Arduino_STM32/STM32F1/libraries/Adafruit_ILI9341_STM/Adafruit_ILI9341_STM.cpp

646 lines
15 KiB
C++

/*
See rights and use declaration in License.h
This library has been modified for the Maple Mini.
Includes DMA transfers on DMA1 CH2 and CH3.
*/
#include <Adafruit_ILI9341_STM.h>
// Constructor when using hardware SPI. Faster, but must use SPI pins
// specific to each board type (e.g. 11,13 for Uno, 51,52 for Mega, etc.)
Adafruit_ILI9341_STM::Adafruit_ILI9341_STM(int8_t cs, int8_t dc, int8_t rst) : Adafruit_GFX_AS(ILI9341_TFTWIDTH, ILI9341_TFTHEIGHT)
{
_cs = cs;
_dc = dc;
_rst = rst;
}
void Adafruit_ILI9341_STM::writecommand(uint8_t c)
{
dc_command();
cs_clear();
spiwrite(c);
dc_data();
}
// Rather than a bazillion writecommand() and writedata() calls, screen
// initialization commands and arguments are organized in these tables
// stored in PROGMEM. The table may look bulky, but that's mostly the
// formatting -- storage-wise this is hundreds of bytes more compact
// than the equivalent code. Companion function follows.
#define DELAY 0x80
// Companion code to the above tables. Reads and issues
// a series of LCD commands stored in PROGMEM byte array.
void Adafruit_ILI9341_STM::commandList(uint8_t *addr)
{
uint8_t numCommands, numArgs;
uint16_t ms;
numCommands = pgm_read_byte(addr++); // Number of commands to follow
while (numCommands--) { // For each command...
writecommand(pgm_read_byte(addr++)); // Read, issue command
numArgs = pgm_read_byte(addr++); // Number of args to follow
ms = numArgs & DELAY; // If hibit set, delay follows args
numArgs &= ~DELAY; // Mask out delay bit
while (numArgs--) { // For each argument...
writedata(pgm_read_byte(addr++)); // Read, issue argument
}
if (ms) {
ms = pgm_read_byte(addr++); // Read post-command delay time (ms)
if (ms == 255) ms = 500; // If 255, delay for 500 ms
delay(ms);
}
}
}
void Adafruit_ILI9341_STM::begin(SPIClass & spi, uint32_t freq)
{
mSPI = spi;
_freq = freq;
_safe_freq = (freq>SAFE_FREQ) ? SAFE_FREQ : _freq;
pinMode(_dc, OUTPUT);
pinMode(_cs, OUTPUT);
csport = portSetRegister(_cs);
cspinmask = digitalPinToBitMask(_cs);
cs_set(); // deactivate chip
dcport = portSetRegister(_dc);
dcpinmask = digitalPinToBitMask(_dc);
mSPI.beginTransaction(SPISettings(_safe_freq, MSBFIRST, SPI_MODE0, DATA_SIZE_8BIT));
// toggle RST low to reset
if (_rst > 0) {
pinMode(_rst, OUTPUT);
digitalWrite(_rst, HIGH);
delay(5);
digitalWrite(_rst, LOW);
delay(20);
digitalWrite(_rst, HIGH);
delay(150);
}
/*
uint8_t x = readcommand8(ILI9341_RDMODE);
Serial.print("\nDisplay Power Mode: 0x"); Serial.println(x, HEX);
x = readcommand8(ILI9341_RDMADCTL);
Serial.print("\nMADCTL Mode: 0x"); Serial.println(x, HEX);
x = readcommand8(ILI9341_RDPIXFMT);
Serial.print("\nPixel Format: 0x"); Serial.println(x, HEX);
x = readcommand8(ILI9341_RDIMGFMT);
Serial.print("\nImage Format: 0x"); Serial.println(x, HEX);
x = readcommand8(ILI9341_RDSELFDIAG);
Serial.print("\nSelf Diagnostic: 0x"); Serial.println(x, HEX);
*/
//if(cmdList) commandList(cmdList);
writecommand(0xEF);
writedata(0x03);
writedata(0x80);
writedata(0x02);
writecommand(0xCF);
writedata(0x00);
writedata(0XC1);
writedata(0X30);
writecommand(0xED);
writedata(0x64);
writedata(0x03);
writedata(0X12);
writedata(0X81);
writecommand(0xE8);
writedata(0x85);
writedata(0x00);
writedata(0x78);
writecommand(0xCB);
writedata(0x39);
writedata(0x2C);
writedata(0x00);
writedata(0x34);
writedata(0x02);
writecommand(0xF7);
writedata(0x20);
writecommand(0xEA);
writedata(0x00);
writedata(0x00);
writecommand(ILI9341_PWCTR1); //Power control
writedata(0x23); //VRH[5:0]
writecommand(ILI9341_PWCTR2); //Power control
writedata(0x10); //SAP[2:0];BT[3:0]
writecommand(ILI9341_VMCTR1); //VCM control
writedata(0x3e);
writedata(0x28);
writecommand(ILI9341_VMCTR2); //VCM control2
writedata(0x86); //--
writecommand(ILI9341_MADCTL); // Memory Access Control
writedata(0x48);
writecommand(ILI9341_PIXFMT);
writedata(0x55);
writecommand(ILI9341_FRMCTR1);
writedata(0x00);
writedata(0x18);
writecommand(ILI9341_DFUNCTR); // Display Function Control
writedata(0x08);
writedata(0x82);
writedata(0x27);
writecommand(0xF2); // 3Gamma Function Disable
writedata(0x00);
writecommand(ILI9341_GAMMASET); //Gamma curve selected
writedata(0x01);
writecommand(ILI9341_GMCTRP1); //Set Gamma
writedata(0x0F);
writedata(0x31);
writedata(0x2B);
writedata(0x0C);
writedata(0x0E);
writedata(0x08);
writedata(0x4E);
writedata(0xF1);
writedata(0x37);
writedata(0x07);
writedata(0x10);
writedata(0x03);
writedata(0x0E);
writedata(0x09);
writedata(0x00);
writecommand(ILI9341_GMCTRN1); //Set Gamma
writedata(0x00);
writedata(0x0E);
writedata(0x14);
writedata(0x03);
writedata(0x11);
writedata(0x07);
writedata(0x31);
writedata(0xC1);
writedata(0x48);
writedata(0x08);
writedata(0x0F);
writedata(0x0C);
writedata(0x31);
writedata(0x36);
writedata(0x0F);
writecommand(ILI9341_SLPOUT); //Exit Sleep
delay(120);
writecommand(ILI9341_DISPON); //Display on
delay(120);
cs_set();
_width = ILI9341_TFTWIDTH;
_height = ILI9341_TFTHEIGHT;
mSPI.beginTransaction(SPISettings(_freq, MSBFIRST, SPI_MODE0, DATA_SIZE_16BIT));
}
void Adafruit_ILI9341_STM::setAddrWindow(uint16_t x0, uint16_t y0,
uint16_t x1, uint16_t y1)
{
writecommand(ILI9341_CASET); // Column addr set
spiwrite(x0);
spiwrite(x1);
writecommand(ILI9341_PASET); // Row addr set
spiwrite(y0);
spiwrite(y1);
writecommand(ILI9341_RAMWR); // write to RAM
}
void Adafruit_ILI9341_STM::pushColors(void * colorBuffer, uint16_t nr_pixels, uint8_t async)
{
cs_clear();
if (async==0) {
mSPI.dmaSend(colorBuffer, nr_pixels, 1);
cs_set();
} else {
mSPI.dmaSendAsync(colorBuffer, nr_pixels, 1);
}
}
void Adafruit_ILI9341_STM::pushColor(uint16_t color)
{
cs_clear();
spiwrite(color);
cs_set();
}
void Adafruit_ILI9341_STM::drawPixel(int16_t x, int16_t y, uint16_t color)
{
if ((x < 0) || (x >= _width) || (y < 0) || (y >= _height)) return;
setAddrWindow(x, y, x + 1, y + 1);
spiwrite(color);
cs_set();
}
void Adafruit_ILI9341_STM::drawFastVLine(int16_t x, int16_t y, int16_t h,
uint16_t color)
{
// Rudimentary clipping
if ((x >= _width) || (y >= _height || h < 1)) return;
if ((y + h - 1) >= _height)
h = _height - y;
if (h < 2 ) {
drawPixel(x, y, color);
return;
}
setAddrWindow(x, y, x, y + h - 1);
if (h>DMA_ON_LIMIT) {
lineBuffer[0] = color;
mSPI.dmaSend(lineBuffer, h, 0);
} else {
mSPI.write(color, h);
}
cs_set();
}
void Adafruit_ILI9341_STM::drawFastHLine(int16_t x, int16_t y, int16_t w,
uint16_t color)
{
// Rudimentary clipping
if ((x >= _width) || (y >= _height || w < 1)) return;
if ((x + w - 1) >= _width) w = _width - x;
if (w < 2 ) {
drawPixel(x, y, color);
return;
}
setAddrWindow(x, y, x + w - 1, y);
if (w>DMA_ON_LIMIT) {
lineBuffer[0] = color;
mSPI.dmaSend(lineBuffer, w, 0);
} else {
mSPI.write(color, w);
}
cs_set();
}
void Adafruit_ILI9341_STM::fillScreen(uint16_t color)
{
lineBuffer[0] = color;
setAddrWindow(0, 0, _width - 1, _height - 1);
uint32_t nr_bytes = _width * _height;
while ( nr_bytes>65535 ) {
nr_bytes -= 65535;
mSPI.dmaSend(lineBuffer, (65535), 0);
}
mSPI.dmaSend(lineBuffer, nr_bytes, 0);
cs_set();
}
// fill a rectangle
void Adafruit_ILI9341_STM::fillRect(int16_t x, int16_t y, int16_t w, int16_t h,
uint16_t color)
{
lineBuffer[0] = color;
// rudimentary clipping (drawChar w/big text requires this)
if ((x >= _width) || (y >= _height || h < 1 || w < 1)) return;
if ((x + w - 1) >= _width) w = _width - x;
if ((y + h - 1) >= _height) h = _height - y;
if (w == 1 && h == 1) {
drawPixel(x, y, color);
return;
}
setAddrWindow(x, y, x + w - 1, y + h - 1);
uint32_t nr_bytes = w * h;
if ( nr_bytes>DMA_ON_LIMIT ) {
while ( nr_bytes>65535 ) {
nr_bytes -= 65535;
mSPI.dmaSend(lineBuffer, (65535), 0);
}
mSPI.dmaSend(lineBuffer, nr_bytes, 0);
} else {
mSPI.write(color, nr_bytes);
}
cs_set();
}
/*
* Draw lines faster by calculating straight sections and drawing them with fastVline and fastHline.
*/
void Adafruit_ILI9341_STM::drawLine(int16_t x0, int16_t y0,
int16_t x1, int16_t y1, uint16_t color)
{
if ((y0 < 0 && y1 <0) || (y0 > _height && y1 > _height)) return;
if ((x0 < 0 && x1 <0) || (x0 > _width && x1 > _width)) return;
if (x0 < 0) x0 = 0;
if (x1 < 0) x1 = 0;
if (y0 < 0) y0 = 0;
if (y1 < 0) y1 = 0;
if (y0 == y1) {
if (x1 > x0) {
drawFastHLine(x0, y0, x1 - x0 + 1, color);
}
else if (x1 < x0) {
drawFastHLine(x1, y0, x0 - x1 + 1, color);
}
else {
drawPixel(x0, y0, color);
}
return;
}
else if (x0 == x1) {
if (y1 > y0) {
drawFastVLine(x0, y0, y1 - y0 + 1, color);
}
else {
drawFastVLine(x0, y1, y0 - y1 + 1, color);
}
return;
}
bool steep = abs(y1 - y0) > abs(x1 - x0);
if (steep) {
swap(x0, y0);
swap(x1, y1);
}
if (x0 > x1) {
swap(x0, x1);
swap(y0, y1);
}
int16_t dx, dy;
dx = x1 - x0;
dy = abs(y1 - y0);
int16_t err = dx / 2;
int16_t ystep;
if (y0 < y1) {
ystep = 1;
}
else {
ystep = -1;
}
int16_t xbegin = x0;
if (steep) {
for (; x0 <= x1; x0++) {
err -= dy;
if (err < 0) {
int16_t len = x0 - xbegin;
if (len) {
drawFastVLine (y0, xbegin, len + 1, color);
//writeVLine_cont_noCS_noFill(y0, xbegin, len + 1);
}
else {
drawPixel(y0, x0, color);
//writePixel_cont_noCS(y0, x0, color);
}
xbegin = x0 + 1;
y0 += ystep;
err += dx;
}
}
if (x0 > xbegin + 1) {
//writeVLine_cont_noCS_noFill(y0, xbegin, x0 - xbegin);
drawFastVLine(y0, xbegin, x0 - xbegin, color);
}
}
else {
for (; x0 <= x1; x0++) {
err -= dy;
if (err < 0) {
int16_t len = x0 - xbegin;
if (len) {
drawFastHLine(xbegin, y0, len + 1, color);
//writeHLine_cont_noCS_noFill(xbegin, y0, len + 1);
}
else {
drawPixel(x0, y0, color);
//writePixel_cont_noCS(x0, y0, color);
}
xbegin = x0 + 1;
y0 += ystep;
err += dx;
}
}
if (x0 > xbegin + 1) {
//writeHLine_cont_noCS_noFill(xbegin, y0, x0 - xbegin);
drawFastHLine(xbegin, y0, x0 - xbegin, color);
}
}
}
// Pass 8-bit (each) R,G,B, get back 16-bit packed color
uint16_t Adafruit_ILI9341_STM::color565(uint8_t r, uint8_t g, uint8_t b) {
return ((r & 0xF8) << 8) | ((g & 0xFC) << 3) | (b >> 3);
}
#define MADCTL_MY 0x80
#define MADCTL_MX 0x40
#define MADCTL_MV 0x20
#define MADCTL_ML 0x10
#define MADCTL_RGB 0x00
#define MADCTL_BGR 0x08
#define MADCTL_MH 0x04
void Adafruit_ILI9341_STM::setRotation(uint8_t m)
{
rotation = m % 4; // can't be higher than 3
switch (rotation) {
case 0:
m = (MADCTL_MX | MADCTL_BGR);
_width = ILI9341_TFTWIDTH;
_height = ILI9341_TFTHEIGHT;
break;
case 1:
m = (MADCTL_MV | MADCTL_BGR);
_width = ILI9341_TFTHEIGHT;
_height = ILI9341_TFTWIDTH;
break;
case 2:
m = (MADCTL_MY | MADCTL_BGR);
_width = ILI9341_TFTWIDTH;
_height = ILI9341_TFTHEIGHT;
break;
case 3:
m = (MADCTL_MX | MADCTL_MY | MADCTL_MV | MADCTL_BGR);
_width = ILI9341_TFTHEIGHT;
_height = ILI9341_TFTWIDTH;
break;
}
mSPI.setDataSize(DATA_SIZE_8BIT);
writecommand(ILI9341_MADCTL);
writedata(m);
cs_set();
mSPI.setDataSize(DATA_SIZE_16BIT);
}
void Adafruit_ILI9341_STM::invertDisplay(boolean i)
{
writecommand(i ? ILI9341_INVON : ILI9341_INVOFF);
cs_set();
}
uint16_t Adafruit_ILI9341_STM::readPixel(int16_t x, int16_t y)
{
mSPI.beginTransaction(SPISettings(_safe_freq, MSBFIRST, SPI_MODE0, DATA_SIZE_8BIT));
writecommand(ILI9341_CASET); // Column addr set
spiwrite16(x);
spiwrite16(x);
writecommand(ILI9341_PASET); // Row addr set
spiwrite16(y);
spiwrite16(y);
writecommand(ILI9341_RAMRD); // read GRAM
(void)spiread(); //dummy read
uint8_t r = spiread();
uint8_t g = spiread();
uint8_t b = spiread();
cs_set();
mSPI.beginTransaction(SPISettings(_freq, MSBFIRST, SPI_MODE0, DATA_SIZE_16BIT));
return color565(r, g, b);
}
uint16_t Adafruit_ILI9341_STM::readPixels(int16_t x1, int16_t y1, int16_t x2, int16_t y2, uint16_t *buf)
{
mSPI.beginTransaction(SPISettings(_safe_freq, MSBFIRST, SPI_MODE0, DATA_SIZE_8BIT));
writecommand(ILI9341_CASET); // Column addr set
spiwrite16(x1);
spiwrite16(x2);
writecommand(ILI9341_PASET); // Row addr set
spiwrite16(y1);
spiwrite16(y2);
writecommand(ILI9341_RAMRD); // read GRAM
(void)spiread(); //dummy read
uint8_t r, g, b;
uint16_t len = (x2-x1+1)*(y2-y1+1);
uint16_t ret = len;
while (len--) {
r = spiread();
g = spiread();
b = spiread();
*buf++ = color565(r, g, b);
}
cs_set();
mSPI.beginTransaction(SPISettings(_freq, MSBFIRST, SPI_MODE0, DATA_SIZE_16BIT));
return ret;
}
uint16_t Adafruit_ILI9341_STM::readPixelsRGB24(int16_t x1, int16_t y1, int16_t x2, int16_t y2, uint8_t *buf)
{
mSPI.beginTransaction(SPISettings(_safe_freq, MSBFIRST, SPI_MODE0, DATA_SIZE_8BIT));
writecommand(ILI9341_CASET); // Column addr set
spiwrite16(x1);
spiwrite16(x2);
writecommand(ILI9341_PASET); // Row addr set
spiwrite16(y1);
spiwrite16(y2);
writecommand(ILI9341_RAMRD); // read GRAM
(void)spiread(); //dummy read
uint8_t r, g, b;
uint16_t len = (x2-x1+1)*(y2-y1+1);
uint16_t ret = len;
mSPI.dmaTransfer(buf, buf, len*3);
cs_set();
mSPI.beginTransaction(SPISettings(_freq, MSBFIRST, SPI_MODE0, DATA_SIZE_16BIT));
return ret;
}
uint8_t Adafruit_ILI9341_STM::readcommand8(uint8_t c, uint8_t index)
{
// the SPI clock must be set lower
mSPI.beginTransaction(SPISettings(_safe_freq, MSBFIRST, SPI_MODE0, DATA_SIZE_8BIT));
writecommand(c);
uint8_t r = spiread();
cs_set();
mSPI.beginTransaction(SPISettings(_freq, MSBFIRST, SPI_MODE0, DATA_SIZE_16BIT));
return r;
}
/*
uint16_t Adafruit_ILI9341_STM::readcommand16(uint8_t c) {
digitalWrite(_dc, LOW);
if (_cs)
digitalWrite(_cs, LOW);
spiwrite(c);
pinMode(_sid, INPUT); // input!
uint16_t r = spiread();
r <<= 8;
r |= spiread();
if (_cs)
digitalWrite(_cs, HIGH);
pinMode(_sid, OUTPUT); // back to output
return r;
}
uint32_t Adafruit_ILI9341_STM::readcommand32(uint8_t c) {
digitalWrite(_dc, LOW);
if (_cs)
digitalWrite(_cs, LOW);
spiwrite(c);
pinMode(_sid, INPUT); // input!
dummyclock();
dummyclock();
uint32_t r = spiread();
r <<= 8;
r |= spiread();
r <<= 8;
r |= spiread();
r <<= 8;
r |= spiread();
if (_cs)
digitalWrite(_cs, HIGH);
pinMode(_sid, OUTPUT); // back to output
return r;
}
*/