atbetaflight/src/main/common/maths.c

332 lines
11 KiB
C

/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <math.h>
#include "axis.h"
#include "maths.h"
#if defined(FAST_MATH) || defined(VERY_FAST_MATH)
#if defined(VERY_FAST_MATH)
// http://lolengine.net/blog/2011/12/21/better-function-approximations
// Chebyshev http://stackoverflow.com/questions/345085/how-do-trigonometric-functions-work/345117#345117
// Thanks for ledvinap for making such accuracy possible! See: https://github.com/cleanflight/cleanflight/issues/940#issuecomment-110323384
// https://github.com/Crashpilot1000/HarakiriWebstore1/blob/master/src/mw.c#L1235
// sin_approx maximum absolute error = 2.305023e-06
// cos_approx maximum absolute error = 2.857298e-06
#define sinPolyCoef3 -1.666568107e-1f
#define sinPolyCoef5 8.312366210e-3f
#define sinPolyCoef7 -1.849218155e-4f
#define sinPolyCoef9 0
#else
#define sinPolyCoef3 -1.666665710e-1f // Double: -1.666665709650470145824129400050267289858e-1
#define sinPolyCoef5 8.333017292e-3f // Double: 8.333017291562218127986291618761571373087e-3
#define sinPolyCoef7 -1.980661520e-4f // Double: -1.980661520135080504411629636078917643846e-4
#define sinPolyCoef9 2.600054768e-6f // Double: 2.600054767890361277123254766503271638682e-6
#endif
float sin_approx(float x)
{
int32_t xint = x;
if (xint < -32 || xint > 32) return 0.0f; // Stop here on error input (5 * 360 Deg)
while (x > M_PIf) x -= (2.0f * M_PIf); // always wrap input angle to -PI..PI
while (x < -M_PIf) x += (2.0f * M_PIf);
if (x > (0.5f * M_PIf)) x = (0.5f * M_PIf) - (x - (0.5f * M_PIf)); // We just pick -90..+90 Degree
else if (x < -(0.5f * M_PIf)) x = -(0.5f * M_PIf) - ((0.5f * M_PIf) + x);
float x2 = x * x;
return x + x * x2 * (sinPolyCoef3 + x2 * (sinPolyCoef5 + x2 * (sinPolyCoef7 + x2 * sinPolyCoef9)));
}
float cos_approx(float x)
{
return sin_approx(x + (0.5f * M_PIf));
}
// Initial implementation by Crashpilot1000 (https://github.com/Crashpilot1000/HarakiriWebstore1/blob/396715f73c6fcf859e0db0f34e12fe44bace6483/src/mw.c#L1292)
// Polynomial coefficients by Andor (http://www.dsprelated.com/showthread/comp.dsp/21872-1.php) optimized by Ledvinap to save one multiplication
// Max absolute error 0,000027 degree
// atan2_approx maximum absolute error = 7.152557e-07 rads (4.098114e-05 degree)
float atan2_approx(float y, float x)
{
#define atanPolyCoef1 3.14551665884836e-07f
#define atanPolyCoef2 0.99997356613987f
#define atanPolyCoef3 0.14744007058297684f
#define atanPolyCoef4 0.3099814292351353f
#define atanPolyCoef5 0.05030176425872175f
#define atanPolyCoef6 0.1471039133652469f
#define atanPolyCoef7 0.6444640676891548f
float res, absX, absY;
absX = fabsf(x);
absY = fabsf(y);
res = MAX(absX, absY);
if (res) res = MIN(absX, absY) / res;
else res = 0.0f;
res = -((((atanPolyCoef5 * res - atanPolyCoef4) * res - atanPolyCoef3) * res - atanPolyCoef2) * res - atanPolyCoef1) / ((atanPolyCoef7 * res + atanPolyCoef6) * res + 1.0f);
if (absY > absX) res = (M_PIf / 2.0f) - res;
if (x < 0) res = M_PIf - res;
if (y < 0) res = -res;
return res;
}
// http://http.developer.nvidia.com/Cg/acos.html
// Handbook of Mathematical Functions
// M. Abramowitz and I.A. Stegun, Ed.
// acos_approx maximum absolute error = 6.760856e-05 rads (3.873685e-03 degree)
float acos_approx(float x)
{
float xa = fabsf(x);
float result = sqrtf(1.0f - xa) * (1.5707288f + xa * (-0.2121144f + xa * (0.0742610f + (-0.0187293f * xa))));
if (x < 0.0f)
return M_PIf - result;
else
return result;
}
#endif
int32_t applyDeadband(int32_t value, int32_t deadband)
{
if (ABS(value) < deadband) {
value = 0;
} else if (value > 0) {
value -= deadband;
} else if (value < 0) {
value += deadband;
}
return value;
}
void devClear(stdev_t *dev)
{
dev->m_n = 0;
}
void devPush(stdev_t *dev, float x)
{
dev->m_n++;
if (dev->m_n == 1) {
dev->m_oldM = dev->m_newM = x;
dev->m_oldS = 0.0f;
} else {
dev->m_newM = dev->m_oldM + (x - dev->m_oldM) / dev->m_n;
dev->m_newS = dev->m_oldS + (x - dev->m_oldM) * (x - dev->m_newM);
dev->m_oldM = dev->m_newM;
dev->m_oldS = dev->m_newS;
}
}
float devVariance(stdev_t *dev)
{
return ((dev->m_n > 1) ? dev->m_newS / (dev->m_n - 1) : 0.0f);
}
float devStandardDeviation(stdev_t *dev)
{
return sqrtf(devVariance(dev));
}
float degreesToRadians(int16_t degrees)
{
return degrees * RAD;
}
int scaleRange(int x, int srcMin, int srcMax, int destMin, int destMax) {
long int a = ((long int) destMax - (long int) destMin) * ((long int) x - (long int) srcMin);
long int b = (long int) srcMax - (long int) srcMin;
return ((a / b) - (destMax - destMin)) + destMax;
}
// Normalize a vector
void normalizeV(struct fp_vector *src, struct fp_vector *dest)
{
float length;
length = sqrtf(src->X * src->X + src->Y * src->Y + src->Z * src->Z);
if (length != 0) {
dest->X = src->X / length;
dest->Y = src->Y / length;
dest->Z = src->Z / length;
}
}
void buildRotationMatrix(fp_angles_t *delta, float matrix[3][3])
{
float cosx, sinx, cosy, siny, cosz, sinz;
float coszcosx, sinzcosx, coszsinx, sinzsinx;
cosx = cos_approx(delta->angles.roll);
sinx = sin_approx(delta->angles.roll);
cosy = cos_approx(delta->angles.pitch);
siny = sin_approx(delta->angles.pitch);
cosz = cos_approx(delta->angles.yaw);
sinz = sin_approx(delta->angles.yaw);
coszcosx = cosz * cosx;
sinzcosx = sinz * cosx;
coszsinx = sinx * cosz;
sinzsinx = sinx * sinz;
matrix[0][X] = cosz * cosy;
matrix[0][Y] = -cosy * sinz;
matrix[0][Z] = siny;
matrix[1][X] = sinzcosx + (coszsinx * siny);
matrix[1][Y] = coszcosx - (sinzsinx * siny);
matrix[1][Z] = -sinx * cosy;
matrix[2][X] = (sinzsinx) - (coszcosx * siny);
matrix[2][Y] = (coszsinx) + (sinzcosx * siny);
matrix[2][Z] = cosy * cosx;
}
// Rotate a vector *v by the euler angles defined by the 3-vector *delta.
void rotateV(struct fp_vector *v, fp_angles_t *delta)
{
struct fp_vector v_tmp = *v;
float matrix[3][3];
buildRotationMatrix(delta, matrix);
v->X = v_tmp.X * matrix[0][X] + v_tmp.Y * matrix[1][X] + v_tmp.Z * matrix[2][X];
v->Y = v_tmp.X * matrix[0][Y] + v_tmp.Y * matrix[1][Y] + v_tmp.Z * matrix[2][Y];
v->Z = v_tmp.X * matrix[0][Z] + v_tmp.Y * matrix[1][Z] + v_tmp.Z * matrix[2][Z];
}
// Quick median filter implementation
// (c) N. Devillard - 1998
// http://ndevilla.free.fr/median/median.pdf
#define QMF_SORT(a,b) { if ((a)>(b)) QMF_SWAP((a),(b)); }
#define QMF_SWAP(a,b) { int32_t temp=(a);(a)=(b);(b)=temp; }
#define QMF_COPY(p,v,n) { int32_t i; for (i=0; i<n; i++) p[i]=v[i]; }
#define QMF_SORTF(a,b) { if ((a)>(b)) QMF_SWAPF((a),(b)); }
#define QMF_SWAPF(a,b) { float temp=(a);(a)=(b);(b)=temp; }
int32_t quickMedianFilter3(int32_t * v)
{
int32_t p[3];
QMF_COPY(p, v, 3);
QMF_SORT(p[0], p[1]); QMF_SORT(p[1], p[2]); QMF_SORT(p[0], p[1]) ;
return p[1];
}
int32_t quickMedianFilter5(int32_t * v)
{
int32_t p[5];
QMF_COPY(p, v, 5);
QMF_SORT(p[0], p[1]); QMF_SORT(p[3], p[4]); QMF_SORT(p[0], p[3]);
QMF_SORT(p[1], p[4]); QMF_SORT(p[1], p[2]); QMF_SORT(p[2], p[3]);
QMF_SORT(p[1], p[2]);
return p[2];
}
int32_t quickMedianFilter7(int32_t * v)
{
int32_t p[7];
QMF_COPY(p, v, 7);
QMF_SORT(p[0], p[5]); QMF_SORT(p[0], p[3]); QMF_SORT(p[1], p[6]);
QMF_SORT(p[2], p[4]); QMF_SORT(p[0], p[1]); QMF_SORT(p[3], p[5]);
QMF_SORT(p[2], p[6]); QMF_SORT(p[2], p[3]); QMF_SORT(p[3], p[6]);
QMF_SORT(p[4], p[5]); QMF_SORT(p[1], p[4]); QMF_SORT(p[1], p[3]);
QMF_SORT(p[3], p[4]);
return p[3];
}
int32_t quickMedianFilter9(int32_t * v)
{
int32_t p[9];
QMF_COPY(p, v, 9);
QMF_SORT(p[1], p[2]); QMF_SORT(p[4], p[5]); QMF_SORT(p[7], p[8]);
QMF_SORT(p[0], p[1]); QMF_SORT(p[3], p[4]); QMF_SORT(p[6], p[7]);
QMF_SORT(p[1], p[2]); QMF_SORT(p[4], p[5]); QMF_SORT(p[7], p[8]);
QMF_SORT(p[0], p[3]); QMF_SORT(p[5], p[8]); QMF_SORT(p[4], p[7]);
QMF_SORT(p[3], p[6]); QMF_SORT(p[1], p[4]); QMF_SORT(p[2], p[5]);
QMF_SORT(p[4], p[7]); QMF_SORT(p[4], p[2]); QMF_SORT(p[6], p[4]);
QMF_SORT(p[4], p[2]);
return p[4];
}
float quickMedianFilter3f(float * v)
{
float p[3];
QMF_COPY(p, v, 3);
QMF_SORTF(p[0], p[1]); QMF_SORTF(p[1], p[2]); QMF_SORTF(p[0], p[1]) ;
return p[1];
}
float quickMedianFilter5f(float * v)
{
float p[5];
QMF_COPY(p, v, 5);
QMF_SORTF(p[0], p[1]); QMF_SORTF(p[3], p[4]); QMF_SORTF(p[0], p[3]);
QMF_SORTF(p[1], p[4]); QMF_SORTF(p[1], p[2]); QMF_SORTF(p[2], p[3]);
QMF_SORTF(p[1], p[2]);
return p[2];
}
float quickMedianFilter7f(float * v)
{
float p[7];
QMF_COPY(p, v, 7);
QMF_SORTF(p[0], p[5]); QMF_SORTF(p[0], p[3]); QMF_SORTF(p[1], p[6]);
QMF_SORTF(p[2], p[4]); QMF_SORTF(p[0], p[1]); QMF_SORTF(p[3], p[5]);
QMF_SORTF(p[2], p[6]); QMF_SORTF(p[2], p[3]); QMF_SORTF(p[3], p[6]);
QMF_SORTF(p[4], p[5]); QMF_SORTF(p[1], p[4]); QMF_SORTF(p[1], p[3]);
QMF_SORTF(p[3], p[4]);
return p[3];
}
float quickMedianFilter9f(float * v)
{
float p[9];
QMF_COPY(p, v, 9);
QMF_SORTF(p[1], p[2]); QMF_SORTF(p[4], p[5]); QMF_SORTF(p[7], p[8]);
QMF_SORTF(p[0], p[1]); QMF_SORTF(p[3], p[4]); QMF_SORTF(p[6], p[7]);
QMF_SORTF(p[1], p[2]); QMF_SORTF(p[4], p[5]); QMF_SORTF(p[7], p[8]);
QMF_SORTF(p[0], p[3]); QMF_SORTF(p[5], p[8]); QMF_SORTF(p[4], p[7]);
QMF_SORTF(p[3], p[6]); QMF_SORTF(p[1], p[4]); QMF_SORTF(p[2], p[5]);
QMF_SORTF(p[4], p[7]); QMF_SORTF(p[4], p[2]); QMF_SORTF(p[6], p[4]);
QMF_SORTF(p[4], p[2]);
return p[4];
}
void arraySubInt32(int32_t *dest, int32_t *array1, int32_t *array2, int count)
{
for (int i = 0; i < count; i++) {
dest[i] = array1[i] - array2[i];
}
}
int16_t qPercent(fix12_t q) {
return (100 * q) >> 12;
}
int16_t qMultiply(fix12_t q, int16_t input) {
return (input * q) >> 12;
}
fix12_t qConstruct(int16_t num, int16_t den) {
return (num << 12) / den;
}