atbetaflight/src/drv_system.c

228 lines
5.7 KiB
C
Executable File

#include "board.h"
// cycles per microsecond
static volatile uint32_t usTicks = 0;
// current uptime for 1kHz systick timer. will rollover after 49 days. hopefully we won't care.
static volatile uint32_t sysTickUptime = 0;
// from system_stm32f10x.c
void SetSysClock(void);
static void cycleCounterInit(void)
{
RCC_ClocksTypeDef clocks;
RCC_GetClocksFreq(&clocks);
usTicks = clocks.SYSCLK_Frequency / 1000000;
}
// SysTick
void SysTick_Handler(void)
{
sysTickUptime++;
}
// Return system uptime in microseconds (rollover in 70minutes)
uint32_t micros(void)
{
register uint32_t ms, cycle_cnt;
do {
ms = sysTickUptime;
cycle_cnt = SysTick->VAL;
} while (ms != sysTickUptime);
return (ms * 1000) + (usTicks * 1000 - cycle_cnt) / usTicks;
}
// Return system uptime in milliseconds (rollover in 49 days)
uint32_t millis(void)
{
return sysTickUptime;
}
void systemInit(void)
{
struct {
GPIO_TypeDef *gpio;
gpio_config_t cfg;
} gpio_setup[] = {
{
.gpio = LED0_GPIO,
.cfg = { LED0_PIN, Mode_Out_PP, Speed_2MHz }
},
{
.gpio = LED1_GPIO,
.cfg = { LED1_PIN, Mode_Out_PP, Speed_2MHz }
},
#ifdef BUZZER
{
.gpio = BEEP_GPIO,
.cfg = { BEEP_PIN, Mode_Out_OD, Speed_2MHz }
},
#endif
};
gpio_config_t gpio;
uint32_t i;
uint8_t gpio_count = sizeof(gpio_setup) / sizeof(gpio_setup[0]);
// Configure the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers
// Configure the Flash Latency cycles and enable prefetch buffer
SetSysClock();
// Turn on clocks for stuff we use
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2 | RCC_APB1Periph_TIM3 | RCC_APB1Periph_TIM4 | RCC_APB1Periph_I2C2, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO | RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB | RCC_APB2Periph_GPIOC | RCC_APB2Periph_TIM1 | RCC_APB2Periph_ADC1 | RCC_APB2Periph_USART1, ENABLE);
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
RCC_ClearFlag();
// Make all GPIO in by default to save power and reduce noise
gpio.pin = Pin_All;
gpio.mode = Mode_AIN;
gpioInit(GPIOA, &gpio);
gpioInit(GPIOB, &gpio);
gpioInit(GPIOC, &gpio);
// Turn off JTAG port 'cause we're using the GPIO for leds
#define AFIO_MAPR_SWJ_CFG_NO_JTAG_SW (0x2 << 24)
AFIO->MAPR |= AFIO_MAPR_SWJ_CFG_NO_JTAG_SW;
// Configure gpio
LED0_OFF;
LED1_OFF;
BEEP_OFF;
for (i = 0; i < gpio_count; i++) {
if (hse_value == 12000000 && gpio_setup[i].cfg.mode == Mode_Out_OD)
gpio_setup[i].cfg.mode = Mode_Out_PP;
gpioInit(gpio_setup[i].gpio, &gpio_setup[i].cfg);
}
// Init cycle counter
cycleCounterInit();
// SysTick
SysTick_Config(SystemCoreClock / 1000);
// Configure the rest of the stuff
#ifndef FY90Q
i2cInit(I2C2);
#endif
spiInit();
// sleep for 100ms
delay(100);
}
#if 1
void delayMicroseconds(uint32_t us)
{
uint32_t now = micros();
while (micros() - now < us);
}
#else
void delayMicroseconds(uint32_t us)
{
uint32_t elapsed = 0;
uint32_t lastCount = SysTick->VAL;
for (;;) {
register uint32_t current_count = SysTick->VAL;
uint32_t elapsed_us;
// measure the time elapsed since the last time we checked
elapsed += current_count - lastCount;
lastCount = current_count;
// convert to microseconds
elapsed_us = elapsed / usTicks;
if (elapsed_us >= us)
break;
// reduce the delay by the elapsed time
us -= elapsed_us;
// keep fractional microseconds for the next iteration
elapsed %= usTicks;
}
}
#endif
void delay(uint32_t ms)
{
while (ms--)
delayMicroseconds(1000);
}
void failureMode(uint8_t mode)
{
LED1_ON;
LED0_OFF;
while (1) {
LED1_TOGGLE;
LED0_TOGGLE;
delay(475 * mode - 2);
BEEP_ON
delay(25);
BEEP_OFF;
}
}
#define AIRCR_VECTKEY_MASK ((uint32_t)0x05FA0000)
void systemReset(bool toBootloader)
{
if (toBootloader) {
// 1FFFF000 -> 20000200 -> SP
// 1FFFF004 -> 1FFFF021 -> PC
*((uint32_t *)0x20004FF0) = 0xDEADBEEF; // 20KB STM32F103
}
// Generate system reset
SCB->AIRCR = AIRCR_VECTKEY_MASK | (uint32_t)0x04;
}
void alignSensors(int16_t *src, int16_t *dest, uint8_t rotation)
{
switch (rotation) {
case CW0_DEG:
dest[X] = src[X];
dest[Y] = src[Y];
dest[Z] = src[Z];
break;
case CW90_DEG:
dest[X] = src[Y];
dest[Y] = -src[X];
dest[Z] = src[Z];
break;
case CW180_DEG:
dest[X] = -src[X];
dest[Y] = -src[Y];
dest[Z] = src[Z];
break;
case CW270_DEG:
dest[X] = -src[Y];
dest[Y] = src[X];
dest[Z] = src[Z];
break;
case CW0_DEG_FLIP:
dest[X] = -src[X];
dest[Y] = src[Y];
dest[Z] = -src[Z];
break;
case CW90_DEG_FLIP:
dest[X] = src[Y];
dest[Y] = src[X];
dest[Z] = -src[Z];
break;
case CW180_DEG_FLIP:
dest[X] = src[X];
dest[Y] = -src[Y];
dest[Z] = -src[Z];
break;
case CW270_DEG_FLIP:
dest[X] = -src[Y];
dest[Y] = -src[X];
dest[Z] = -src[Z];
break;
default:
break;
}
}