atbetaflight/src/main/drivers/pwm_output.c

501 lines
15 KiB
C

/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include <math.h>
#include "platform.h"
#include "drivers/time.h"
#include "drivers/io.h"
#include "pwm_output.h"
#include "timer.h"
#include "drivers/pwm_output.h"
static pwmWriteFunc *pwmWrite;
static pwmOutputPort_t motors[MAX_SUPPORTED_MOTORS];
static pwmCompleteWriteFunc *pwmCompleteWrite = NULL;
#ifdef USE_DSHOT
loadDmaBufferFunc *loadDmaBuffer;
#endif
#ifdef USE_SERVOS
static pwmOutputPort_t servos[MAX_SUPPORTED_SERVOS];
#endif
#ifdef BEEPER
static pwmOutputPort_t beeperPwm;
static uint16_t freqBeep = 0;
#endif
static bool pwmMotorsEnabled = false;
static bool isDshot = false;
static void pwmOCConfig(TIM_TypeDef *tim, uint8_t channel, uint16_t value, uint8_t output)
{
#if defined(USE_HAL_DRIVER)
TIM_HandleTypeDef* Handle = timerFindTimerHandle(tim);
if (Handle == NULL) return;
TIM_OC_InitTypeDef TIM_OCInitStructure;
TIM_OCInitStructure.OCMode = TIM_OCMODE_PWM1;
if (output & TIMER_OUTPUT_N_CHANNEL) {
TIM_OCInitStructure.OCIdleState = TIM_OCIDLESTATE_RESET;
TIM_OCInitStructure.OCPolarity = (output & TIMER_OUTPUT_INVERTED) ? TIM_OCPOLARITY_HIGH: TIM_OCPOLARITY_LOW;
TIM_OCInitStructure.OCNIdleState = TIM_OCNIDLESTATE_RESET;
TIM_OCInitStructure.OCNPolarity = (output & TIMER_OUTPUT_INVERTED) ? TIM_OCNPOLARITY_HIGH : TIM_OCNPOLARITY_LOW;
} else {
TIM_OCInitStructure.OCIdleState = TIM_OCIDLESTATE_SET;
TIM_OCInitStructure.OCPolarity = (output & TIMER_OUTPUT_INVERTED) ? TIM_OCPOLARITY_LOW : TIM_OCPOLARITY_HIGH;
TIM_OCInitStructure.OCNIdleState = TIM_OCNIDLESTATE_SET;
TIM_OCInitStructure.OCNPolarity = (output & TIMER_OUTPUT_INVERTED) ? TIM_OCNPOLARITY_LOW : TIM_OCNPOLARITY_HIGH;
}
TIM_OCInitStructure.Pulse = value;
TIM_OCInitStructure.OCFastMode = TIM_OCFAST_DISABLE;
HAL_TIM_PWM_ConfigChannel(Handle, &TIM_OCInitStructure, channel);
#else
TIM_OCInitTypeDef TIM_OCInitStructure;
TIM_OCStructInit(&TIM_OCInitStructure);
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
if (output & TIMER_OUTPUT_N_CHANNEL) {
TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset;
TIM_OCInitStructure.TIM_OCNPolarity = (output & TIMER_OUTPUT_INVERTED) ? TIM_OCNPolarity_High : TIM_OCNPolarity_Low;
} else {
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;
TIM_OCInitStructure.TIM_OCPolarity = (output & TIMER_OUTPUT_INVERTED) ? TIM_OCPolarity_Low : TIM_OCPolarity_High;
}
TIM_OCInitStructure.TIM_Pulse = value;
timerOCInit(tim, channel, &TIM_OCInitStructure);
timerOCPreloadConfig(tim, channel, TIM_OCPreload_Enable);
#endif
}
static void pwmOutConfig(pwmOutputPort_t *port, const timerHardware_t *timerHardware, uint32_t hz, uint16_t period, uint16_t value, uint8_t inversion)
{
#if defined(USE_HAL_DRIVER)
TIM_HandleTypeDef* Handle = timerFindTimerHandle(timerHardware->tim);
if (Handle == NULL) return;
#endif
configTimeBase(timerHardware->tim, period, hz);
pwmOCConfig(timerHardware->tim,
timerHardware->channel,
value,
inversion ? timerHardware->output ^ TIMER_OUTPUT_INVERTED : timerHardware->output
);
#if defined(USE_HAL_DRIVER)
if (timerHardware->output & TIMER_OUTPUT_N_CHANNEL)
HAL_TIMEx_PWMN_Start(Handle, timerHardware->channel);
else
HAL_TIM_PWM_Start(Handle, timerHardware->channel);
HAL_TIM_Base_Start(Handle);
#else
TIM_CtrlPWMOutputs(timerHardware->tim, ENABLE);
TIM_Cmd(timerHardware->tim, ENABLE);
#endif
port->ccr = timerChCCR(timerHardware);
port->tim = timerHardware->tim;
*port->ccr = 0;
}
static void pwmWriteUnused(uint8_t index, float value)
{
UNUSED(index);
UNUSED(value);
}
static void pwmWriteStandard(uint8_t index, float value)
{
/* TODO: move value to be a number between 0-1 (i.e. percent throttle from mixer) */
*motors[index].ccr = lrintf((value * motors[index].pulseScale) + motors[index].pulseOffset);
}
#ifdef USE_DSHOT
static void pwmWriteDshot(uint8_t index, float value)
{
pwmWriteDshotInt(index, lrintf(value));
}
static uint8_t loadDmaBufferDshot(motorDmaOutput_t *const motor, uint16_t packet)
{
for (int i = 0; i < 16; i++) {
motor->dmaBuffer[i] = (packet & 0x8000) ? MOTOR_BIT_1 : MOTOR_BIT_0; // MSB first
packet <<= 1;
}
return DSHOT_DMA_BUFFER_SIZE;
}
static uint8_t loadDmaBufferProshot(motorDmaOutput_t *const motor, uint16_t packet)
{
for (int i = 0; i < 4; i++) {
motor->dmaBuffer[i] = PROSHOT_BASE_SYMBOL + ((packet & 0xF000) >> 12) * PROSHOT_BIT_WIDTH; // Most significant nibble first
packet <<= 4; // Shift 4 bits
}
return PROSHOT_DMA_BUFFER_SIZE;
}
#endif
void pwmWriteMotor(uint8_t index, float value)
{
pwmWrite(index, value);
}
void pwmShutdownPulsesForAllMotors(uint8_t motorCount)
{
for (int index = 0; index < motorCount; index++) {
// Set the compare register to 0, which stops the output pulsing if the timer overflows
if (motors[index].ccr) {
*motors[index].ccr = 0;
}
}
}
void pwmDisableMotors(void)
{
pwmShutdownPulsesForAllMotors(MAX_SUPPORTED_MOTORS);
pwmMotorsEnabled = false;
}
void pwmEnableMotors(void)
{
/* check motors can be enabled */
pwmMotorsEnabled = (pwmWrite != &pwmWriteUnused);
}
bool pwmAreMotorsEnabled(void)
{
return pwmMotorsEnabled;
}
static void pwmCompleteWriteUnused(uint8_t motorCount)
{
UNUSED(motorCount);
}
static void pwmCompleteOneshotMotorUpdate(uint8_t motorCount)
{
for (int index = 0; index < motorCount; index++) {
if (motors[index].forceOverflow) {
timerForceOverflow(motors[index].tim);
}
// Set the compare register to 0, which stops the output pulsing if the timer overflows before the main loop completes again.
// This compare register will be set to the output value on the next main loop.
*motors[index].ccr = 0;
}
}
void pwmCompleteMotorUpdate(uint8_t motorCount)
{
pwmCompleteWrite(motorCount);
}
void motorDevInit(const motorDevConfig_t *motorConfig, uint16_t idlePulse, uint8_t motorCount)
{
memset(motors, 0, sizeof(motors));
bool useUnsyncedPwm = motorConfig->useUnsyncedPwm;
float sMin = 0;
float sLen = 0;
switch (motorConfig->motorPwmProtocol) {
default:
case PWM_TYPE_ONESHOT125:
sMin = 125e-6f;
sLen = 125e-6f;
break;
case PWM_TYPE_ONESHOT42:
sMin = 42e-6f;
sLen = 42e-6f;
break;
case PWM_TYPE_MULTISHOT:
sMin = 5e-6f;
sLen = 20e-6f;
break;
case PWM_TYPE_BRUSHED:
sMin = 0;
useUnsyncedPwm = true;
idlePulse = 0;
break;
case PWM_TYPE_STANDARD:
sMin = 1e-3f;
sLen = 1e-3f;
useUnsyncedPwm = true;
idlePulse = 0;
break;
#ifdef USE_DSHOT
case PWM_TYPE_PROSHOT1000:
pwmWrite = &pwmWriteDshot;
loadDmaBuffer = &loadDmaBufferProshot;
pwmCompleteWrite = &pwmCompleteDshotMotorUpdate;
isDshot = true;
break;
case PWM_TYPE_DSHOT1200:
case PWM_TYPE_DSHOT600:
case PWM_TYPE_DSHOT300:
case PWM_TYPE_DSHOT150:
pwmWrite = &pwmWriteDshot;
loadDmaBuffer = &loadDmaBufferDshot;
pwmCompleteWrite = &pwmCompleteDshotMotorUpdate;
isDshot = true;
break;
#endif
}
if (!isDshot) {
pwmWrite = &pwmWriteStandard;
pwmCompleteWrite = useUnsyncedPwm ? &pwmCompleteWriteUnused : &pwmCompleteOneshotMotorUpdate;
}
for (int motorIndex = 0; motorIndex < MAX_SUPPORTED_MOTORS && motorIndex < motorCount; motorIndex++) {
const ioTag_t tag = motorConfig->ioTags[motorIndex];
const timerHardware_t *timerHardware = timerGetByTag(tag, TIM_USE_ANY);
if (timerHardware == NULL) {
/* not enough motors initialised for the mixer or a break in the motors */
pwmWrite = &pwmWriteUnused;
pwmCompleteWrite = &pwmCompleteWriteUnused;
/* TODO: block arming and add reason system cannot arm */
return;
}
motors[motorIndex].io = IOGetByTag(tag);
#ifdef USE_DSHOT
if (isDshot) {
pwmDshotMotorHardwareConfig(timerHardware,
motorIndex,
motorConfig->motorPwmProtocol,
motorConfig->motorPwmInversion ? timerHardware->output ^ TIMER_OUTPUT_INVERTED : timerHardware->output);
motors[motorIndex].enabled = true;
continue;
}
#endif
IOInit(motors[motorIndex].io, OWNER_MOTOR, RESOURCE_INDEX(motorIndex));
#if defined(USE_HAL_DRIVER)
IOConfigGPIOAF(motors[motorIndex].io, IOCFG_AF_PP, timerHardware->alternateFunction);
#else
IOConfigGPIO(motors[motorIndex].io, IOCFG_AF_PP);
#endif
/* standard PWM outputs */
// margin of safety is 4 periods when unsynced
const unsigned pwmRateHz = useUnsyncedPwm ? motorConfig->motorPwmRate : ceilf(1 / ((sMin + sLen) * 4));
const uint32_t clock = timerClock(timerHardware->tim);
/* used to find the desired timer frequency for max resolution */
const unsigned prescaler = ((clock / pwmRateHz) + 0xffff) / 0x10000; /* rounding up */
const uint32_t hz = clock / prescaler;
const unsigned period = useUnsyncedPwm ? hz / pwmRateHz : 0xffff;
/*
if brushed then it is the entire length of the period.
TODO: this can be moved back to periodMin and periodLen
once mixer outputs a 0..1 float value.
*/
motors[motorIndex].pulseScale = ((motorConfig->motorPwmProtocol == PWM_TYPE_BRUSHED) ? period : (sLen * hz)) / 1000.0f;
motors[motorIndex].pulseOffset = (sMin * hz) - (motors[motorIndex].pulseScale * 1000);
pwmOutConfig(&motors[motorIndex], timerHardware, hz, period, idlePulse, motorConfig->motorPwmInversion);
bool timerAlreadyUsed = false;
for (int i = 0; i < motorIndex; i++) {
if (motors[i].tim == motors[motorIndex].tim) {
timerAlreadyUsed = true;
break;
}
}
motors[motorIndex].forceOverflow = !timerAlreadyUsed;
motors[motorIndex].enabled = true;
}
pwmMotorsEnabled = true;
}
pwmOutputPort_t *pwmGetMotors(void)
{
return motors;
}
bool isMotorProtocolDshot(void)
{
return isDshot;
}
#ifdef USE_DSHOT
uint32_t getDshotHz(motorPwmProtocolTypes_e pwmProtocolType)
{
switch (pwmProtocolType) {
case(PWM_TYPE_PROSHOT1000):
return MOTOR_PROSHOT1000_HZ;
case(PWM_TYPE_DSHOT1200):
return MOTOR_DSHOT1200_HZ;
case(PWM_TYPE_DSHOT600):
return MOTOR_DSHOT600_HZ;
case(PWM_TYPE_DSHOT300):
return MOTOR_DSHOT300_HZ;
default:
case(PWM_TYPE_DSHOT150):
return MOTOR_DSHOT150_HZ;
}
}
void pwmWriteDshotCommand(uint8_t index, uint8_t command)
{
if (isDshot && (command <= DSHOT_MAX_COMMAND)) {
motorDmaOutput_t *const motor = getMotorDmaOutput(index);
unsigned repeats;
switch (command) {
case DSHOT_CMD_SPIN_DIRECTION_1:
case DSHOT_CMD_SPIN_DIRECTION_2:
case DSHOT_CMD_3D_MODE_OFF:
case DSHOT_CMD_3D_MODE_ON:
case DSHOT_CMD_SAVE_SETTINGS:
case DSHOT_CMD_SPIN_DIRECTION_NORMAL:
case DSHOT_CMD_SPIN_DIRECTION_REVERSED:
repeats = 10;
break;
default:
repeats = 1;
break;
}
for (; repeats; repeats--) {
motor->requestTelemetry = true;
pwmWriteDshotInt(index, command);
pwmCompleteDshotMotorUpdate(0);
delay(1);
}
}
}
uint16_t prepareDshotPacket(motorDmaOutput_t *const motor, const uint16_t value)
{
uint16_t packet = (value << 1) | (motor->requestTelemetry ? 1 : 0);
motor->requestTelemetry = false; // reset telemetry request to make sure it's triggered only once in a row
// compute checksum
int csum = 0;
int csum_data = packet;
for (int i = 0; i < 3; i++) {
csum ^= csum_data; // xor data by nibbles
csum_data >>= 4;
}
csum &= 0xf;
// append checksum
packet = (packet << 4) | csum;
return packet;
}
#endif
#ifdef USE_SERVOS
void pwmWriteServo(uint8_t index, float value)
{
if (index < MAX_SUPPORTED_SERVOS && servos[index].ccr) {
*servos[index].ccr = lrintf(value);
}
}
void servoDevInit(const servoDevConfig_t *servoConfig)
{
for (uint8_t servoIndex = 0; servoIndex < MAX_SUPPORTED_SERVOS; servoIndex++) {
const ioTag_t tag = servoConfig->ioTags[servoIndex];
if (!tag) {
break;
}
servos[servoIndex].io = IOGetByTag(tag);
IOInit(servos[servoIndex].io, OWNER_SERVO, RESOURCE_INDEX(servoIndex));
const timerHardware_t *timer = timerGetByTag(tag, TIM_USE_ANY);
#if defined(USE_HAL_DRIVER)
IOConfigGPIOAF(servos[servoIndex].io, IOCFG_AF_PP, timer->alternateFunction);
#else
IOConfigGPIO(servos[servoIndex].io, IOCFG_AF_PP);
#endif
if (timer == NULL) {
/* flag failure and disable ability to arm */
break;
}
pwmOutConfig(&servos[servoIndex], timer, PWM_TIMER_1MHZ, PWM_TIMER_1MHZ / servoConfig->servoPwmRate, servoConfig->servoCenterPulse, 0);
servos[servoIndex].enabled = true;
}
}
#endif
#ifdef BEEPER
void pwmWriteBeeper(bool onoffBeep)
{
if (!beeperPwm.io)
return;
if (onoffBeep == true) {
*beeperPwm.ccr = (PWM_TIMER_1MHZ / freqBeep) / 2;
beeperPwm.enabled = true;
} else {
*beeperPwm.ccr = 0;
beeperPwm.enabled = false;
}
}
void pwmToggleBeeper(void)
{
pwmWriteBeeper(!beeperPwm.enabled);
}
void beeperPwmInit(const ioTag_t tag, uint16_t frequency)
{
beeperPwm.io = IOGetByTag(tag);
const timerHardware_t *timer = timerGetByTag(tag, TIM_USE_BEEPER);
if (beeperPwm.io && timer) {
IOInit(beeperPwm.io, OWNER_BEEPER, RESOURCE_INDEX(0));
#if defined(USE_HAL_DRIVER)
IOConfigGPIOAF(beeperPwm.io, IOCFG_AF_PP, timer->alternateFunction);
#else
IOConfigGPIO(beeperPwm.io, IOCFG_AF_PP);
#endif
freqBeep = frequency;
pwmOutConfig(&beeperPwm, timer, PWM_TIMER_1MHZ, PWM_TIMER_1MHZ / freqBeep, (PWM_TIMER_1MHZ / freqBeep) / 2, 0);
}
*beeperPwm.ccr = 0;
beeperPwm.enabled = false;
}
#endif