atbetaflight/src/main/drivers/adc_stm32f10x.c

178 lines
5.8 KiB
C

/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include "platform.h"
#ifdef USE_ADC
#include "build/build_config.h"
#include "drivers/accgyro/accgyro.h"
#include "drivers/system.h"
#include "drivers/sensor.h"
#include "adc.h"
#include "adc_impl.h"
#include "drivers/io.h"
#include "rcc.h"
#include "dma.h"
#ifndef ADC_INSTANCE
#define ADC_INSTANCE ADC1
#endif
const adcDevice_t adcHardware[] = {
{ .ADCx = ADC1, .rccADC = RCC_APB2(ADC1), .DMAy_Channelx = DMA1_Channel1 }
};
ADCDevice adcDeviceByInstance(ADC_TypeDef *instance)
{
if (instance == ADC1)
return ADCDEV_1;
/* TODO -- ADC2 available on large 10x devices.
if (instance == ADC2)
return ADCDEV_2;
*/
return ADCINVALID;
}
const adcTagMap_t adcTagMap[] = {
{ DEFIO_TAG_E__PA0, ADC_Channel_0 }, // ADC12
{ DEFIO_TAG_E__PA1, ADC_Channel_1 }, // ADC12
{ DEFIO_TAG_E__PA2, ADC_Channel_2 }, // ADC12
{ DEFIO_TAG_E__PA3, ADC_Channel_3 }, // ADC12
{ DEFIO_TAG_E__PA4, ADC_Channel_4 }, // ADC12
{ DEFIO_TAG_E__PA5, ADC_Channel_5 }, // ADC12
{ DEFIO_TAG_E__PA6, ADC_Channel_6 }, // ADC12
{ DEFIO_TAG_E__PA7, ADC_Channel_7 }, // ADC12
{ DEFIO_TAG_E__PB0, ADC_Channel_8 }, // ADC12
{ DEFIO_TAG_E__PB1, ADC_Channel_9 }, // ADC12
};
// Driver for STM32F103CB onboard ADC
//
// Naze32
// Battery Voltage (VBAT) is connected to PA4 (ADC1_IN4) with 10k:1k divider
// RSSI ADC uses CH2 (PA1, ADC1_IN1)
// Current ADC uses CH8 (PB1, ADC1_IN9)
//
// NAZE rev.5 hardware has PA5 (ADC1_IN5) on breakout pad on bottom of board
//
void adcInit(const adcConfig_t *config)
{
uint8_t configuredAdcChannels = 0;
memset(&adcOperatingConfig, 0, sizeof(adcOperatingConfig));
if (config->vbat.enabled) {
adcOperatingConfig[ADC_BATTERY].tag = config->vbat.ioTag;
}
if (config->rssi.enabled) {
adcOperatingConfig[ADC_RSSI].tag = config->rssi.ioTag; //RSSI_ADC_CHANNEL;
}
if (config->external1.enabled) {
adcOperatingConfig[ADC_EXTERNAL1].tag = config->external1.ioTag; //EXTERNAL1_ADC_CHANNEL;
}
if (config->current.enabled) {
adcOperatingConfig[ADC_CURRENT].tag = config->current.ioTag; //CURRENT_METER_ADC_CHANNEL;
}
ADCDevice device = adcDeviceByInstance(ADC_INSTANCE);
if (device == ADCINVALID)
return;
const adcDevice_t adc = adcHardware[device];
bool adcActive = false;
for (int i = 0; i < ADC_CHANNEL_COUNT; i++) {
if (!adcOperatingConfig[i].tag)
continue;
adcActive = true;
IOInit(IOGetByTag(adcOperatingConfig[i].tag), OWNER_ADC_BATT + i, 0);
IOConfigGPIO(IOGetByTag(adcOperatingConfig[i].tag), IO_CONFIG(GPIO_Mode_AIN, 0));
adcOperatingConfig[i].adcChannel = adcChannelByTag(adcOperatingConfig[i].tag);
adcOperatingConfig[i].dmaIndex = configuredAdcChannels++;
adcOperatingConfig[i].sampleTime = ADC_SampleTime_239Cycles5;
adcOperatingConfig[i].enabled = true;
}
if (!adcActive) {
return;
}
RCC_ADCCLKConfig(RCC_PCLK2_Div8); // 9MHz from 72MHz APB2 clock(HSE), 8MHz from 64MHz (HSI)
RCC_ClockCmd(adc.rccADC, ENABLE);
dmaInit(dmaGetIdentifier(adc.DMAy_Channelx), OWNER_ADC, 0);
DMA_DeInit(adc.DMAy_Channelx);
DMA_InitTypeDef DMA_InitStructure;
DMA_StructInit(&DMA_InitStructure);
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&adc.ADCx->DR;
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)adcValues;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
DMA_InitStructure.DMA_BufferSize = configuredAdcChannels;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = configuredAdcChannels > 1 ? DMA_MemoryInc_Enable : DMA_MemoryInc_Disable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(adc.DMAy_Channelx, &DMA_InitStructure);
DMA_Cmd(adc.DMAy_Channelx, ENABLE);
ADC_InitTypeDef ADC_InitStructure;
ADC_StructInit(&ADC_InitStructure);
ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
ADC_InitStructure.ADC_ScanConvMode = configuredAdcChannels > 1 ? ENABLE : DISABLE;
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfChannel = configuredAdcChannels;
ADC_Init(adc.ADCx, &ADC_InitStructure);
uint8_t rank = 1;
for (int i = 0; i < ADC_CHANNEL_COUNT; i++) {
if (!adcOperatingConfig[i].enabled) {
continue;
}
ADC_RegularChannelConfig(adc.ADCx, adcOperatingConfig[i].adcChannel, rank++, adcOperatingConfig[i].sampleTime);
}
ADC_DMACmd(adc.ADCx, ENABLE);
ADC_Cmd(adc.ADCx, ENABLE);
ADC_ResetCalibration(adc.ADCx);
while (ADC_GetResetCalibrationStatus(adc.ADCx));
ADC_StartCalibration(adc.ADCx);
while (ADC_GetCalibrationStatus(adc.ADCx));
ADC_SoftwareStartConvCmd(adc.ADCx, ENABLE);
}
#endif