359 lines
11 KiB
C
359 lines
11 KiB
C
/*
|
|
* This file is part of Cleanflight.
|
|
*
|
|
* Cleanflight is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* Cleanflight is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <stdbool.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
|
|
#include "platform.h"
|
|
|
|
#include "io.h"
|
|
#include "pwm_output.h"
|
|
#include "timer.h"
|
|
|
|
#define MULTISHOT_5US_PW (MULTISHOT_TIMER_MHZ * 5)
|
|
#define MULTISHOT_20US_MULT (MULTISHOT_TIMER_MHZ * 20 / 1000.0f)
|
|
|
|
static pwmWriteFuncPtr pwmWritePtr;
|
|
static pwmOutputPort_t motors[MAX_SUPPORTED_MOTORS];
|
|
static pwmCompleteWriteFuncPtr pwmCompleteWritePtr = NULL;
|
|
|
|
#ifdef USE_SERVOS
|
|
static pwmOutputPort_t servos[MAX_SUPPORTED_SERVOS];
|
|
#endif
|
|
|
|
bool pwmMotorsEnabled = false;
|
|
|
|
static void pwmOCConfig(TIM_TypeDef *tim, uint8_t channel, uint16_t value, uint8_t output)
|
|
{
|
|
#if defined(USE_HAL_DRIVER)
|
|
TIM_HandleTypeDef* Handle = timerFindTimerHandle(tim);
|
|
if(Handle == NULL) return;
|
|
|
|
TIM_OC_InitTypeDef TIM_OCInitStructure;
|
|
|
|
TIM_OCInitStructure.OCMode = TIM_OCMODE_PWM1;
|
|
|
|
if (output & TIMER_OUTPUT_N_CHANNEL) {
|
|
TIM_OCInitStructure.OCNIdleState = TIM_OCNIDLESTATE_RESET;
|
|
TIM_OCInitStructure.OCNPolarity = (output & TIMER_OUTPUT_INVERTED) ? TIM_OCNPOLARITY_HIGH : TIM_OCNPOLARITY_LOW;
|
|
} else {
|
|
TIM_OCInitStructure.OCIdleState = TIM_OCIDLESTATE_SET;
|
|
TIM_OCInitStructure.OCPolarity = (output & TIMER_OUTPUT_INVERTED) ? TIM_OCPOLARITY_LOW : TIM_OCPOLARITY_HIGH;
|
|
}
|
|
|
|
TIM_OCInitStructure.Pulse = value;
|
|
TIM_OCInitStructure.OCFastMode = TIM_OCFAST_DISABLE;
|
|
|
|
HAL_TIM_PWM_ConfigChannel(Handle, &TIM_OCInitStructure, channel);
|
|
#else
|
|
TIM_OCInitTypeDef TIM_OCInitStructure;
|
|
|
|
TIM_OCStructInit(&TIM_OCInitStructure);
|
|
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
|
|
|
|
if (output & TIMER_OUTPUT_N_CHANNEL) {
|
|
TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
|
|
TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset;
|
|
TIM_OCInitStructure.TIM_OCNPolarity = (output & TIMER_OUTPUT_INVERTED) ? TIM_OCNPolarity_High : TIM_OCNPolarity_Low;
|
|
} else {
|
|
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
|
|
TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;
|
|
TIM_OCInitStructure.TIM_OCPolarity = (output & TIMER_OUTPUT_INVERTED) ? TIM_OCPolarity_Low : TIM_OCPolarity_High;
|
|
}
|
|
TIM_OCInitStructure.TIM_Pulse = value;
|
|
|
|
timerOCInit(tim, channel, &TIM_OCInitStructure);
|
|
timerOCPreloadConfig(tim, channel, TIM_OCPreload_Enable);
|
|
#endif
|
|
}
|
|
|
|
static void pwmOutConfig(pwmOutputPort_t *port, const timerHardware_t *timerHardware, uint8_t mhz, uint16_t period, uint16_t value, uint8_t inversion)
|
|
{
|
|
#if defined(USE_HAL_DRIVER)
|
|
TIM_HandleTypeDef* Handle = timerFindTimerHandle(timerHardware->tim);
|
|
if(Handle == NULL) return;
|
|
#endif
|
|
|
|
configTimeBase(timerHardware->tim, period, mhz);
|
|
pwmOCConfig(timerHardware->tim, timerHardware->channel, value,
|
|
inversion ? timerHardware->output ^ TIMER_OUTPUT_INVERTED : timerHardware->output);
|
|
|
|
#if defined(USE_HAL_DRIVER)
|
|
HAL_TIM_PWM_Start(Handle, timerHardware->channel);
|
|
HAL_TIM_Base_Start(Handle);
|
|
#else
|
|
TIM_CtrlPWMOutputs(timerHardware->tim, ENABLE);
|
|
TIM_Cmd(timerHardware->tim, ENABLE);
|
|
#endif
|
|
|
|
port->ccr = timerChCCR(timerHardware);
|
|
port->period = period;
|
|
port->tim = timerHardware->tim;
|
|
|
|
*port->ccr = 0;
|
|
}
|
|
|
|
static void pwmWriteUnused(uint8_t index, uint16_t value)
|
|
{
|
|
UNUSED(index);
|
|
UNUSED(value);
|
|
}
|
|
|
|
static void pwmWriteBrushed(uint8_t index, uint16_t value)
|
|
{
|
|
*motors[index].ccr = (value - 1000) * motors[index].period / 1000;
|
|
}
|
|
|
|
static void pwmWriteStandard(uint8_t index, uint16_t value)
|
|
{
|
|
*motors[index].ccr = value;
|
|
}
|
|
|
|
static void pwmWriteOneShot125(uint8_t index, uint16_t value)
|
|
{
|
|
*motors[index].ccr = lrintf((float)(value * ONESHOT125_TIMER_MHZ/8.0f));
|
|
}
|
|
|
|
static void pwmWriteOneShot42(uint8_t index, uint16_t value)
|
|
{
|
|
*motors[index].ccr = lrintf((float)(value * ONESHOT42_TIMER_MHZ/24.0f));
|
|
}
|
|
|
|
static void pwmWriteMultiShot(uint8_t index, uint16_t value)
|
|
{
|
|
*motors[index].ccr = lrintf(((float)(value-1000) * MULTISHOT_20US_MULT) + MULTISHOT_5US_PW);
|
|
}
|
|
|
|
void pwmWriteMotor(uint8_t index, uint16_t value)
|
|
{
|
|
pwmWritePtr(index, value);
|
|
}
|
|
|
|
void pwmShutdownPulsesForAllMotors(uint8_t motorCount)
|
|
{
|
|
for (int index = 0; index < motorCount; index++) {
|
|
// Set the compare register to 0, which stops the output pulsing if the timer overflows
|
|
if (motors[index].ccr) {
|
|
*motors[index].ccr = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
void pwmDisableMotors(void)
|
|
{
|
|
pwmShutdownPulsesForAllMotors(MAX_SUPPORTED_MOTORS);
|
|
pwmMotorsEnabled = false;
|
|
}
|
|
|
|
void pwmEnableMotors(void)
|
|
{
|
|
/* check motors can be enabled */
|
|
pwmMotorsEnabled = (pwmWritePtr != pwmWriteUnused);
|
|
}
|
|
|
|
bool pwmAreMotorsEnabled(void)
|
|
{
|
|
return pwmMotorsEnabled;
|
|
}
|
|
|
|
static void pwmCompleteWriteUnused(uint8_t motorCount)
|
|
{
|
|
UNUSED(motorCount);
|
|
}
|
|
|
|
static void pwmCompleteOneshotMotorUpdate(uint8_t motorCount)
|
|
{
|
|
for (int index = 0; index < motorCount; index++) {
|
|
if (motors[index].forceOverflow) {
|
|
timerForceOverflow(motors[index].tim);
|
|
}
|
|
// Set the compare register to 0, which stops the output pulsing if the timer overflows before the main loop completes again.
|
|
// This compare register will be set to the output value on the next main loop.
|
|
*motors[index].ccr = 0;
|
|
}
|
|
}
|
|
|
|
void pwmCompleteMotorUpdate(uint8_t motorCount)
|
|
{
|
|
pwmCompleteWritePtr(motorCount);
|
|
}
|
|
|
|
void motorDevInit(const motorDevConfig_t *motorConfig, uint16_t idlePulse, uint8_t motorCount)
|
|
{
|
|
memset(motors, 0, sizeof(motors));
|
|
|
|
uint32_t timerMhzCounter = 0;
|
|
bool useUnsyncedPwm = motorConfig->useUnsyncedPwm;
|
|
bool isDigital = false;
|
|
|
|
switch (motorConfig->motorPwmProtocol) {
|
|
default:
|
|
case PWM_TYPE_ONESHOT125:
|
|
timerMhzCounter = ONESHOT125_TIMER_MHZ;
|
|
pwmWritePtr = pwmWriteOneShot125;
|
|
break;
|
|
case PWM_TYPE_ONESHOT42:
|
|
timerMhzCounter = ONESHOT42_TIMER_MHZ;
|
|
pwmWritePtr = pwmWriteOneShot42;
|
|
break;
|
|
case PWM_TYPE_MULTISHOT:
|
|
timerMhzCounter = MULTISHOT_TIMER_MHZ;
|
|
pwmWritePtr = pwmWriteMultiShot;
|
|
break;
|
|
case PWM_TYPE_BRUSHED:
|
|
timerMhzCounter = PWM_BRUSHED_TIMER_MHZ;
|
|
pwmWritePtr = pwmWriteBrushed;
|
|
useUnsyncedPwm = true;
|
|
idlePulse = 0;
|
|
break;
|
|
case PWM_TYPE_STANDARD:
|
|
timerMhzCounter = PWM_TIMER_MHZ;
|
|
pwmWritePtr = pwmWriteStandard;
|
|
useUnsyncedPwm = true;
|
|
idlePulse = 0;
|
|
break;
|
|
#ifdef USE_DSHOT
|
|
case PWM_TYPE_DSHOT1200:
|
|
case PWM_TYPE_DSHOT600:
|
|
case PWM_TYPE_DSHOT300:
|
|
case PWM_TYPE_DSHOT150:
|
|
pwmWritePtr = pwmWriteDigital;
|
|
pwmCompleteWritePtr = pwmCompleteDigitalMotorUpdate;
|
|
isDigital = true;
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
if (!isDigital) {
|
|
pwmCompleteWritePtr = useUnsyncedPwm ? pwmCompleteWriteUnused : pwmCompleteOneshotMotorUpdate;
|
|
}
|
|
|
|
for (int motorIndex = 0; motorIndex < MAX_SUPPORTED_MOTORS && motorIndex < motorCount; motorIndex++) {
|
|
const ioTag_t tag = motorConfig->ioTags[motorIndex];
|
|
const timerHardware_t *timerHardware = timerGetByTag(tag, TIM_USE_ANY);
|
|
|
|
if (timerHardware == NULL) {
|
|
/* not enough motors initialised for the mixer or a break in the motors */
|
|
pwmWritePtr = pwmWriteUnused;
|
|
pwmCompleteWritePtr = pwmCompleteWriteUnused;
|
|
/* TODO: block arming and add reason system cannot arm */
|
|
return;
|
|
}
|
|
|
|
motors[motorIndex].io = IOGetByTag(tag);
|
|
|
|
#ifdef USE_DSHOT
|
|
if (isDigital) {
|
|
pwmDigitalMotorHardwareConfig(timerHardware, motorIndex, motorConfig->motorPwmProtocol,
|
|
motorConfig->motorPwmInversion ? timerHardware->output ^ TIMER_OUTPUT_INVERTED : timerHardware->output);
|
|
motors[motorIndex].enabled = true;
|
|
continue;
|
|
}
|
|
#endif
|
|
|
|
IOInit(motors[motorIndex].io, OWNER_MOTOR, RESOURCE_INDEX(motorIndex));
|
|
#if defined(USE_HAL_DRIVER)
|
|
IOConfigGPIOAF(motors[motorIndex].io, IOCFG_AF_PP, timerHardware->alternateFunction);
|
|
#else
|
|
IOConfigGPIO(motors[motorIndex].io, IOCFG_AF_PP);
|
|
#endif
|
|
|
|
if (useUnsyncedPwm) {
|
|
const uint32_t hz = timerMhzCounter * 1000000;
|
|
pwmOutConfig(&motors[motorIndex], timerHardware, timerMhzCounter, hz / motorConfig->motorPwmRate, idlePulse, motorConfig->motorPwmInversion);
|
|
} else {
|
|
pwmOutConfig(&motors[motorIndex], timerHardware, timerMhzCounter, 0xFFFF, 0, motorConfig->motorPwmInversion);
|
|
}
|
|
|
|
bool timerAlreadyUsed = false;
|
|
for (int i = 0; i < motorIndex; i++) {
|
|
if (motors[i].tim == motors[motorIndex].tim) {
|
|
timerAlreadyUsed = true;
|
|
break;
|
|
}
|
|
}
|
|
motors[motorIndex].forceOverflow = !timerAlreadyUsed;
|
|
motors[motorIndex].enabled = true;
|
|
}
|
|
|
|
pwmMotorsEnabled = true;
|
|
}
|
|
|
|
pwmOutputPort_t *pwmGetMotors(void)
|
|
{
|
|
return motors;
|
|
}
|
|
|
|
#ifdef USE_DSHOT
|
|
uint32_t getDshotHz(motorPwmProtocolTypes_e pwmProtocolType)
|
|
{
|
|
switch (pwmProtocolType) {
|
|
case(PWM_TYPE_DSHOT1200):
|
|
return MOTOR_DSHOT1200_MHZ * 1000000;
|
|
case(PWM_TYPE_DSHOT600):
|
|
return MOTOR_DSHOT600_MHZ * 1000000;
|
|
case(PWM_TYPE_DSHOT300):
|
|
return MOTOR_DSHOT300_MHZ * 1000000;
|
|
default:
|
|
case(PWM_TYPE_DSHOT150):
|
|
return MOTOR_DSHOT150_MHZ * 1000000;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef USE_SERVOS
|
|
void pwmWriteServo(uint8_t index, uint16_t value)
|
|
{
|
|
if (index < MAX_SUPPORTED_SERVOS && servos[index].ccr) {
|
|
*servos[index].ccr = value;
|
|
}
|
|
}
|
|
|
|
void servoDevInit(const servoDevConfig_t *servoConfig)
|
|
{
|
|
for (uint8_t servoIndex = 0; servoIndex < MAX_SUPPORTED_SERVOS; servoIndex++) {
|
|
const ioTag_t tag = servoConfig->ioTags[servoIndex];
|
|
|
|
if (!tag) {
|
|
break;
|
|
}
|
|
|
|
servos[servoIndex].io = IOGetByTag(tag);
|
|
|
|
IOInit(servos[servoIndex].io, OWNER_SERVO, RESOURCE_INDEX(servoIndex));
|
|
|
|
const timerHardware_t *timer = timerGetByTag(tag, TIM_USE_ANY);
|
|
#if defined(USE_HAL_DRIVER)
|
|
IOConfigGPIOAF(servos[servoIndex].io, IOCFG_AF_PP, timer->alternateFunction);
|
|
#else
|
|
IOConfigGPIO(servos[servoIndex].io, IOCFG_AF_PP);
|
|
#endif
|
|
|
|
if (timer == NULL) {
|
|
/* flag failure and disable ability to arm */
|
|
break;
|
|
}
|
|
|
|
pwmOutConfig(&servos[servoIndex], timer, PWM_TIMER_MHZ, 1000000 / servoConfig->servoPwmRate, servoConfig->servoCenterPulse, 0);
|
|
servos[servoIndex].enabled = true;
|
|
}
|
|
}
|
|
|
|
#endif
|