.
func (x *fastReflection_SecondaryIndexDescriptor) GetUnknown() protoreflect.RawFields {
return x.unknownFields
}
// SetUnknown stores an entire list of unknown fields.
// The raw fields must be syntactically valid according to the wire format.
// An implementation may panic if this is not the case.
// Once stored, the caller must not mutate the content of the RawFields.
// An empty RawFields may be passed to clear the fields.
//
// SetUnknown is a mutating operation and unsafe for concurrent use.
func (x *fastReflection_SecondaryIndexDescriptor) SetUnknown(fields protoreflect.RawFields) {
x.unknownFields = fields
}
// IsValid reports whether the message is valid.
//
// An invalid message is an empty, read-only value.
//
// An invalid message often corresponds to a nil pointer of the concrete
// message type, but the details are implementation dependent.
// Validity is not part of the protobuf data model, and may not
// be preserved in marshaling or other operations.
func (x *fastReflection_SecondaryIndexDescriptor) IsValid() bool {
return x != nil
}
// ProtoMethods returns optional fastReflectionFeature-path implementations of various operations.
// This method may return nil.
//
// The returned methods type is identical to
// "google.golang.org/protobuf/runtime/protoiface".Methods.
// Consult the protoiface package documentation for details.
func (x *fastReflection_SecondaryIndexDescriptor) ProtoMethods() *protoiface.Methods {
size := func(input protoiface.SizeInput) protoiface.SizeOutput {
x := input.Message.Interface().(*SecondaryIndexDescriptor)
if x == nil {
return protoiface.SizeOutput{
NoUnkeyedLiterals: input.NoUnkeyedLiterals,
Size: 0,
}
}
options := runtime.SizeInputToOptions(input)
_ = options
var n int
var l int
_ = l
l = len(x.Fields)
if l > 0 {
n += 1 + l + runtime.Sov(uint64(l))
}
if x.Id != 0 {
n += 1 + runtime.Sov(uint64(x.Id))
}
if x.Unique {
n += 2
}
l = len(x.References)
if l > 0 {
n += 1 + l + runtime.Sov(uint64(l))
}
if x.unknownFields != nil {
n += len(x.unknownFields)
}
return protoiface.SizeOutput{
NoUnkeyedLiterals: input.NoUnkeyedLiterals,
Size: n,
}
}
marshal := func(input protoiface.MarshalInput) (protoiface.MarshalOutput, error) {
x := input.Message.Interface().(*SecondaryIndexDescriptor)
if x == nil {
return protoiface.MarshalOutput{
NoUnkeyedLiterals: input.NoUnkeyedLiterals,
Buf: input.Buf,
}, nil
}
options := runtime.MarshalInputToOptions(input)
_ = options
size := options.Size(x)
dAtA := make([]byte, size)
i := len(dAtA)
_ = i
var l int
_ = l
if x.unknownFields != nil {
i -= len(x.unknownFields)
copy(dAtA[i:], x.unknownFields)
}
if len(x.References) > 0 {
i -= len(x.References)
copy(dAtA[i:], x.References)
i = runtime.EncodeVarint(dAtA, i, uint64(len(x.References)))
i--
dAtA[i] = 0x22
}
if x.Unique {
i--
if x.Unique {
dAtA[i] = 1
} else {
dAtA[i] = 0
}
i--
dAtA[i] = 0x18
}
if x.Id != 0 {
i = runtime.EncodeVarint(dAtA, i, uint64(x.Id))
i--
dAtA[i] = 0x10
}
if len(x.Fields) > 0 {
i -= len(x.Fields)
copy(dAtA[i:], x.Fields)
i = runtime.EncodeVarint(dAtA, i, uint64(len(x.Fields)))
i--
dAtA[i] = 0xa
}
if input.Buf != nil {
input.Buf = append(input.Buf, dAtA...)
} else {
input.Buf = dAtA
}
return protoiface.MarshalOutput{
NoUnkeyedLiterals: input.NoUnkeyedLiterals,
Buf: input.Buf,
}, nil
}
unmarshal := func(input protoiface.UnmarshalInput) (protoiface.UnmarshalOutput, error) {
x := input.Message.Interface().(*SecondaryIndexDescriptor)
if x == nil {
return protoiface.UnmarshalOutput{
NoUnkeyedLiterals: input.NoUnkeyedLiterals,
Flags: input.Flags,
}, nil
}
options := runtime.UnmarshalInputToOptions(input)
_ = options
dAtA := input.Buf
l := len(dAtA)
iNdEx := 0
for iNdEx < l {
preIndex := iNdEx
var wire uint64
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrIntOverflow
}
if iNdEx >= l {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF
}
b := dAtA[iNdEx]
iNdEx++
wire |= uint64(b&0x7F) << shift
if b < 0x80 {
break
}
}
fieldNum := int32(wire >> 3)
wireType := int(wire & 0x7)
if wireType == 4 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: SecondaryIndexDescriptor: wiretype end group for non-group")
}
if fieldNum <= 0 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: SecondaryIndexDescriptor: illegal tag %d (wire type %d)", fieldNum, wire)
}
switch fieldNum {
case 1:
if wireType != 2 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: wrong wireType = %d for field Fields", wireType)
}
var stringLen uint64
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrIntOverflow
}
if iNdEx >= l {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF
}
b := dAtA[iNdEx]
iNdEx++
stringLen |= uint64(b&0x7F) << shift
if b < 0x80 {
break
}
}
intStringLen := int(stringLen)
if intStringLen < 0 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrInvalidLength
}
postIndex := iNdEx + intStringLen
if postIndex < 0 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrInvalidLength
}
if postIndex > l {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF
}
x.Fields = string(dAtA[iNdEx:postIndex])
iNdEx = postIndex
case 2:
if wireType != 0 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: wrong wireType = %d for field Id", wireType)
}
x.Id = 0
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrIntOverflow
}
if iNdEx >= l {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF
}
b := dAtA[iNdEx]
iNdEx++
x.Id |= uint32(b&0x7F) << shift
if b < 0x80 {
break
}
}
case 3:
if wireType != 0 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: wrong wireType = %d for field Unique", wireType)
}
var v int
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrIntOverflow
}
if iNdEx >= l {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF
}
b := dAtA[iNdEx]
iNdEx++
v |= int(b&0x7F) << shift
if b < 0x80 {
break
}
}
x.Unique = bool(v != 0)
case 4:
if wireType != 2 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: wrong wireType = %d for field References", wireType)
}
var stringLen uint64
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrIntOverflow
}
if iNdEx >= l {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF
}
b := dAtA[iNdEx]
iNdEx++
stringLen |= uint64(b&0x7F) << shift
if b < 0x80 {
break
}
}
intStringLen := int(stringLen)
if intStringLen < 0 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrInvalidLength
}
postIndex := iNdEx + intStringLen
if postIndex < 0 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrInvalidLength
}
if postIndex > l {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF
}
x.References = string(dAtA[iNdEx:postIndex])
iNdEx = postIndex
default:
iNdEx = preIndex
skippy, err := runtime.Skip(dAtA[iNdEx:])
if err != nil {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, err
}
if (skippy < 0) || (iNdEx+skippy) < 0 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrInvalidLength
}
if (iNdEx + skippy) > l {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF
}
if !options.DiscardUnknown {
x.unknownFields = append(x.unknownFields, dAtA[iNdEx:iNdEx+skippy]...)
}
iNdEx += skippy
}
}
if iNdEx > l {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF
}
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, nil
}
return &protoiface.Methods{
NoUnkeyedLiterals: struct{}{},
Flags: protoiface.SupportMarshalDeterministic | protoiface.SupportUnmarshalDiscardUnknown,
Size: size,
Marshal: marshal,
Unmarshal: unmarshal,
Merge: nil,
CheckInitialized: nil,
}
}
var (
md_SingletonDescriptor protoreflect.MessageDescriptor
fd_SingletonDescriptor_id protoreflect.FieldDescriptor
)
func init() {
file_cosmos_orm_v1alpha1_orm_proto_init()
md_SingletonDescriptor = File_cosmos_orm_v1alpha1_orm_proto.Messages().ByName("SingletonDescriptor")
fd_SingletonDescriptor_id = md_SingletonDescriptor.Fields().ByName("id")
}
var _ protoreflect.Message = (*fastReflection_SingletonDescriptor)(nil)
type fastReflection_SingletonDescriptor SingletonDescriptor
func (x *SingletonDescriptor) ProtoReflect() protoreflect.Message {
return (*fastReflection_SingletonDescriptor)(x)
}
func (x *SingletonDescriptor) slowProtoReflect() protoreflect.Message {
mi := &file_cosmos_orm_v1alpha1_orm_proto_msgTypes[3]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
var _fastReflection_SingletonDescriptor_messageType fastReflection_SingletonDescriptor_messageType
var _ protoreflect.MessageType = fastReflection_SingletonDescriptor_messageType{}
type fastReflection_SingletonDescriptor_messageType struct{}
func (x fastReflection_SingletonDescriptor_messageType) Zero() protoreflect.Message {
return (*fastReflection_SingletonDescriptor)(nil)
}
func (x fastReflection_SingletonDescriptor_messageType) New() protoreflect.Message {
return new(fastReflection_SingletonDescriptor)
}
func (x fastReflection_SingletonDescriptor_messageType) Descriptor() protoreflect.MessageDescriptor {
return md_SingletonDescriptor
}
// Descriptor returns message descriptor, which contains only the protobuf
// type information for the message.
func (x *fastReflection_SingletonDescriptor) Descriptor() protoreflect.MessageDescriptor {
return md_SingletonDescriptor
}
// Type returns the message type, which encapsulates both Go and protobuf
// type information. If the Go type information is not needed,
// it is recommended that the message descriptor be used instead.
func (x *fastReflection_SingletonDescriptor) Type() protoreflect.MessageType {
return _fastReflection_SingletonDescriptor_messageType
}
// New returns a newly allocated and mutable empty message.
func (x *fastReflection_SingletonDescriptor) New() protoreflect.Message {
return new(fastReflection_SingletonDescriptor)
}
// Interface unwraps the message reflection interface and
// returns the underlying ProtoMessage interface.
func (x *fastReflection_SingletonDescriptor) Interface() protoreflect.ProtoMessage {
return (*SingletonDescriptor)(x)
}
// Range iterates over every populated field in an undefined order,
// calling f for each field descriptor and value encountered.
// Range returns immediately if f returns false.
// While iterating, mutating operations may only be performed
// on the current field descriptor.
func (x *fastReflection_SingletonDescriptor) Range(f func(protoreflect.FieldDescriptor, protoreflect.Value) bool) {
if x.Id != uint32(0) {
value := protoreflect.ValueOfUint32(x.Id)
if !f(fd_SingletonDescriptor_id, value) {
return
}
}
}
// Has reports whether a field is populated.
//
// Some fields have the property of nullability where it is possible to
// distinguish between the default value of a field and whether the field
// was explicitly populated with the default value. Singular message fields,
// member fields of a oneof, and proto2 scalar fields are nullable. Such
// fields are populated only if explicitly set.
//
// In other cases (aside from the nullable cases above),
// a proto3 scalar field is populated if it contains a non-zero value, and
// a repeated field is populated if it is non-empty.
func (x *fastReflection_SingletonDescriptor) Has(fd protoreflect.FieldDescriptor) bool {
switch fd.FullName() {
case "cosmos.orm.v1alpha1.SingletonDescriptor.id":
return x.Id != uint32(0)
default:
if fd.IsExtension() {
panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.SingletonDescriptor"))
}
panic(fmt.Errorf("message cosmos.orm.v1alpha1.SingletonDescriptor does not contain field %s", fd.FullName()))
}
}
// Clear clears the field such that a subsequent Has call reports false.
//
// Clearing an extension field clears both the extension type and value
// associated with the given field number.
//
// Clear is a mutating operation and unsafe for concurrent use.
func (x *fastReflection_SingletonDescriptor) Clear(fd protoreflect.FieldDescriptor) {
switch fd.FullName() {
case "cosmos.orm.v1alpha1.SingletonDescriptor.id":
x.Id = uint32(0)
default:
if fd.IsExtension() {
panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.SingletonDescriptor"))
}
panic(fmt.Errorf("message cosmos.orm.v1alpha1.SingletonDescriptor does not contain field %s", fd.FullName()))
}
}
// Get retrieves the value for a field.
//
// For unpopulated scalars, it returns the default value, where
// the default value of a bytes scalar is guaranteed to be a copy.
// For unpopulated composite types, it returns an empty, read-only view
// of the value; to obtain a mutable reference, use Mutable.
func (x *fastReflection_SingletonDescriptor) Get(descriptor protoreflect.FieldDescriptor) protoreflect.Value {
switch descriptor.FullName() {
case "cosmos.orm.v1alpha1.SingletonDescriptor.id":
value := x.Id
return protoreflect.ValueOfUint32(value)
default:
if descriptor.IsExtension() {
panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.SingletonDescriptor"))
}
panic(fmt.Errorf("message cosmos.orm.v1alpha1.SingletonDescriptor does not contain field %s", descriptor.FullName()))
}
}
// Set stores the value for a field.
//
// For a field belonging to a oneof, it implicitly clears any other field
// that may be currently set within the same oneof.
// For extension fields, it implicitly stores the provided ExtensionType.
// When setting a composite type, it is unspecified whether the stored value
// aliases the source's memory in any way. If the composite value is an
// empty, read-only value, then it panics.
//
// Set is a mutating operation and unsafe for concurrent use.
func (x *fastReflection_SingletonDescriptor) Set(fd protoreflect.FieldDescriptor, value protoreflect.Value) {
switch fd.FullName() {
case "cosmos.orm.v1alpha1.SingletonDescriptor.id":
x.Id = uint32(value.Uint())
default:
if fd.IsExtension() {
panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.SingletonDescriptor"))
}
panic(fmt.Errorf("message cosmos.orm.v1alpha1.SingletonDescriptor does not contain field %s", fd.FullName()))
}
}
// Mutable returns a mutable reference to a composite type.
//
// If the field is unpopulated, it may allocate a composite value.
// For a field belonging to a oneof, it implicitly clears any other field
// that may be currently set within the same oneof.
// For extension fields, it implicitly stores the provided ExtensionType
// if not already stored.
// It panics if the field does not contain a composite type.
//
// Mutable is a mutating operation and unsafe for concurrent use.
func (x *fastReflection_SingletonDescriptor) Mutable(fd protoreflect.FieldDescriptor) protoreflect.Value {
switch fd.FullName() {
case "cosmos.orm.v1alpha1.SingletonDescriptor.id":
panic(fmt.Errorf("field id of message cosmos.orm.v1alpha1.SingletonDescriptor is not mutable"))
default:
if fd.IsExtension() {
panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.SingletonDescriptor"))
}
panic(fmt.Errorf("message cosmos.orm.v1alpha1.SingletonDescriptor does not contain field %s", fd.FullName()))
}
}
// NewField returns a new value that is assignable to the field
// for the given descriptor. For scalars, this returns the default value.
// For lists, maps, and messages, this returns a new, empty, mutable value.
func (x *fastReflection_SingletonDescriptor) NewField(fd protoreflect.FieldDescriptor) protoreflect.Value {
switch fd.FullName() {
case "cosmos.orm.v1alpha1.SingletonDescriptor.id":
return protoreflect.ValueOfUint32(uint32(0))
default:
if fd.IsExtension() {
panic(fmt.Errorf("proto3 declared messages do not support extensions: cosmos.orm.v1alpha1.SingletonDescriptor"))
}
panic(fmt.Errorf("message cosmos.orm.v1alpha1.SingletonDescriptor does not contain field %s", fd.FullName()))
}
}
// WhichOneof reports which field within the oneof is populated,
// returning nil if none are populated.
// It panics if the oneof descriptor does not belong to this message.
func (x *fastReflection_SingletonDescriptor) WhichOneof(d protoreflect.OneofDescriptor) protoreflect.FieldDescriptor {
switch d.FullName() {
default:
panic(fmt.Errorf("%s is not a oneof field in cosmos.orm.v1alpha1.SingletonDescriptor", d.FullName()))
}
panic("unreachable")
}
// GetUnknown retrieves the entire list of unknown fields.
// The caller may only mutate the contents of the RawFields
// if the mutated bytes are stored back into the message with SetUnknown.
func (x *fastReflection_SingletonDescriptor) GetUnknown() protoreflect.RawFields {
return x.unknownFields
}
// SetUnknown stores an entire list of unknown fields.
// The raw fields must be syntactically valid according to the wire format.
// An implementation may panic if this is not the case.
// Once stored, the caller must not mutate the content of the RawFields.
// An empty RawFields may be passed to clear the fields.
//
// SetUnknown is a mutating operation and unsafe for concurrent use.
func (x *fastReflection_SingletonDescriptor) SetUnknown(fields protoreflect.RawFields) {
x.unknownFields = fields
}
// IsValid reports whether the message is valid.
//
// An invalid message is an empty, read-only value.
//
// An invalid message often corresponds to a nil pointer of the concrete
// message type, but the details are implementation dependent.
// Validity is not part of the protobuf data model, and may not
// be preserved in marshaling or other operations.
func (x *fastReflection_SingletonDescriptor) IsValid() bool {
return x != nil
}
// ProtoMethods returns optional fastReflectionFeature-path implementations of various operations.
// This method may return nil.
//
// The returned methods type is identical to
// "google.golang.org/protobuf/runtime/protoiface".Methods.
// Consult the protoiface package documentation for details.
func (x *fastReflection_SingletonDescriptor) ProtoMethods() *protoiface.Methods {
size := func(input protoiface.SizeInput) protoiface.SizeOutput {
x := input.Message.Interface().(*SingletonDescriptor)
if x == nil {
return protoiface.SizeOutput{
NoUnkeyedLiterals: input.NoUnkeyedLiterals,
Size: 0,
}
}
options := runtime.SizeInputToOptions(input)
_ = options
var n int
var l int
_ = l
if x.Id != 0 {
n += 1 + runtime.Sov(uint64(x.Id))
}
if x.unknownFields != nil {
n += len(x.unknownFields)
}
return protoiface.SizeOutput{
NoUnkeyedLiterals: input.NoUnkeyedLiterals,
Size: n,
}
}
marshal := func(input protoiface.MarshalInput) (protoiface.MarshalOutput, error) {
x := input.Message.Interface().(*SingletonDescriptor)
if x == nil {
return protoiface.MarshalOutput{
NoUnkeyedLiterals: input.NoUnkeyedLiterals,
Buf: input.Buf,
}, nil
}
options := runtime.MarshalInputToOptions(input)
_ = options
size := options.Size(x)
dAtA := make([]byte, size)
i := len(dAtA)
_ = i
var l int
_ = l
if x.unknownFields != nil {
i -= len(x.unknownFields)
copy(dAtA[i:], x.unknownFields)
}
if x.Id != 0 {
i = runtime.EncodeVarint(dAtA, i, uint64(x.Id))
i--
dAtA[i] = 0x8
}
if input.Buf != nil {
input.Buf = append(input.Buf, dAtA...)
} else {
input.Buf = dAtA
}
return protoiface.MarshalOutput{
NoUnkeyedLiterals: input.NoUnkeyedLiterals,
Buf: input.Buf,
}, nil
}
unmarshal := func(input protoiface.UnmarshalInput) (protoiface.UnmarshalOutput, error) {
x := input.Message.Interface().(*SingletonDescriptor)
if x == nil {
return protoiface.UnmarshalOutput{
NoUnkeyedLiterals: input.NoUnkeyedLiterals,
Flags: input.Flags,
}, nil
}
options := runtime.UnmarshalInputToOptions(input)
_ = options
dAtA := input.Buf
l := len(dAtA)
iNdEx := 0
for iNdEx < l {
preIndex := iNdEx
var wire uint64
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrIntOverflow
}
if iNdEx >= l {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF
}
b := dAtA[iNdEx]
iNdEx++
wire |= uint64(b&0x7F) << shift
if b < 0x80 {
break
}
}
fieldNum := int32(wire >> 3)
wireType := int(wire & 0x7)
if wireType == 4 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: SingletonDescriptor: wiretype end group for non-group")
}
if fieldNum <= 0 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: SingletonDescriptor: illegal tag %d (wire type %d)", fieldNum, wire)
}
switch fieldNum {
case 1:
if wireType != 0 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, fmt.Errorf("proto: wrong wireType = %d for field Id", wireType)
}
x.Id = 0
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrIntOverflow
}
if iNdEx >= l {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF
}
b := dAtA[iNdEx]
iNdEx++
x.Id |= uint32(b&0x7F) << shift
if b < 0x80 {
break
}
}
default:
iNdEx = preIndex
skippy, err := runtime.Skip(dAtA[iNdEx:])
if err != nil {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, err
}
if (skippy < 0) || (iNdEx+skippy) < 0 {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, runtime.ErrInvalidLength
}
if (iNdEx + skippy) > l {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF
}
if !options.DiscardUnknown {
x.unknownFields = append(x.unknownFields, dAtA[iNdEx:iNdEx+skippy]...)
}
iNdEx += skippy
}
}
if iNdEx > l {
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, io.ErrUnexpectedEOF
}
return protoiface.UnmarshalOutput{NoUnkeyedLiterals: input.NoUnkeyedLiterals, Flags: input.Flags}, nil
}
return &protoiface.Methods{
NoUnkeyedLiterals: struct{}{},
Flags: protoiface.SupportMarshalDeterministic | protoiface.SupportUnmarshalDiscardUnknown,
Size: size,
Marshal: marshal,
Unmarshal: unmarshal,
Merge: nil,
CheckInitialized: nil,
}
}
// Code generated by protoc-gen-go. DO NOT EDIT.
// versions:
// protoc-gen-go v1.27.0
// protoc v3.19.1
// source: cosmos/orm/v1alpha1/orm.proto
const (
// Verify that this generated code is sufficiently up-to-date.
_ = protoimpl.EnforceVersion(20 - protoimpl.MinVersion)
// Verify that runtime/protoimpl is sufficiently up-to-date.
_ = protoimpl.EnforceVersion(protoimpl.MaxVersion - 20)
)
// TableDescriptor describes an ORM table.
type TableDescriptor struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
// primary_key defines the primary key for the table.
PrimaryKey *PrimaryKeyDescriptor `protobuf:"bytes,1,opt,name=primary_key,json=primaryKey,proto3" json:"primary_key,omitempty"`
// index defines one or more secondary indexes.
Index []*SecondaryIndexDescriptor `protobuf:"bytes,2,rep,name=index,proto3" json:"index,omitempty"`
// id is a non-zero integer ID that must be unique within the
// tables and singletons in this file. It may be deprecated in the future when this
// can be auto-generated.
Id uint32 `protobuf:"varint,3,opt,name=id,proto3" json:"id,omitempty"`
}
func (x *TableDescriptor) Reset() {
*x = TableDescriptor{}
if protoimpl.UnsafeEnabled {
mi := &file_cosmos_orm_v1alpha1_orm_proto_msgTypes[0]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *TableDescriptor) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*TableDescriptor) ProtoMessage() {}
// Deprecated: Use TableDescriptor.ProtoReflect.Descriptor instead.
func (*TableDescriptor) Descriptor() ([]byte, []int) {
return file_cosmos_orm_v1alpha1_orm_proto_rawDescGZIP(), []int{0}
}
func (x *TableDescriptor) GetPrimaryKey() *PrimaryKeyDescriptor {
if x != nil {
return x.PrimaryKey
}
return nil
}
func (x *TableDescriptor) GetIndex() []*SecondaryIndexDescriptor {
if x != nil {
return x.Index
}
return nil
}
func (x *TableDescriptor) GetId() uint32 {
if x != nil {
return x.Id
}
return 0
}
// PrimaryKeyDescriptor describes a table primary key.
type PrimaryKeyDescriptor struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
// fields is a comma-separated list of fields in the primary key. Spaces are
// not allowed. Supported field types, their encodings, and any applicable constraints
// are described below.
// - uint32, uint64 are encoded as big-endian fixed width bytes and support
// sorted iteration.
// - string's are encoded as raw bytes in terminal key segments and null-terminated
// in non-terminal segments. Null characters are thus forbidden in strings.
// string fields support sorted iteration.
// - bytes are encoded as raw bytes in terminal segments and length-prefixed
// with a single byte in non-terminal segments. Because of this byte arrays
// longer than 255 bytes cannot be used in keys and bytes fields should not
// be assumed to be lexically sorted.
// - int32, sint32, int64, sint64 are encoding as fixed width bytes with
// an encoding that enables sorted iteration.
// - google.protobuf.Timestamp and google.protobuf.Duration are encoded
// as 12 bytes using an encoding that enables sorted iteration.
// - enum fields are encoded using varint encoding and do not support sorted
// iteration.
// - bool fields are encoded as a single byte 0 or 1.
//
// All other fields types are unsupported in keys including repeated and
// oneof fields.
//
// Primary keys are prefixed by the varint encoded table id and the byte 0x0
// plus any additional prefix specified by the schema.
Fields string `protobuf:"bytes,1,opt,name=fields,proto3" json:"fields,omitempty"`
// auto_increment specifies that the primary key is generated by an
// auto-incrementing integer. If this is set to true fields must only
// contain one field of that is of type uint64.
AutoIncrement bool `protobuf:"varint,2,opt,name=auto_increment,json=autoIncrement,proto3" json:"auto_increment,omitempty"`
// references specifies that this primary key references the primary key
// of another table. See the documentation for the SecondaryIndexDescriptor.references
// field for more details. An additional constraint placed on primary keys
// which reference another table is that those references cannot be circular.
References string `protobuf:"bytes,3,opt,name=references,proto3" json:"references,omitempty"`
}
func (x *PrimaryKeyDescriptor) Reset() {
*x = PrimaryKeyDescriptor{}
if protoimpl.UnsafeEnabled {
mi := &file_cosmos_orm_v1alpha1_orm_proto_msgTypes[1]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *PrimaryKeyDescriptor) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*PrimaryKeyDescriptor) ProtoMessage() {}
// Deprecated: Use PrimaryKeyDescriptor.ProtoReflect.Descriptor instead.
func (*PrimaryKeyDescriptor) Descriptor() ([]byte, []int) {
return file_cosmos_orm_v1alpha1_orm_proto_rawDescGZIP(), []int{1}
}
func (x *PrimaryKeyDescriptor) GetFields() string {
if x != nil {
return x.Fields
}
return ""
}
func (x *PrimaryKeyDescriptor) GetAutoIncrement() bool {
if x != nil {
return x.AutoIncrement
}
return false
}
func (x *PrimaryKeyDescriptor) GetReferences() string {
if x != nil {
return x.References
}
return ""
}
// PrimaryKeyDescriptor describes a table secondary index.
type SecondaryIndexDescriptor struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
// fields is a comma-separated list of fields in the index. The supported
// field types are the same as those for PrimaryKeyDescriptor.fields.
// Index keys are prefixed by the varint encoded table id and the varint
// encoded index id plus any additional prefix specified by the schema.
//
// In addition the the field segments, non-unique index keys are suffixed with
// any additional primary key fields not present in the index fields so that the
// primary key can be reconstructed. Unique indexes instead of being suffixed
// store the remaining primary key fields in the value..
Fields string `protobuf:"bytes,1,opt,name=fields,proto3" json:"fields,omitempty"`
// id is a non-zero integer ID that must be unique within the indexes for this
// table. It may be deprecated in the future when this can be auto-generated.
Id uint32 `protobuf:"varint,2,opt,name=id,proto3" json:"id,omitempty"`
// unique specifies that this an unique index.
Unique bool `protobuf:"varint,3,opt,name=unique,proto3" json:"unique,omitempty"`
// references specifies that this index references another table defined in the same
// proto file. Currently references are not support to tables with composite
// primary keys, therefore fields must reference one field and its type must
// be the same type as the primary key field of the referenced table.
// References to tables in defined by different proto files are not supported
// to avoid tight coupling of dependencies. Beyond validating that the reference
// is valid key constraints are currently not enforced, but references should
// be used by clients to perform automatic joins.
References string `protobuf:"bytes,4,opt,name=references,proto3" json:"references,omitempty"`
}
func (x *SecondaryIndexDescriptor) Reset() {
*x = SecondaryIndexDescriptor{}
if protoimpl.UnsafeEnabled {
mi := &file_cosmos_orm_v1alpha1_orm_proto_msgTypes[2]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *SecondaryIndexDescriptor) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*SecondaryIndexDescriptor) ProtoMessage() {}
// Deprecated: Use SecondaryIndexDescriptor.ProtoReflect.Descriptor instead.
func (*SecondaryIndexDescriptor) Descriptor() ([]byte, []int) {
return file_cosmos_orm_v1alpha1_orm_proto_rawDescGZIP(), []int{2}
}
func (x *SecondaryIndexDescriptor) GetFields() string {
if x != nil {
return x.Fields
}
return ""
}
func (x *SecondaryIndexDescriptor) GetId() uint32 {
if x != nil {
return x.Id
}
return 0
}
func (x *SecondaryIndexDescriptor) GetUnique() bool {
if x != nil {
return x.Unique
}
return false
}
func (x *SecondaryIndexDescriptor) GetReferences() string {
if x != nil {
return x.References
}
return ""
}
// TableDescriptor describes an ORM singleton table which has at most one instance.
type SingletonDescriptor struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
// id is a non-zero integer ID that must be unique within the
// tables and singletons in this file. It may be deprecated in the future when this
// can be auto-generated.
Id uint32 `protobuf:"varint,1,opt,name=id,proto3" json:"id,omitempty"`
}
func (x *SingletonDescriptor) Reset() {
*x = SingletonDescriptor{}
if protoimpl.UnsafeEnabled {
mi := &file_cosmos_orm_v1alpha1_orm_proto_msgTypes[3]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *SingletonDescriptor) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*SingletonDescriptor) ProtoMessage() {}
// Deprecated: Use SingletonDescriptor.ProtoReflect.Descriptor instead.
func (*SingletonDescriptor) Descriptor() ([]byte, []int) {
return file_cosmos_orm_v1alpha1_orm_proto_rawDescGZIP(), []int{3}
}
func (x *SingletonDescriptor) GetId() uint32 {
if x != nil {
return x.Id
}
return 0
}
var file_cosmos_orm_v1alpha1_orm_proto_extTypes = []protoimpl.ExtensionInfo{
{
ExtendedType: (*descriptorpb.MessageOptions)(nil),
ExtensionType: (*TableDescriptor)(nil),
Field: 104503790,
Name: "cosmos.orm.v1alpha1.table",
Tag: "bytes,104503790,opt,name=table",
Filename: "cosmos/orm/v1alpha1/orm.proto",
},
{
ExtendedType: (*descriptorpb.MessageOptions)(nil),
ExtensionType: (*SingletonDescriptor)(nil),
Field: 104503791,
Name: "cosmos.orm.v1alpha1.singleton",
Tag: "bytes,104503791,opt,name=singleton",
Filename: "cosmos/orm/v1alpha1/orm.proto",
},
}
// Extension fields to descriptorpb.MessageOptions.
var (
// table specifies that this message will be used as an ORM table. It cannot
// be used together with the singleton option.
//
// optional cosmos.orm.v1alpha1.TableDescriptor table = 104503790;
E_Table = &file_cosmos_orm_v1alpha1_orm_proto_extTypes[0]
// singleton specifies that this message will be used as an ORM singleton. It cannot
// be used together with the table option.
//
// optional cosmos.orm.v1alpha1.SingletonDescriptor singleton = 104503791;
E_Singleton = &file_cosmos_orm_v1alpha1_orm_proto_extTypes[1]
)
var File_cosmos_orm_v1alpha1_orm_proto protoreflect.FileDescriptor
var file_cosmos_orm_v1alpha1_orm_proto_rawDesc = []byte{
0x0a, 0x1d, 0x63, 0x6f, 0x73, 0x6d, 0x6f, 0x73, 0x2f, 0x6f, 0x72, 0x6d, 0x2f, 0x76, 0x31, 0x61,
0x6c, 0x70, 0x68, 0x61, 0x31, 0x2f, 0x6f, 0x72, 0x6d, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x12,
0x13, 0x63, 0x6f, 0x73, 0x6d, 0x6f, 0x73, 0x2e, 0x6f, 0x72, 0x6d, 0x2e, 0x76, 0x31, 0x61, 0x6c,
0x70, 0x68, 0x61, 0x31, 0x1a, 0x20, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2f, 0x70, 0x72, 0x6f,
0x74, 0x6f, 0x62, 0x75, 0x66, 0x2f, 0x64, 0x65, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x6f, 0x72,
0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x22, 0xb2, 0x01, 0x0a, 0x0f, 0x54, 0x61, 0x62, 0x6c, 0x65,
0x44, 0x65, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x6f, 0x72, 0x12, 0x4a, 0x0a, 0x0b, 0x70, 0x72,
0x69, 0x6d, 0x61, 0x72, 0x79, 0x5f, 0x6b, 0x65, 0x79, 0x18, 0x01, 0x20, 0x01, 0x28, 0x0b, 0x32,
0x29, 0x2e, 0x63, 0x6f, 0x73, 0x6d, 0x6f, 0x73, 0x2e, 0x6f, 0x72, 0x6d, 0x2e, 0x76, 0x31, 0x61,
0x6c, 0x70, 0x68, 0x61, 0x31, 0x2e, 0x50, 0x72, 0x69, 0x6d, 0x61, 0x72, 0x79, 0x4b, 0x65, 0x79,
0x44, 0x65, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x6f, 0x72, 0x52, 0x0a, 0x70, 0x72, 0x69, 0x6d,
0x61, 0x72, 0x79, 0x4b, 0x65, 0x79, 0x12, 0x43, 0x0a, 0x05, 0x69, 0x6e, 0x64, 0x65, 0x78, 0x18,
0x02, 0x20, 0x03, 0x28, 0x0b, 0x32, 0x2d, 0x2e, 0x63, 0x6f, 0x73, 0x6d, 0x6f, 0x73, 0x2e, 0x6f,
0x72, 0x6d, 0x2e, 0x76, 0x31, 0x61, 0x6c, 0x70, 0x68, 0x61, 0x31, 0x2e, 0x53, 0x65, 0x63, 0x6f,
0x6e, 0x64, 0x61, 0x72, 0x79, 0x49, 0x6e, 0x64, 0x65, 0x78, 0x44, 0x65, 0x73, 0x63, 0x72, 0x69,
0x70, 0x74, 0x6f, 0x72, 0x52, 0x05, 0x69, 0x6e, 0x64, 0x65, 0x78, 0x12, 0x0e, 0x0a, 0x02, 0x69,
0x64, 0x18, 0x03, 0x20, 0x01, 0x28, 0x0d, 0x52, 0x02, 0x69, 0x64, 0x22, 0x75, 0x0a, 0x14, 0x50,
0x72, 0x69, 0x6d, 0x61, 0x72, 0x79, 0x4b, 0x65, 0x79, 0x44, 0x65, 0x73, 0x63, 0x72, 0x69, 0x70,
0x74, 0x6f, 0x72, 0x12, 0x16, 0x0a, 0x06, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x18, 0x01, 0x20,
0x01, 0x28, 0x09, 0x52, 0x06, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x12, 0x25, 0x0a, 0x0e, 0x61,
0x75, 0x74, 0x6f, 0x5f, 0x69, 0x6e, 0x63, 0x72, 0x65, 0x6d, 0x65, 0x6e, 0x74, 0x18, 0x02, 0x20,
0x01, 0x28, 0x08, 0x52, 0x0d, 0x61, 0x75, 0x74, 0x6f, 0x49, 0x6e, 0x63, 0x72, 0x65, 0x6d, 0x65,
0x6e, 0x74, 0x12, 0x1e, 0x0a, 0x0a, 0x72, 0x65, 0x66, 0x65, 0x72, 0x65, 0x6e, 0x63, 0x65, 0x73,
0x18, 0x03, 0x20, 0x01, 0x28, 0x09, 0x52, 0x0a, 0x72, 0x65, 0x66, 0x65, 0x72, 0x65, 0x6e, 0x63,
0x65, 0x73, 0x22, 0x7a, 0x0a, 0x18, 0x53, 0x65, 0x63, 0x6f, 0x6e, 0x64, 0x61, 0x72, 0x79, 0x49,
0x6e, 0x64, 0x65, 0x78, 0x44, 0x65, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x6f, 0x72, 0x12, 0x16,
0x0a, 0x06, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x18, 0x01, 0x20, 0x01, 0x28, 0x09, 0x52, 0x06,
0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x12, 0x0e, 0x0a, 0x02, 0x69, 0x64, 0x18, 0x02, 0x20, 0x01,
0x28, 0x0d, 0x52, 0x02, 0x69, 0x64, 0x12, 0x16, 0x0a, 0x06, 0x75, 0x6e, 0x69, 0x71, 0x75, 0x65,
0x18, 0x03, 0x20, 0x01, 0x28, 0x08, 0x52, 0x06, 0x75, 0x6e, 0x69, 0x71, 0x75, 0x65, 0x12, 0x1e,
0x0a, 0x0a, 0x72, 0x65, 0x66, 0x65, 0x72, 0x65, 0x6e, 0x63, 0x65, 0x73, 0x18, 0x04, 0x20, 0x01,
0x28, 0x09, 0x52, 0x0a, 0x72, 0x65, 0x66, 0x65, 0x72, 0x65, 0x6e, 0x63, 0x65, 0x73, 0x22, 0x25,
0x0a, 0x13, 0x53, 0x69, 0x6e, 0x67, 0x6c, 0x65, 0x74, 0x6f, 0x6e, 0x44, 0x65, 0x73, 0x63, 0x72,
0x69, 0x70, 0x74, 0x6f, 0x72, 0x12, 0x0e, 0x0a, 0x02, 0x69, 0x64, 0x18, 0x01, 0x20, 0x01, 0x28,
0x0d, 0x52, 0x02, 0x69, 0x64, 0x3a, 0x5e, 0x0a, 0x05, 0x74, 0x61, 0x62, 0x6c, 0x65, 0x12, 0x1f,
0x2e, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x62, 0x75, 0x66,
0x2e, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x4f, 0x70, 0x74, 0x69, 0x6f, 0x6e, 0x73, 0x18,
0xee, 0xb3, 0xea, 0x31, 0x20, 0x01, 0x28, 0x0b, 0x32, 0x24, 0x2e, 0x63, 0x6f, 0x73, 0x6d, 0x6f,
0x73, 0x2e, 0x6f, 0x72, 0x6d, 0x2e, 0x76, 0x31, 0x61, 0x6c, 0x70, 0x68, 0x61, 0x31, 0x2e, 0x54,
0x61, 0x62, 0x6c, 0x65, 0x44, 0x65, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x6f, 0x72, 0x52, 0x05,
0x74, 0x61, 0x62, 0x6c, 0x65, 0x3a, 0x6a, 0x0a, 0x09, 0x73, 0x69, 0x6e, 0x67, 0x6c, 0x65, 0x74,
0x6f, 0x6e, 0x12, 0x1f, 0x2e, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2e, 0x70, 0x72, 0x6f, 0x74,
0x6f, 0x62, 0x75, 0x66, 0x2e, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x4f, 0x70, 0x74, 0x69,
0x6f, 0x6e, 0x73, 0x18, 0xef, 0xb3, 0xea, 0x31, 0x20, 0x01, 0x28, 0x0b, 0x32, 0x28, 0x2e, 0x63,
0x6f, 0x73, 0x6d, 0x6f, 0x73, 0x2e, 0x6f, 0x72, 0x6d, 0x2e, 0x76, 0x31, 0x61, 0x6c, 0x70, 0x68,
0x61, 0x31, 0x2e, 0x53, 0x69, 0x6e, 0x67, 0x6c, 0x65, 0x74, 0x6f, 0x6e, 0x44, 0x65, 0x73, 0x63,
0x72, 0x69, 0x70, 0x74, 0x6f, 0x72, 0x52, 0x09, 0x73, 0x69, 0x6e, 0x67, 0x6c, 0x65, 0x74, 0x6f,
0x6e, 0x42, 0xd3, 0x01, 0x0a, 0x17, 0x63, 0x6f, 0x6d, 0x2e, 0x63, 0x6f, 0x73, 0x6d, 0x6f, 0x73,
0x2e, 0x6f, 0x72, 0x6d, 0x2e, 0x76, 0x31, 0x61, 0x6c, 0x70, 0x68, 0x61, 0x31, 0x42, 0x08, 0x4f,
0x72, 0x6d, 0x50, 0x72, 0x6f, 0x74, 0x6f, 0x50, 0x01, 0x5a, 0x40, 0x67, 0x69, 0x74, 0x68, 0x75,
0x62, 0x2e, 0x63, 0x6f, 0x6d, 0x2f, 0x63, 0x6f, 0x73, 0x6d, 0x6f, 0x73, 0x2f, 0x63, 0x6f, 0x73,
0x6d, 0x6f, 0x73, 0x2d, 0x73, 0x64, 0x6b, 0x2f, 0x61, 0x70, 0x69, 0x2f, 0x63, 0x6f, 0x73, 0x6d,
0x6f, 0x73, 0x2f, 0x6f, 0x72, 0x6d, 0x2f, 0x76, 0x31, 0x61, 0x6c, 0x70, 0x68, 0x61, 0x31, 0x3b,
0x6f, 0x72, 0x6d, 0x76, 0x31, 0x61, 0x6c, 0x70, 0x68, 0x61, 0x31, 0xa2, 0x02, 0x03, 0x43, 0x4f,
0x58, 0xaa, 0x02, 0x13, 0x43, 0x6f, 0x73, 0x6d, 0x6f, 0x73, 0x2e, 0x4f, 0x72, 0x6d, 0x2e, 0x56,
0x31, 0x61, 0x6c, 0x70, 0x68, 0x61, 0x31, 0xca, 0x02, 0x13, 0x43, 0x6f, 0x73, 0x6d, 0x6f, 0x73,
0x5c, 0x4f, 0x72, 0x6d, 0x5c, 0x56, 0x31, 0x61, 0x6c, 0x70, 0x68, 0x61, 0x31, 0xe2, 0x02, 0x1f,
0x43, 0x6f, 0x73, 0x6d, 0x6f, 0x73, 0x5c, 0x4f, 0x72, 0x6d, 0x5c, 0x56, 0x31, 0x61, 0x6c, 0x70,
0x68, 0x61, 0x31, 0x5c, 0x47, 0x50, 0x42, 0x4d, 0x65, 0x74, 0x61, 0x64, 0x61, 0x74, 0x61, 0xea,
0x02, 0x15, 0x43, 0x6f, 0x73, 0x6d, 0x6f, 0x73, 0x3a, 0x3a, 0x4f, 0x72, 0x6d, 0x3a, 0x3a, 0x56,
0x31, 0x61, 0x6c, 0x70, 0x68, 0x61, 0x31, 0x62, 0x06, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x33,
}
var (
file_cosmos_orm_v1alpha1_orm_proto_rawDescOnce sync.Once
file_cosmos_orm_v1alpha1_orm_proto_rawDescData = file_cosmos_orm_v1alpha1_orm_proto_rawDesc
)
func file_cosmos_orm_v1alpha1_orm_proto_rawDescGZIP() []byte {
file_cosmos_orm_v1alpha1_orm_proto_rawDescOnce.Do(func() {
file_cosmos_orm_v1alpha1_orm_proto_rawDescData = protoimpl.X.CompressGZIP(file_cosmos_orm_v1alpha1_orm_proto_rawDescData)
})
return file_cosmos_orm_v1alpha1_orm_proto_rawDescData
}
var file_cosmos_orm_v1alpha1_orm_proto_msgTypes = make([]protoimpl.MessageInfo, 4)
var file_cosmos_orm_v1alpha1_orm_proto_goTypes = []interface{}{
(*TableDescriptor)(nil), // 0: cosmos.orm.v1alpha1.TableDescriptor
(*PrimaryKeyDescriptor)(nil), // 1: cosmos.orm.v1alpha1.PrimaryKeyDescriptor
(*SecondaryIndexDescriptor)(nil), // 2: cosmos.orm.v1alpha1.SecondaryIndexDescriptor
(*SingletonDescriptor)(nil), // 3: cosmos.orm.v1alpha1.SingletonDescriptor
(*descriptorpb.MessageOptions)(nil), // 4: google.protobuf.MessageOptions
}
var file_cosmos_orm_v1alpha1_orm_proto_depIdxs = []int32{
1, // 0: cosmos.orm.v1alpha1.TableDescriptor.primary_key:type_name -> cosmos.orm.v1alpha1.PrimaryKeyDescriptor
2, // 1: cosmos.orm.v1alpha1.TableDescriptor.index:type_name -> cosmos.orm.v1alpha1.SecondaryIndexDescriptor
4, // 2: cosmos.orm.v1alpha1.table:extendee -> google.protobuf.MessageOptions
4, // 3: cosmos.orm.v1alpha1.singleton:extendee -> google.protobuf.MessageOptions
0, // 4: cosmos.orm.v1alpha1.table:type_name -> cosmos.orm.v1alpha1.TableDescriptor
3, // 5: cosmos.orm.v1alpha1.singleton:type_name -> cosmos.orm.v1alpha1.SingletonDescriptor
6, // [6:6] is the sub-list for method output_type
6, // [6:6] is the sub-list for method input_type
4, // [4:6] is the sub-list for extension type_name
2, // [2:4] is the sub-list for extension extendee
0, // [0:2] is the sub-list for field type_name
}
func init() { file_cosmos_orm_v1alpha1_orm_proto_init() }
func file_cosmos_orm_v1alpha1_orm_proto_init() {
if File_cosmos_orm_v1alpha1_orm_proto != nil {
return
}
if !protoimpl.UnsafeEnabled {
file_cosmos_orm_v1alpha1_orm_proto_msgTypes[0].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*TableDescriptor); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
file_cosmos_orm_v1alpha1_orm_proto_msgTypes[1].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*PrimaryKeyDescriptor); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
file_cosmos_orm_v1alpha1_orm_proto_msgTypes[2].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*SecondaryIndexDescriptor); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
file_cosmos_orm_v1alpha1_orm_proto_msgTypes[3].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*SingletonDescriptor); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
}
type x struct{}
out := protoimpl.TypeBuilder{
File: protoimpl.DescBuilder{
GoPackagePath: reflect.TypeOf(x{}).PkgPath(),
RawDescriptor: file_cosmos_orm_v1alpha1_orm_proto_rawDesc,
NumEnums: 0,
NumMessages: 4,
NumExtensions: 2,
NumServices: 0,
},
GoTypes: file_cosmos_orm_v1alpha1_orm_proto_goTypes,
DependencyIndexes: file_cosmos_orm_v1alpha1_orm_proto_depIdxs,
MessageInfos: file_cosmos_orm_v1alpha1_orm_proto_msgTypes,
ExtensionInfos: file_cosmos_orm_v1alpha1_orm_proto_extTypes,
}.Build()
File_cosmos_orm_v1alpha1_orm_proto = out.File
file_cosmos_orm_v1alpha1_orm_proto_rawDesc = nil
file_cosmos_orm_v1alpha1_orm_proto_goTypes = nil
file_cosmos_orm_v1alpha1_orm_proto_depIdxs = nil
}