atbetaflight/src/main/drivers/pwm_output.c

359 lines
11 KiB
C

/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include <math.h>
#include "platform.h"
#include "io.h"
#include "pwm_output.h"
#include "timer.h"
#define MULTISHOT_5US_PW (MULTISHOT_TIMER_MHZ * 5)
#define MULTISHOT_20US_MULT (MULTISHOT_TIMER_MHZ * 20 / 1000.0f)
static pwmWriteFuncPtr pwmWritePtr;
static pwmOutputPort_t motors[MAX_SUPPORTED_MOTORS];
static pwmCompleteWriteFuncPtr pwmCompleteWritePtr = NULL;
#ifdef USE_SERVOS
static pwmOutputPort_t servos[MAX_SUPPORTED_SERVOS];
#endif
bool pwmMotorsEnabled = false;
static void pwmOCConfig(TIM_TypeDef *tim, uint8_t channel, uint16_t value, uint8_t output)
{
#if defined(USE_HAL_DRIVER)
TIM_HandleTypeDef* Handle = timerFindTimerHandle(tim);
if(Handle == NULL) return;
TIM_OC_InitTypeDef TIM_OCInitStructure;
TIM_OCInitStructure.OCMode = TIM_OCMODE_PWM1;
if (output & TIMER_OUTPUT_N_CHANNEL) {
TIM_OCInitStructure.OCNIdleState = TIM_OCNIDLESTATE_RESET;
TIM_OCInitStructure.OCNPolarity = (output & TIMER_OUTPUT_INVERTED) ? TIM_OCNPOLARITY_HIGH : TIM_OCNPOLARITY_LOW;
} else {
TIM_OCInitStructure.OCIdleState = TIM_OCIDLESTATE_SET;
TIM_OCInitStructure.OCPolarity = (output & TIMER_OUTPUT_INVERTED) ? TIM_OCPOLARITY_LOW : TIM_OCPOLARITY_HIGH;
}
TIM_OCInitStructure.Pulse = value;
TIM_OCInitStructure.OCFastMode = TIM_OCFAST_DISABLE;
HAL_TIM_PWM_ConfigChannel(Handle, &TIM_OCInitStructure, channel);
#else
TIM_OCInitTypeDef TIM_OCInitStructure;
TIM_OCStructInit(&TIM_OCInitStructure);
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
if (output & TIMER_OUTPUT_N_CHANNEL) {
TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset;
TIM_OCInitStructure.TIM_OCNPolarity = (output & TIMER_OUTPUT_INVERTED) ? TIM_OCNPolarity_High : TIM_OCNPolarity_Low;
} else {
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;
TIM_OCInitStructure.TIM_OCPolarity = (output & TIMER_OUTPUT_INVERTED) ? TIM_OCPolarity_Low : TIM_OCPolarity_High;
}
TIM_OCInitStructure.TIM_Pulse = value;
timerOCInit(tim, channel, &TIM_OCInitStructure);
timerOCPreloadConfig(tim, channel, TIM_OCPreload_Enable);
#endif
}
static void pwmOutConfig(pwmOutputPort_t *port, const timerHardware_t *timerHardware, uint8_t mhz, uint16_t period, uint16_t value, uint8_t inversion)
{
#if defined(USE_HAL_DRIVER)
TIM_HandleTypeDef* Handle = timerFindTimerHandle(timerHardware->tim);
if(Handle == NULL) return;
#endif
configTimeBase(timerHardware->tim, period, mhz);
pwmOCConfig(timerHardware->tim, timerHardware->channel, value,
inversion ? timerHardware->output ^ TIMER_OUTPUT_INVERTED : timerHardware->output);
#if defined(USE_HAL_DRIVER)
HAL_TIM_PWM_Start(Handle, timerHardware->channel);
HAL_TIM_Base_Start(Handle);
#else
TIM_CtrlPWMOutputs(timerHardware->tim, ENABLE);
TIM_Cmd(timerHardware->tim, ENABLE);
#endif
port->ccr = timerChCCR(timerHardware);
port->period = period;
port->tim = timerHardware->tim;
*port->ccr = 0;
}
static void pwmWriteUnused(uint8_t index, uint16_t value)
{
UNUSED(index);
UNUSED(value);
}
static void pwmWriteBrushed(uint8_t index, uint16_t value)
{
*motors[index].ccr = (value - 1000) * motors[index].period / 1000;
}
static void pwmWriteStandard(uint8_t index, uint16_t value)
{
*motors[index].ccr = value;
}
static void pwmWriteOneShot125(uint8_t index, uint16_t value)
{
*motors[index].ccr = lrintf((float)(value * ONESHOT125_TIMER_MHZ/8.0f));
}
static void pwmWriteOneShot42(uint8_t index, uint16_t value)
{
*motors[index].ccr = lrintf((float)(value * ONESHOT42_TIMER_MHZ/24.0f));
}
static void pwmWriteMultiShot(uint8_t index, uint16_t value)
{
*motors[index].ccr = lrintf(((float)(value-1000) * MULTISHOT_20US_MULT) + MULTISHOT_5US_PW);
}
void pwmWriteMotor(uint8_t index, uint16_t value)
{
pwmWritePtr(index, value);
}
void pwmShutdownPulsesForAllMotors(uint8_t motorCount)
{
for (int index = 0; index < motorCount; index++) {
// Set the compare register to 0, which stops the output pulsing if the timer overflows
if (motors[index].ccr) {
*motors[index].ccr = 0;
}
}
}
void pwmDisableMotors(void)
{
pwmShutdownPulsesForAllMotors(MAX_SUPPORTED_MOTORS);
pwmMotorsEnabled = false;
}
void pwmEnableMotors(void)
{
/* check motors can be enabled */
pwmMotorsEnabled = (pwmWritePtr != pwmWriteUnused);
}
bool pwmAreMotorsEnabled(void)
{
return pwmMotorsEnabled;
}
static void pwmCompleteWriteUnused(uint8_t motorCount)
{
UNUSED(motorCount);
}
static void pwmCompleteOneshotMotorUpdate(uint8_t motorCount)
{
for (int index = 0; index < motorCount; index++) {
if (motors[index].forceOverflow) {
timerForceOverflow(motors[index].tim);
}
// Set the compare register to 0, which stops the output pulsing if the timer overflows before the main loop completes again.
// This compare register will be set to the output value on the next main loop.
*motors[index].ccr = 0;
}
}
void pwmCompleteMotorUpdate(uint8_t motorCount)
{
pwmCompleteWritePtr(motorCount);
}
void motorDevInit(const motorDevConfig_t *motorConfig, uint16_t idlePulse, uint8_t motorCount)
{
memset(motors, 0, sizeof(motors));
uint32_t timerMhzCounter = 0;
bool useUnsyncedPwm = motorConfig->useUnsyncedPwm;
bool isDigital = false;
switch (motorConfig->motorPwmProtocol) {
default:
case PWM_TYPE_ONESHOT125:
timerMhzCounter = ONESHOT125_TIMER_MHZ;
pwmWritePtr = pwmWriteOneShot125;
break;
case PWM_TYPE_ONESHOT42:
timerMhzCounter = ONESHOT42_TIMER_MHZ;
pwmWritePtr = pwmWriteOneShot42;
break;
case PWM_TYPE_MULTISHOT:
timerMhzCounter = MULTISHOT_TIMER_MHZ;
pwmWritePtr = pwmWriteMultiShot;
break;
case PWM_TYPE_BRUSHED:
timerMhzCounter = PWM_BRUSHED_TIMER_MHZ;
pwmWritePtr = pwmWriteBrushed;
useUnsyncedPwm = true;
idlePulse = 0;
break;
case PWM_TYPE_STANDARD:
timerMhzCounter = PWM_TIMER_MHZ;
pwmWritePtr = pwmWriteStandard;
useUnsyncedPwm = true;
idlePulse = 0;
break;
#ifdef USE_DSHOT
case PWM_TYPE_DSHOT1200:
case PWM_TYPE_DSHOT600:
case PWM_TYPE_DSHOT300:
case PWM_TYPE_DSHOT150:
pwmWritePtr = pwmWriteDigital;
pwmCompleteWritePtr = pwmCompleteDigitalMotorUpdate;
isDigital = true;
break;
#endif
}
if (!isDigital) {
pwmCompleteWritePtr = useUnsyncedPwm ? pwmCompleteWriteUnused : pwmCompleteOneshotMotorUpdate;
}
for (int motorIndex = 0; motorIndex < MAX_SUPPORTED_MOTORS && motorIndex < motorCount; motorIndex++) {
const ioTag_t tag = motorConfig->ioTags[motorIndex];
const timerHardware_t *timerHardware = timerGetByTag(tag, TIM_USE_ANY);
if (timerHardware == NULL) {
/* not enough motors initialised for the mixer or a break in the motors */
pwmWritePtr = pwmWriteUnused;
pwmCompleteWritePtr = pwmCompleteWriteUnused;
/* TODO: block arming and add reason system cannot arm */
return;
}
motors[motorIndex].io = IOGetByTag(tag);
#ifdef USE_DSHOT
if (isDigital) {
pwmDigitalMotorHardwareConfig(timerHardware, motorIndex, motorConfig->motorPwmProtocol,
motorConfig->motorPwmInversion ? timerHardware->output ^ TIMER_OUTPUT_INVERTED : timerHardware->output);
motors[motorIndex].enabled = true;
continue;
}
#endif
IOInit(motors[motorIndex].io, OWNER_MOTOR, RESOURCE_INDEX(motorIndex));
#if defined(USE_HAL_DRIVER)
IOConfigGPIOAF(motors[motorIndex].io, IOCFG_AF_PP, timerHardware->alternateFunction);
#else
IOConfigGPIO(motors[motorIndex].io, IOCFG_AF_PP);
#endif
if (useUnsyncedPwm) {
const uint32_t hz = timerMhzCounter * 1000000;
pwmOutConfig(&motors[motorIndex], timerHardware, timerMhzCounter, hz / motorConfig->motorPwmRate, idlePulse, motorConfig->motorPwmInversion);
} else {
pwmOutConfig(&motors[motorIndex], timerHardware, timerMhzCounter, 0xFFFF, 0, motorConfig->motorPwmInversion);
}
bool timerAlreadyUsed = false;
for (int i = 0; i < motorIndex; i++) {
if (motors[i].tim == motors[motorIndex].tim) {
timerAlreadyUsed = true;
break;
}
}
motors[motorIndex].forceOverflow = !timerAlreadyUsed;
motors[motorIndex].enabled = true;
}
pwmMotorsEnabled = true;
}
pwmOutputPort_t *pwmGetMotors(void)
{
return motors;
}
#ifdef USE_DSHOT
uint32_t getDshotHz(motorPwmProtocolTypes_e pwmProtocolType)
{
switch (pwmProtocolType) {
case(PWM_TYPE_DSHOT1200):
return MOTOR_DSHOT1200_MHZ * 1000000;
case(PWM_TYPE_DSHOT600):
return MOTOR_DSHOT600_MHZ * 1000000;
case(PWM_TYPE_DSHOT300):
return MOTOR_DSHOT300_MHZ * 1000000;
default:
case(PWM_TYPE_DSHOT150):
return MOTOR_DSHOT150_MHZ * 1000000;
}
}
#endif
#ifdef USE_SERVOS
void pwmWriteServo(uint8_t index, uint16_t value)
{
if (index < MAX_SUPPORTED_SERVOS && servos[index].ccr) {
*servos[index].ccr = value;
}
}
void servoDevInit(const servoDevConfig_t *servoConfig)
{
for (uint8_t servoIndex = 0; servoIndex < MAX_SUPPORTED_SERVOS; servoIndex++) {
const ioTag_t tag = servoConfig->ioTags[servoIndex];
if (!tag) {
break;
}
servos[servoIndex].io = IOGetByTag(tag);
IOInit(servos[servoIndex].io, OWNER_SERVO, RESOURCE_INDEX(servoIndex));
const timerHardware_t *timer = timerGetByTag(tag, TIM_USE_ANY);
#if defined(USE_HAL_DRIVER)
IOConfigGPIOAF(servos[servoIndex].io, IOCFG_AF_PP, timer->alternateFunction);
#else
IOConfigGPIO(servos[servoIndex].io, IOCFG_AF_PP);
#endif
if (timer == NULL) {
/* flag failure and disable ability to arm */
break;
}
pwmOutConfig(&servos[servoIndex], timer, PWM_TIMER_MHZ, 1000000 / servoConfig->servoPwmRate, servoConfig->servoCenterPulse, 0);
servos[servoIndex].enabled = true;
}
}
#endif