atbetaflight/src/main/fc/cli.c

4379 lines
161 KiB
C
Executable File

/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <math.h>
#include <ctype.h>
#include "platform.h"
// FIXME remove this for targets that don't need a CLI. Perhaps use a no-op macro when USE_CLI is not enabled
// signal that we're in cli mode
uint8_t cliMode = 0;
#ifdef USE_CLI
#include "blackbox/blackbox.h"
#include "build/build_config.h"
#include "build/debug.h"
#include "build/version.h"
#include "cms/cms.h"
#include "common/axis.h"
#include "common/color.h"
#include "common/maths.h"
#include "common/printf.h"
#include "common/typeconversion.h"
#include "config/config_master.h"
#include "config/config_eeprom.h"
#include "config/config_profile.h"
#include "config/feature.h"
#include "config/parameter_group.h"
#include "config/parameter_group_ids.h"
#include "drivers/accgyro.h"
#include "drivers/buf_writer.h"
#include "drivers/bus_i2c.h"
#include "drivers/compass.h"
#include "drivers/display.h"
#include "drivers/dma.h"
#include "drivers/flash.h"
#include "drivers/io.h"
#include "drivers/io_impl.h"
#include "drivers/rx_pwm.h"
#include "drivers/sdcard.h"
#include "drivers/sensor.h"
#include "drivers/serial.h"
#include "drivers/serial_escserial.h"
#include "drivers/stack_check.h"
#include "drivers/system.h"
#include "drivers/timer.h"
#include "drivers/vcd.h"
#include "fc/cli.h"
#include "fc/config.h"
#include "fc/rc_adjustments.h"
#include "fc/rc_controls.h"
#include "fc/runtime_config.h"
#include "flight/failsafe.h"
#include "flight/imu.h"
#include "flight/mixer.h"
#include "flight/navigation.h"
#include "flight/pid.h"
#include "flight/servos.h"
#include "io/asyncfatfs/asyncfatfs.h"
#include "io/beeper.h"
#include "io/flashfs.h"
#include "io/gimbal.h"
#include "io/gps.h"
#include "io/ledstrip.h"
#include "io/osd.h"
#include "io/serial.h"
#include "io/vtx.h"
#include "rx/rx.h"
#include "rx/spektrum.h"
#include "scheduler/scheduler.h"
#include "sensors/acceleration.h"
#include "sensors/barometer.h"
#include "sensors/battery.h"
#include "sensors/boardalignment.h"
#include "sensors/compass.h"
#include "sensors/gyro.h"
#include "sensors/sensors.h"
#include "telemetry/frsky.h"
#include "telemetry/telemetry.h"
static serialPort_t *cliPort;
static bufWriter_t *cliWriter;
static uint8_t cliWriteBuffer[sizeof(*cliWriter) + 128];
static char cliBuffer[48];
static uint32_t bufferIndex = 0;
static const char* const emptyName = "-";
#ifndef USE_QUAD_MIXER_ONLY
// sync this with mixerMode_e
static const char * const mixerNames[] = {
"TRI", "QUADP", "QUADX", "BI",
"GIMBAL", "Y6", "HEX6",
"FLYING_WING", "Y4", "HEX6X", "OCTOX8", "OCTOFLATP", "OCTOFLATX",
"AIRPLANE", "HELI_120_CCPM", "HELI_90_DEG", "VTAIL4",
"HEX6H", "PPM_TO_SERVO", "DUALCOPTER", "SINGLECOPTER",
"ATAIL4", "CUSTOM", "CUSTOMAIRPLANE", "CUSTOMTRI", "QUADX1234", NULL
};
#endif
// sync this with features_e
static const char * const featureNames[] = {
"RX_PPM", "VBAT", "INFLIGHT_ACC_CAL", "RX_SERIAL", "MOTOR_STOP",
"SERVO_TILT", "SOFTSERIAL", "GPS", "FAILSAFE",
"SONAR", "TELEMETRY", "CURRENT_METER", "3D", "RX_PARALLEL_PWM",
"RX_MSP", "RSSI_ADC", "LED_STRIP", "DISPLAY", "OSD",
"BLACKBOX", "CHANNEL_FORWARDING", "TRANSPONDER", "AIRMODE",
"SDCARD", "VTX", "RX_SPI", "SOFTSPI", "ESC_SENSOR", NULL
};
// sync this with rxFailsafeChannelMode_e
static const char rxFailsafeModeCharacters[] = "ahs";
static const rxFailsafeChannelMode_e rxFailsafeModesTable[RX_FAILSAFE_TYPE_COUNT][RX_FAILSAFE_MODE_COUNT] = {
{ RX_FAILSAFE_MODE_AUTO, RX_FAILSAFE_MODE_HOLD, RX_FAILSAFE_MODE_INVALID },
{ RX_FAILSAFE_MODE_INVALID, RX_FAILSAFE_MODE_HOLD, RX_FAILSAFE_MODE_SET }
};
// sync this with accelerationSensor_e
static const char * const lookupTableAccHardware[] = {
"AUTO",
"NONE",
"ADXL345",
"MPU6050",
"MMA8452",
"BMA280",
"LSM303DLHC",
"MPU6000",
"MPU6500",
"MPU9250",
"ICM20689",
"FAKE"
};
#ifdef BARO
// sync this with baroSensor_e
static const char * const lookupTableBaroHardware[] = {
"AUTO",
"NONE",
"BMP085",
"MS5611",
"BMP280"
};
#endif
#ifdef MAG
// sync this with magSensor_e
static const char * const lookupTableMagHardware[] = {
"AUTO",
"NONE",
"HMC5883",
"AK8975",
"AK8963"
};
#endif
#if defined(USE_SENSOR_NAMES)
// sync this with sensors_e
static const char * const sensorTypeNames[] = {
"GYRO", "ACC", "BARO", "MAG", "SONAR", "GPS", "GPS+MAG", NULL
};
#define SENSOR_NAMES_MASK (SENSOR_GYRO | SENSOR_ACC | SENSOR_BARO | SENSOR_MAG)
static const char * const sensorHardwareNames[4][15] = {
{ "", "None", "MPU6050", "L3G4200D", "MPU3050", "L3GD20", "MPU6000", "MPU6500", "MPU9250", "ICM20689", "ICM20608G", "ICM20602", "FAKE", NULL },
{ "", "None", "ADXL345", "MPU6050", "MMA845x", "BMA280", "LSM303DLHC", "MPU6000", "MPU6500", "ICM20689", "MPU9250", "ICM20608G", "ICM20602", "FAKE", NULL },
{ "", "None", "BMP085", "MS5611", "BMP280", NULL },
{ "", "None", "HMC5883", "AK8975", "AK8963", NULL }
};
#endif /* USE_SENSOR_NAMES */
static const char * const lookupTableOffOn[] = {
"OFF", "ON"
};
static const char * const lookupTableUnit[] = {
"IMPERIAL", "METRIC"
};
static const char * const lookupTableAlignment[] = {
"DEFAULT",
"CW0",
"CW90",
"CW180",
"CW270",
"CW0FLIP",
"CW90FLIP",
"CW180FLIP",
"CW270FLIP"
};
#ifdef GPS
static const char * const lookupTableGPSProvider[] = {
"NMEA", "UBLOX"
};
static const char * const lookupTableGPSSBASMode[] = {
"AUTO", "EGNOS", "WAAS", "MSAS", "GAGAN"
};
#endif
static const char * const lookupTableCurrentSensor[] = {
"NONE", "ADC", "VIRTUAL", "ESC"
};
static const char * const lookupTableBatterySensor[] = {
"ADC", "ESC"
};
#ifdef USE_SERVOS
static const char * const lookupTableGimbalMode[] = {
"NORMAL", "MIXTILT"
};
#endif
#ifdef BLACKBOX
static const char * const lookupTableBlackboxDevice[] = {
"SERIAL", "SPIFLASH", "SDCARD"
};
#endif
#ifdef SERIAL_RX
static const char * const lookupTableSerialRX[] = {
"SPEK1024",
"SPEK2048",
"SBUS",
"SUMD",
"SUMH",
"XB-B",
"XB-B-RJ01",
"IBUS",
"JETIEXBUS",
"CRSF",
"SRXL"
};
#endif
#ifdef USE_RX_SPI
// sync with rx_spi_protocol_e
static const char * const lookupTableRxSpi[] = {
"V202_250K",
"V202_1M",
"SYMA_X",
"SYMA_X5C",
"CX10",
"CX10A",
"H8_3D",
"INAV"
};
#endif
static const char * const lookupTableGyroLpf[] = {
"OFF",
"188HZ",
"98HZ",
"42HZ",
"20HZ",
"10HZ",
"5HZ",
"EXPERIMENTAL"
};
static const char * const lookupTableDebug[DEBUG_COUNT] = {
"NONE",
"CYCLETIME",
"BATTERY",
"GYRO",
"ACCELEROMETER",
"MIXER",
"AIRMODE",
"PIDLOOP",
"NOTCH",
"RC_INTERPOLATION",
"VELOCITY",
"DFILTER",
"ANGLERATE",
"ESC_SENSOR",
"SCHEDULER",
"STACK"
};
#ifdef OSD
static const char * const lookupTableOsdType[] = {
"AUTO",
"PAL",
"NTSC"
};
#endif
static const char * const lookupTableSuperExpoYaw[] = {
"OFF", "ON", "ALWAYS"
};
static const char * const lookupTablePwmProtocol[] = {
"OFF", "ONESHOT125", "ONESHOT42", "MULTISHOT", "BRUSHED",
#ifdef USE_DSHOT
"DSHOT150", "DSHOT300", "DSHOT600", "DSHOT1200",
#endif
};
static const char * const lookupTableRcInterpolation[] = {
"OFF", "PRESET", "AUTO", "MANUAL"
};
static const char * const lookupTableRcInterpolationChannels[] = {
"RP", "RPY", "RPYT"
};
static const char * const lookupTableLowpassType[] = {
"PT1", "BIQUAD", "FIR"
};
static const char * const lookupTableFailsafe[] = {
"AUTO-LAND", "DROP"
};
typedef struct lookupTableEntry_s {
const char * const *values;
const uint8_t valueCount;
} lookupTableEntry_t;
typedef enum {
TABLE_OFF_ON = 0,
TABLE_UNIT,
TABLE_ALIGNMENT,
#ifdef GPS
TABLE_GPS_PROVIDER,
TABLE_GPS_SBAS_MODE,
#endif
#ifdef BLACKBOX
TABLE_BLACKBOX_DEVICE,
#endif
TABLE_CURRENT_SENSOR,
TABLE_BATTERY_SENSOR,
#ifdef USE_SERVOS
TABLE_GIMBAL_MODE,
#endif
#ifdef SERIAL_RX
TABLE_SERIAL_RX,
#endif
#ifdef USE_RX_SPI
TABLE_RX_SPI,
#endif
TABLE_GYRO_LPF,
TABLE_ACC_HARDWARE,
#ifdef BARO
TABLE_BARO_HARDWARE,
#endif
#ifdef MAG
TABLE_MAG_HARDWARE,
#endif
TABLE_DEBUG,
TABLE_SUPEREXPO_YAW,
TABLE_MOTOR_PWM_PROTOCOL,
TABLE_RC_INTERPOLATION,
TABLE_RC_INTERPOLATION_CHANNELS,
TABLE_LOWPASS_TYPE,
TABLE_FAILSAFE,
#ifdef OSD
TABLE_OSD,
#endif
LOOKUP_TABLE_COUNT
} lookupTableIndex_e;
static const lookupTableEntry_t lookupTables[] = {
{ lookupTableOffOn, sizeof(lookupTableOffOn) / sizeof(char *) },
{ lookupTableUnit, sizeof(lookupTableUnit) / sizeof(char *) },
{ lookupTableAlignment, sizeof(lookupTableAlignment) / sizeof(char *) },
#ifdef GPS
{ lookupTableGPSProvider, sizeof(lookupTableGPSProvider) / sizeof(char *) },
{ lookupTableGPSSBASMode, sizeof(lookupTableGPSSBASMode) / sizeof(char *) },
#endif
#ifdef BLACKBOX
{ lookupTableBlackboxDevice, sizeof(lookupTableBlackboxDevice) / sizeof(char *) },
#endif
{ lookupTableCurrentSensor, sizeof(lookupTableCurrentSensor) / sizeof(char *) },
{ lookupTableBatterySensor, sizeof(lookupTableBatterySensor) / sizeof(char *) },
#ifdef USE_SERVOS
{ lookupTableGimbalMode, sizeof(lookupTableGimbalMode) / sizeof(char *) },
#endif
#ifdef SERIAL_RX
{ lookupTableSerialRX, sizeof(lookupTableSerialRX) / sizeof(char *) },
#endif
#ifdef USE_RX_SPI
{ lookupTableRxSpi, sizeof(lookupTableRxSpi) / sizeof(char *) },
#endif
{ lookupTableGyroLpf, sizeof(lookupTableGyroLpf) / sizeof(char *) },
{ lookupTableAccHardware, sizeof(lookupTableAccHardware) / sizeof(char *) },
#ifdef BARO
{ lookupTableBaroHardware, sizeof(lookupTableBaroHardware) / sizeof(char *) },
#endif
#ifdef MAG
{ lookupTableMagHardware, sizeof(lookupTableMagHardware) / sizeof(char *) },
#endif
{ lookupTableDebug, sizeof(lookupTableDebug) / sizeof(char *) },
{ lookupTableSuperExpoYaw, sizeof(lookupTableSuperExpoYaw) / sizeof(char *) },
{ lookupTablePwmProtocol, sizeof(lookupTablePwmProtocol) / sizeof(char *) },
{ lookupTableRcInterpolation, sizeof(lookupTableRcInterpolation) / sizeof(char *) },
{ lookupTableRcInterpolationChannels, sizeof(lookupTableRcInterpolationChannels) / sizeof(char *) },
{ lookupTableLowpassType, sizeof(lookupTableLowpassType) / sizeof(char *) },
{ lookupTableFailsafe, sizeof(lookupTableFailsafe) / sizeof(char *) },
#ifdef OSD
{ lookupTableOsdType, sizeof(lookupTableOsdType) / sizeof(char *) },
#endif
};
#define VALUE_TYPE_OFFSET 0
#define VALUE_SECTION_OFFSET 4
#define VALUE_MODE_OFFSET 6
typedef enum {
// value type, bits 0-3
VAR_UINT8 = (0 << VALUE_TYPE_OFFSET),
VAR_INT8 = (1 << VALUE_TYPE_OFFSET),
VAR_UINT16 = (2 << VALUE_TYPE_OFFSET),
VAR_INT16 = (3 << VALUE_TYPE_OFFSET),
//VAR_UINT32 = (4 << VALUE_TYPE_OFFSET),
VAR_FLOAT = (5 << VALUE_TYPE_OFFSET), // 0x05
// value section, bits 4-5
MASTER_VALUE = (0 << VALUE_SECTION_OFFSET),
PROFILE_VALUE = (1 << VALUE_SECTION_OFFSET),
PROFILE_RATE_VALUE = (2 << VALUE_SECTION_OFFSET), // 0x20
// value mode
MODE_DIRECT = (0 << VALUE_MODE_OFFSET), // 0x40
MODE_LOOKUP = (1 << VALUE_MODE_OFFSET) // 0x80
} cliValueFlag_e;
#define VALUE_TYPE_MASK (0x0F)
#define VALUE_SECTION_MASK (0x30)
#define VALUE_MODE_MASK (0xC0)
typedef struct cliMinMaxConfig_s {
const int16_t min;
const int16_t max;
} cliMinMaxConfig_t;
typedef struct cliLookupTableConfig_s {
const lookupTableIndex_e tableIndex;
} cliLookupTableConfig_t;
typedef union {
cliLookupTableConfig_t lookup;
cliMinMaxConfig_t minmax;
} cliValueConfig_t;
#ifdef USE_PARAMETER_GROUPS
typedef struct {
const char *name;
const uint8_t type; // see cliValueFlag_e
const cliValueConfig_t config;
pgn_t pgn;
uint16_t offset;
} __attribute__((packed)) clivalue_t;
static const clivalue_t valueTable[] = {
{ "dummy", VAR_UINT8 | MASTER_VALUE, .config.minmax = { 0, 255 }, 0, 0 }
};
#else
typedef struct {
const char *name;
const uint8_t type; // see cliValueFlag_e
void *ptr;
const cliValueConfig_t config;
} clivalue_t;
static const clivalue_t valueTable[] = {
#ifndef SKIP_TASK_STATISTICS
{ "task_statistics", VAR_INT8 | MASTER_VALUE | MODE_LOOKUP, &masterConfig.task_statistics, .config.lookup = { TABLE_OFF_ON } },
#endif
{ "mid_rc", VAR_UINT16 | MASTER_VALUE, &rxConfig()->midrc, .config.minmax = { 1200, 1700 } },
{ "min_check", VAR_UINT16 | MASTER_VALUE, &rxConfig()->mincheck, .config.minmax = { PWM_RANGE_ZERO, PWM_RANGE_MAX } },
{ "max_check", VAR_UINT16 | MASTER_VALUE, &rxConfig()->maxcheck, .config.minmax = { PWM_RANGE_ZERO, PWM_RANGE_MAX } },
{ "rssi_channel", VAR_INT8 | MASTER_VALUE, &rxConfig()->rssi_channel, .config.minmax = { 0, MAX_SUPPORTED_RC_CHANNEL_COUNT } },
{ "rssi_scale", VAR_UINT8 | MASTER_VALUE, &rxConfig()->rssi_scale, .config.minmax = { RSSI_SCALE_MIN, RSSI_SCALE_MAX } },
{ "rc_interp", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &rxConfig()->rcInterpolation, .config.lookup = { TABLE_RC_INTERPOLATION } },
{ "rc_interp_ch", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &rxConfig()->rcInterpolationChannels, .config.lookup = { TABLE_RC_INTERPOLATION_CHANNELS } },
{ "rc_interp_int", VAR_UINT8 | MASTER_VALUE, &rxConfig()->rcInterpolationInterval, .config.minmax = { 1, 50 } },
{ "rssi_ppm_invert", VAR_INT8 | MASTER_VALUE | MODE_LOOKUP, &rxConfig()->rssi_ppm_invert, .config.lookup = { TABLE_OFF_ON } },
#if defined(USE_PWM)
{ "input_filtering_mode", VAR_INT8 | MASTER_VALUE | MODE_LOOKUP, &pwmConfig()->inputFilteringMode, .config.lookup = { TABLE_OFF_ON } },
#endif
{ "fpv_mix_degrees", VAR_UINT8 | MASTER_VALUE, &rxConfig()->fpvCamAngleDegrees, .config.minmax = { 0, 50 } },
{ "max_aux_channels", VAR_UINT8 | MASTER_VALUE, &rxConfig()->max_aux_channel, .config.minmax = { 0, MAX_AUX_CHANNELS } },
{ "debug_mode", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &systemConfig()->debug_mode, .config.lookup = { TABLE_DEBUG } },
{ "min_throttle", VAR_UINT16 | MASTER_VALUE, &motorConfig()->minthrottle, .config.minmax = { PWM_RANGE_ZERO, PWM_RANGE_MAX } },
{ "max_throttle", VAR_UINT16 | MASTER_VALUE, &motorConfig()->maxthrottle, .config.minmax = { PWM_RANGE_ZERO, PWM_RANGE_MAX } },
{ "min_command", VAR_UINT16 | MASTER_VALUE, &motorConfig()->mincommand, .config.minmax = { PWM_RANGE_ZERO, PWM_RANGE_MAX } },
#ifdef USE_DSHOT
{ "digital_idle_percent", VAR_FLOAT | MASTER_VALUE, &motorConfig()->digitalIdleOffsetPercent, .config.minmax = { 0, 20} },
#endif
{ "3d_deadband_low", VAR_UINT16 | MASTER_VALUE, &flight3DConfig()->deadband3d_low, .config.minmax = { PWM_RANGE_ZERO, PWM_RANGE_MAX } }, // FIXME upper limit should match code in the mixer, 1500 currently
{ "3d_deadband_high", VAR_UINT16 | MASTER_VALUE, &flight3DConfig()->deadband3d_high, .config.minmax = { PWM_RANGE_ZERO, PWM_RANGE_MAX } }, // FIXME lower limit should match code in the mixer, 1500 currently,
{ "3d_neutral", VAR_UINT16 | MASTER_VALUE, &flight3DConfig()->neutral3d, .config.minmax = { PWM_RANGE_ZERO, PWM_RANGE_MAX } },
{ "3d_deadband_throttle", VAR_UINT16 | MASTER_VALUE, &flight3DConfig()->deadband3d_throttle, .config.minmax = { PWM_RANGE_ZERO, PWM_RANGE_MAX } },
{ "use_unsynced_pwm", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &motorConfig()->dev.useUnsyncedPwm, .config.lookup = { TABLE_OFF_ON } },
{ "motor_pwm_protocol", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &motorConfig()->dev.motorPwmProtocol, .config.lookup = { TABLE_MOTOR_PWM_PROTOCOL } },
{ "motor_pwm_rate", VAR_UINT16 | MASTER_VALUE, &motorConfig()->dev.motorPwmRate, .config.minmax = { 200, 32000 } },
{ "motor_pwm_inversion", VAR_UINT8 | MASTER_VALUE, &motorConfig()->dev.motorPwmInversion, .config.lookup = { TABLE_OFF_ON } },
{ "disarm_kill_switch", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &armingConfig()->disarm_kill_switch, .config.lookup = { TABLE_OFF_ON } },
{ "gyro_cal_on_first_arm", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &armingConfig()->gyro_cal_on_first_arm, .config.lookup = { TABLE_OFF_ON } },
{ "auto_disarm_delay", VAR_UINT8 | MASTER_VALUE, &armingConfig()->auto_disarm_delay, .config.minmax = { 0, 60 } },
{ "small_angle", VAR_UINT8 | MASTER_VALUE, &imuConfig()->small_angle, .config.minmax = { 0, 180 } },
{ "fixedwing_althold_dir", VAR_INT8 | MASTER_VALUE, &airplaneConfig()->fixedwing_althold_dir, .config.minmax = { -1, 1 } },
{ "reboot_character", VAR_UINT8 | MASTER_VALUE, &serialConfig()->reboot_character, .config.minmax = { 48, 126 } },
{ "serial_update_rate_hz", VAR_UINT16 | MASTER_VALUE, &serialConfig()->serial_update_rate_hz, .config.minmax = { 100, 2000 } },
#ifdef GPS
{ "gps_provider", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &gpsConfig()->provider, .config.lookup = { TABLE_GPS_PROVIDER } },
{ "gps_sbas_mode", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &gpsConfig()->sbasMode, .config.lookup = { TABLE_GPS_SBAS_MODE } },
{ "gps_auto_config", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &gpsConfig()->autoConfig, .config.lookup = { TABLE_OFF_ON } },
{ "gps_auto_baud", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &gpsConfig()->autoBaud, .config.lookup = { TABLE_OFF_ON } },
{ "gps_pos_p", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.P8[PIDPOS], .config.minmax = { 0, 200 } },
{ "gps_pos_i", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.I8[PIDPOS], .config.minmax = { 0, 200 } },
{ "gps_pos_d", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.D8[PIDPOS], .config.minmax = { 0, 200 } },
{ "gps_posr_p", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.P8[PIDPOSR], .config.minmax = { 0, 200 } },
{ "gps_posr_i", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.I8[PIDPOSR], .config.minmax = { 0, 200 } },
{ "gps_posr_d", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.D8[PIDPOSR], .config.minmax = { 0, 200 } },
{ "gps_nav_p", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.P8[PIDNAVR], .config.minmax = { 0, 200 } },
{ "gps_nav_i", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.I8[PIDNAVR], .config.minmax = { 0, 200 } },
{ "gps_nav_d", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.D8[PIDNAVR], .config.minmax = { 0, 200 } },
{ "gps_wp_radius", VAR_UINT16 | MASTER_VALUE, &gpsProfile()->gps_wp_radius, .config.minmax = { 0, 2000 } },
{ "nav_controls_heading", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &gpsProfile()->nav_controls_heading, .config.lookup = { TABLE_OFF_ON } },
{ "nav_speed_min", VAR_UINT16 | MASTER_VALUE, &gpsProfile()->nav_speed_min, .config.minmax = { 10, 2000 } },
{ "nav_speed_max", VAR_UINT16 | MASTER_VALUE, &gpsProfile()->nav_speed_max, .config.minmax = { 10, 2000 } },
{ "nav_slew_rate", VAR_UINT8 | MASTER_VALUE, &gpsProfile()->nav_slew_rate, .config.minmax = { 0, 100 } },
#endif
#ifdef BEEPER
{ "beeper_inversion", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &beeperDevConfig()->isInverted, .config.lookup = { TABLE_OFF_ON } },
{ "beeper_od", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &beeperDevConfig()->isOpenDrain, .config.lookup = { TABLE_OFF_ON } },
#endif
#ifdef SERIAL_RX
{ "serialrx_provider", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &rxConfig()->serialrx_provider, .config.lookup = { TABLE_SERIAL_RX } },
#endif
{ "sbus_inversion", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &rxConfig()->sbus_inversion, .config.lookup = { TABLE_OFF_ON } },
#ifdef SPEKTRUM_BIND
{ "spektrum_sat_bind", VAR_UINT8 | MASTER_VALUE, &rxConfig()->spektrum_sat_bind, .config.minmax = { SPEKTRUM_SAT_BIND_DISABLED, SPEKTRUM_SAT_BIND_MAX} },
{ "spektrum_sat_bind_autorst", VAR_UINT8 | MASTER_VALUE, &rxConfig()->spektrum_sat_bind_autoreset, .config.minmax = { 0, 1} },
#endif
#ifdef TELEMETRY
{ "tlm_switch", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &telemetryConfig()->telemetry_switch, .config.lookup = { TABLE_OFF_ON } },
{ "tlm_inversion", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &telemetryConfig()->telemetry_inversion, .config.lookup = { TABLE_OFF_ON } },
{ "sport_halfduplex", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &telemetryConfig()->sportHalfDuplex, .config.lookup = { TABLE_OFF_ON } },
{ "frsky_default_lat", VAR_FLOAT | MASTER_VALUE, &telemetryConfig()->gpsNoFixLatitude, .config.minmax = { -90.0, 90.0 } },
{ "frsky_default_long", VAR_FLOAT | MASTER_VALUE, &telemetryConfig()->gpsNoFixLongitude, .config.minmax = { -180.0, 180.0 } },
{ "frsky_gps_format", VAR_UINT8 | MASTER_VALUE, &telemetryConfig()->frsky_coordinate_format, .config.minmax = { 0, FRSKY_FORMAT_NMEA } },
{ "frsky_unit", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &telemetryConfig()->frsky_unit, .config.lookup = { TABLE_UNIT } },
{ "frsky_vfas_precision", VAR_UINT8 | MASTER_VALUE, &telemetryConfig()->frsky_vfas_precision, .config.minmax = { FRSKY_VFAS_PRECISION_LOW, FRSKY_VFAS_PRECISION_HIGH } },
{ "frsky_vfas_cell_voltage", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &telemetryConfig()->frsky_vfas_cell_voltage, .config.lookup = { TABLE_OFF_ON } },
{ "hott_alarm_int", VAR_UINT8 | MASTER_VALUE, &telemetryConfig()->hottAlarmSoundInterval, .config.minmax = { 0, 120 } },
{ "pid_in_tlm", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &telemetryConfig()->pidValuesAsTelemetry, .config.lookup = {TABLE_OFF_ON } },
#if defined(TELEMETRY_IBUS)
{ "ibus_report_cell_voltage", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &ibusTelemetryConfig()->report_cell_voltage, .config.lookup = { TABLE_OFF_ON } },
#endif
#endif
{ "bat_capacity", VAR_UINT16 | MASTER_VALUE, &batteryConfig()->batteryCapacity, .config.minmax = { 0, 20000 } },
{ "vbat_scale", VAR_UINT8 | MASTER_VALUE, &batteryConfig()->vbatscale, .config.minmax = { VBAT_SCALE_MIN, VBAT_SCALE_MAX } },
{ "vbat_max_cell_voltage", VAR_UINT8 | MASTER_VALUE, &batteryConfig()->vbatmaxcellvoltage, .config.minmax = { 10, 50 } },
{ "vbat_min_cell_voltage", VAR_UINT8 | MASTER_VALUE, &batteryConfig()->vbatmincellvoltage, .config.minmax = { 10, 50 } },
{ "vbat_warning_cell_voltage", VAR_UINT8 | MASTER_VALUE, &batteryConfig()->vbatwarningcellvoltage, .config.minmax = { 10, 50 } },
{ "vbat_hysteresis", VAR_UINT8 | MASTER_VALUE, &batteryConfig()->vbathysteresis, .config.minmax = { 0, 250 } },
{ "ibat_scale", VAR_INT16 | MASTER_VALUE, &batteryConfig()->currentMeterScale, .config.minmax = { -16000, 16000 } },
{ "ibat_offset", VAR_INT16 | MASTER_VALUE, &batteryConfig()->currentMeterOffset, .config.minmax = { -16000, 16000 } },
{ "mwii_ibat_output", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &batteryConfig()->multiwiiCurrentMeterOutput, .config.lookup = { TABLE_OFF_ON } },
{ "current_meter_type", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &batteryConfig()->currentMeterType, .config.lookup = { TABLE_CURRENT_SENSOR } },
{ "battery_meter_type", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &batteryConfig()->batteryMeterType, .config.lookup = { TABLE_BATTERY_SENSOR } },
{ "bat_detect_thresh", VAR_UINT8 | MASTER_VALUE, &batteryConfig()->batterynotpresentlevel, .config.minmax = { 0, 200 } },
{ "use_vbat_alerts", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &batteryConfig()->useVBatAlerts, .config.lookup = { TABLE_OFF_ON } },
{ "use_cbat_alerts", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &batteryConfig()->useConsumptionAlerts, .config.lookup = { TABLE_OFF_ON } },
{ "cbat_alert_percent", VAR_UINT8 | MASTER_VALUE, &batteryConfig()->consumptionWarningPercentage, .config.minmax = { 0, 100 } },
{ "align_gyro", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &gyroConfig()->gyro_align, .config.lookup = { TABLE_ALIGNMENT } },
{ "align_acc", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &accelerometerConfig()->acc_align, .config.lookup = { TABLE_ALIGNMENT } },
{ "align_mag", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &compassConfig()->mag_align, .config.lookup = { TABLE_ALIGNMENT } },
{ "align_board_roll", VAR_INT16 | MASTER_VALUE, &boardAlignment()->rollDegrees, .config.minmax = { -180, 360 } },
{ "align_board_pitch", VAR_INT16 | MASTER_VALUE, &boardAlignment()->pitchDegrees, .config.minmax = { -180, 360 } },
{ "align_board_yaw", VAR_INT16 | MASTER_VALUE, &boardAlignment()->yawDegrees, .config.minmax = { -180, 360 } },
{ "gyro_lpf", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &gyroConfig()->gyro_lpf, .config.lookup = { TABLE_GYRO_LPF } },
{ "gyro_sync_denom", VAR_UINT8 | MASTER_VALUE, &gyroConfig()->gyro_sync_denom, .config.minmax = { 1, 32 } },
#if defined(GYRO_USES_SPI) && defined(USE_MPU_DATA_READY_SIGNAL)
{ "gyro_isr_update", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &gyroConfig()->gyro_isr_update, .config.lookup = { TABLE_OFF_ON } },
#endif
{ "gyro_use_32khz", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &gyroConfig()->gyro_use_32khz, .config.lookup = { TABLE_OFF_ON } },
{ "gyro_lowpass_type", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &gyroConfig()->gyro_soft_lpf_type, .config.lookup = { TABLE_LOWPASS_TYPE } },
{ "gyro_lowpass", VAR_UINT8 | MASTER_VALUE, &gyroConfig()->gyro_soft_lpf_hz, .config.minmax = { 0, 255 } },
{ "gyro_notch1_hz", VAR_UINT16 | MASTER_VALUE, &gyroConfig()->gyro_soft_notch_hz_1, .config.minmax = { 0, 16000 } },
{ "gyro_notch1_cut", VAR_UINT16 | MASTER_VALUE, &gyroConfig()->gyro_soft_notch_cutoff_1, .config.minmax = { 1, 16000 } },
{ "gyro_notch2_hz", VAR_UINT16 | MASTER_VALUE, &gyroConfig()->gyro_soft_notch_hz_2, .config.minmax = { 0, 16000 } },
{ "gyro_notch2_cut", VAR_UINT16 | MASTER_VALUE, &gyroConfig()->gyro_soft_notch_cutoff_2, .config.minmax = { 1, 16000 } },
{ "moron_threshold", VAR_UINT8 | MASTER_VALUE, &gyroConfig()->gyroMovementCalibrationThreshold, .config.minmax = { 0, 200 } },
{ "imu_dcm_kp", VAR_UINT16 | MASTER_VALUE, &imuConfig()->dcm_kp, .config.minmax = { 0, 32000 } },
{ "imu_dcm_ki", VAR_UINT16 | MASTER_VALUE, &imuConfig()->dcm_ki, .config.minmax = { 0, 32000 } },
{ "alt_hold_deadband", VAR_UINT8 | MASTER_VALUE, &rcControlsConfig()->alt_hold_deadband, .config.minmax = { 1, 250 } },
{ "alt_hold_fast_change", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &rcControlsConfig()->alt_hold_fast_change, .config.lookup = { TABLE_OFF_ON } },
{ "deadband", VAR_UINT8 | MASTER_VALUE, &rcControlsConfig()->deadband, .config.minmax = { 0, 32 } },
{ "yaw_deadband", VAR_UINT8 | MASTER_VALUE, &rcControlsConfig()->yaw_deadband, .config.minmax = { 0, 100 } },
{ "thr_corr_value", VAR_UINT8 | MASTER_VALUE, &throttleCorrectionConfig()->throttle_correction_value, .config.minmax = { 0, 150 } },
{ "thr_corr_angle", VAR_UINT16 | MASTER_VALUE, &throttleCorrectionConfig()->throttle_correction_angle, .config.minmax = { 1, 900 } },
{ "yaw_control_direction", VAR_INT8 | MASTER_VALUE, &rcControlsConfig()->yaw_control_direction, .config.minmax = { -1, 1 } },
{ "yaw_motor_direction", VAR_INT8 | MASTER_VALUE, &mixerConfig()->yaw_motor_direction, .config.minmax = { -1, 1 } },
{ "yaw_p_limit", VAR_UINT16 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.yaw_p_limit, .config.minmax = { YAW_P_LIMIT_MIN, YAW_P_LIMIT_MAX } },
{ "pidsum_limit", VAR_FLOAT | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.pidSumLimit, .config.minmax = { 0.1, 1.0 } },
#ifdef USE_SERVOS
{ "servo_center_pulse", VAR_UINT16 | MASTER_VALUE, &servoConfig()->dev.servoCenterPulse, .config.minmax = { PWM_RANGE_ZERO, PWM_RANGE_MAX } },
{ "tri_unarmed_servo", VAR_INT8 | MASTER_VALUE | MODE_LOOKUP, &servoConfig()->tri_unarmed_servo, .config.lookup = { TABLE_OFF_ON } },
{ "servo_lowpass_hz", VAR_UINT16 | MASTER_VALUE, &servoConfig()->servo_lowpass_freq, .config.minmax = { 0, 400} },
{ "servo_pwm_rate", VAR_UINT16 | MASTER_VALUE, &servoConfig()->dev.servoPwmRate, .config.minmax = { 50, 498 } },
{ "gimbal_mode", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &gimbalConfig()->mode, .config.lookup = { TABLE_GIMBAL_MODE } },
{ "channel_forwarding_start", VAR_UINT8 | MASTER_VALUE, &channelForwardingConfig()->startChannel, .config.minmax = { AUX1, MAX_SUPPORTED_RC_CHANNEL_COUNT } },
#endif
{ "rc_rate", VAR_UINT8 | PROFILE_RATE_VALUE, &masterConfig.profile[0].controlRateProfile[0].rcRate8, .config.minmax = { 0, 255 } },
{ "rc_rate_yaw", VAR_UINT8 | PROFILE_RATE_VALUE, &masterConfig.profile[0].controlRateProfile[0].rcYawRate8, .config.minmax = { 0, 255 } },
{ "rc_expo", VAR_UINT8 | PROFILE_RATE_VALUE, &masterConfig.profile[0].controlRateProfile[0].rcExpo8, .config.minmax = { 0, 100 } },
{ "rc_yaw_expo", VAR_UINT8 | PROFILE_RATE_VALUE, &masterConfig.profile[0].controlRateProfile[0].rcYawExpo8, .config.minmax = { 0, 100 } },
{ "thr_mid", VAR_UINT8 | PROFILE_RATE_VALUE, &masterConfig.profile[0].controlRateProfile[0].thrMid8, .config.minmax = { 0, 100 } },
{ "thr_expo", VAR_UINT8 | PROFILE_RATE_VALUE, &masterConfig.profile[0].controlRateProfile[0].thrExpo8, .config.minmax = { 0, 100 } },
{ "roll_srate", VAR_UINT8 | PROFILE_RATE_VALUE, &masterConfig.profile[0].controlRateProfile[0].rates[FD_ROLL], .config.minmax = { 0, CONTROL_RATE_CONFIG_ROLL_PITCH_RATE_MAX } },
{ "pitch_srate", VAR_UINT8 | PROFILE_RATE_VALUE, &masterConfig.profile[0].controlRateProfile[0].rates[FD_PITCH], .config.minmax = { 0, CONTROL_RATE_CONFIG_ROLL_PITCH_RATE_MAX } },
{ "yaw_srate", VAR_UINT8 | PROFILE_RATE_VALUE, &masterConfig.profile[0].controlRateProfile[0].rates[FD_YAW], .config.minmax = { 0, CONTROL_RATE_CONFIG_YAW_RATE_MAX } },
{ "tpa_rate", VAR_UINT8 | PROFILE_RATE_VALUE, &masterConfig.profile[0].controlRateProfile[0].dynThrPID, .config.minmax = { 0, CONTROL_RATE_CONFIG_TPA_MAX} },
{ "tpa_breakpoint", VAR_UINT16 | PROFILE_RATE_VALUE, &masterConfig.profile[0].controlRateProfile[0].tpa_breakpoint, .config.minmax = { PWM_RANGE_MIN, PWM_RANGE_MAX} },
{ "airmode_start_throttle", VAR_UINT16 | MASTER_VALUE, &rxConfig()->airModeActivateThreshold, .config.minmax = {1000, 2000 } },
{ "failsafe_delay", VAR_UINT8 | MASTER_VALUE, &failsafeConfig()->failsafe_delay, .config.minmax = { 0, 200 } },
{ "failsafe_off_delay", VAR_UINT8 | MASTER_VALUE, &failsafeConfig()->failsafe_off_delay, .config.minmax = { 0, 200 } },
{ "failsafe_throttle", VAR_UINT16 | MASTER_VALUE, &failsafeConfig()->failsafe_throttle, .config.minmax = { PWM_RANGE_MIN, PWM_RANGE_MAX } },
{ "failsafe_kill_switch", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &failsafeConfig()->failsafe_kill_switch, .config.lookup = { TABLE_OFF_ON } },
{ "failsafe_throttle_low_delay",VAR_UINT16 | MASTER_VALUE, &failsafeConfig()->failsafe_throttle_low_delay, .config.minmax = { 0, 300 } },
{ "failsafe_procedure", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &failsafeConfig()->failsafe_procedure, .config.lookup = { TABLE_FAILSAFE } },
{ "rx_min_usec", VAR_UINT16 | MASTER_VALUE, &rxConfig()->rx_min_usec, .config.minmax = { PWM_PULSE_MIN, PWM_PULSE_MAX } },
{ "rx_max_usec", VAR_UINT16 | MASTER_VALUE, &rxConfig()->rx_max_usec, .config.minmax = { PWM_PULSE_MIN, PWM_PULSE_MAX } },
{ "acc_hardware", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &accelerometerConfig()->acc_hardware, .config.lookup = { TABLE_ACC_HARDWARE } },
{ "acc_lpf_hz", VAR_UINT16 | MASTER_VALUE, &accelerometerConfig()->acc_lpf_hz, .config.minmax = { 0, 400 } },
{ "accxy_deadband", VAR_UINT8 | MASTER_VALUE, &imuConfig()->accDeadband.xy, .config.minmax = { 0, 100 } },
{ "accz_deadband", VAR_UINT8 | MASTER_VALUE, &imuConfig()->accDeadband.z, .config.minmax = { 0, 100 } },
{ "acc_unarmedcal", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &imuConfig()->acc_unarmedcal, .config.lookup = { TABLE_OFF_ON } },
{ "acc_trim_pitch", VAR_INT16 | MASTER_VALUE, &accelerometerConfig()->accelerometerTrims.values.pitch, .config.minmax = { -300, 300 } },
{ "acc_trim_roll", VAR_INT16 | MASTER_VALUE, &accelerometerConfig()->accelerometerTrims.values.roll, .config.minmax = { -300, 300 } },
#ifdef BARO
{ "baro_tab_size", VAR_UINT8 | MASTER_VALUE, &barometerConfig()->baro_sample_count, .config.minmax = { 0, BARO_SAMPLE_COUNT_MAX } },
{ "baro_noise_lpf", VAR_FLOAT | MASTER_VALUE, &barometerConfig()->baro_noise_lpf, .config.minmax = { 0 , 1 } },
{ "baro_cf_vel", VAR_FLOAT | MASTER_VALUE, &barometerConfig()->baro_cf_vel, .config.minmax = { 0 , 1 } },
{ "baro_cf_alt", VAR_FLOAT | MASTER_VALUE, &barometerConfig()->baro_cf_alt, .config.minmax = { 0 , 1 } },
{ "baro_hardware", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &barometerConfig()->baro_hardware, .config.lookup = { TABLE_BARO_HARDWARE } },
#endif
#ifdef MAG
{ "mag_hardware", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &compassConfig()->mag_hardware, .config.lookup = { TABLE_MAG_HARDWARE } },
{ "mag_declination", VAR_INT16 | MASTER_VALUE, &compassConfig()->mag_declination, .config.minmax = { -18000, 18000 } },
#endif
{ "d_lowpass_type", VAR_UINT8 | PROFILE_VALUE | MODE_LOOKUP, &masterConfig.profile[0].pidProfile.dterm_filter_type, .config.lookup = { TABLE_LOWPASS_TYPE } },
{ "d_lowpass", VAR_INT16 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.dterm_lpf_hz, .config.minmax = {0, 16000 } },
{ "d_notch_hz", VAR_UINT16 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.dterm_notch_hz, .config.minmax = { 0, 16000 } },
{ "d_notch_cut", VAR_UINT16 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.dterm_notch_cutoff, .config.minmax = { 1, 16000 } },
{ "vbat_pid_gain", VAR_UINT8 | PROFILE_VALUE | MODE_LOOKUP, &masterConfig.profile[0].pidProfile.vbatPidCompensation, .config.lookup = { TABLE_OFF_ON } },
{ "pid_at_min_throttle", VAR_UINT8 | PROFILE_VALUE | MODE_LOOKUP, &masterConfig.profile[0].pidProfile.pidAtMinThrottle, .config.lookup = { TABLE_OFF_ON } },
{ "anti_gravity_thresh", VAR_UINT16 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.itermThrottleThreshold, .config.minmax = {20, 1000 } },
{ "anti_gravity_gain", VAR_FLOAT | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.itermAcceleratorGain, .config.minmax = {1, 30 } },
{ "setpoint_relax_ratio", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.setpointRelaxRatio, .config.minmax = {0, 100 } },
{ "d_setpoint_weight", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.dtermSetpointWeight, .config.minmax = {0, 255 } },
{ "yaw_accel_limit", VAR_FLOAT | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.yawRateAccelLimit, .config.minmax = {0.1f, 50.0f } },
{ "accel_limit", VAR_FLOAT | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.rateAccelLimit, .config.minmax = {0.1f, 50.0f } },
{ "iterm_windup", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.itermWindupPointPercent, .config.minmax = {30, 100 } },
{ "yaw_lowpass", VAR_UINT16 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.yaw_lpf_hz, .config.minmax = {0, 500 } },
{ "pid_process_denom", VAR_UINT8 | MASTER_VALUE, &pidConfig()->pid_process_denom, .config.minmax = { 1, MAX_PID_PROCESS_DENOM } },
{ "p_pitch", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.P8[PITCH], .config.minmax = { 0, 200 } },
{ "i_pitch", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.I8[PITCH], .config.minmax = { 0, 200 } },
{ "d_pitch", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.D8[PITCH], .config.minmax = { 0, 200 } },
{ "p_roll", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.P8[ROLL], .config.minmax = { 0, 200 } },
{ "i_roll", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.I8[ROLL], .config.minmax = { 0, 200 } },
{ "d_roll", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.D8[ROLL], .config.minmax = { 0, 200 } },
{ "p_yaw", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.P8[YAW], .config.minmax = { 0, 200 } },
{ "i_yaw", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.I8[YAW], .config.minmax = { 0, 200 } },
{ "d_yaw", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.D8[YAW], .config.minmax = { 0, 200 } },
{ "p_alt", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.P8[PIDALT], .config.minmax = { 0, 200 } },
{ "i_alt", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.I8[PIDALT], .config.minmax = { 0, 200 } },
{ "d_alt", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.D8[PIDALT], .config.minmax = { 0, 200 } },
{ "p_level", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.P8[PIDLEVEL], .config.minmax = { 0, 200 } },
{ "i_level", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.I8[PIDLEVEL], .config.minmax = { 0, 200 } },
{ "d_level", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.D8[PIDLEVEL], .config.minmax = { 0, 200 } },
{ "p_vel", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.P8[PIDVEL], .config.minmax = { 0, 200 } },
{ "i_vel", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.I8[PIDVEL], .config.minmax = { 0, 200 } },
{ "d_vel", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.D8[PIDVEL], .config.minmax = { 0, 200 } },
{ "level_sensitivity", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.levelSensitivity, .config.minmax = { 10, 200 } },
{ "level_limit", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.levelAngleLimit, .config.minmax = { 10, 120 } },
#ifdef BLACKBOX
{ "blackbox_rate_num", VAR_UINT8 | MASTER_VALUE, &blackboxConfig()->rate_num, .config.minmax = { 1, 32 } },
{ "blackbox_rate_denom", VAR_UINT8 | MASTER_VALUE, &blackboxConfig()->rate_denom, .config.minmax = { 1, 32 } },
{ "blackbox_device", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &blackboxConfig()->device, .config.lookup = { TABLE_BLACKBOX_DEVICE } },
{ "blackbox_on_motor_test", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &blackboxConfig()->on_motor_test, .config.lookup = { TABLE_OFF_ON } },
#endif
#ifdef VTX
{ "vtx_band", VAR_UINT8 | MASTER_VALUE, &masterConfig.vtx_band, .config.minmax = { 1, 5 } },
{ "vtx_channel", VAR_UINT8 | MASTER_VALUE, &masterConfig.vtx_channel, .config.minmax = { 1, 8 } },
{ "vtx_mode", VAR_UINT8 | MASTER_VALUE, &masterConfig.vtx_mode, .config.minmax = { 0, 2 } },
{ "vtx_mhz", VAR_UINT16 | MASTER_VALUE, &masterConfig.vtx_mhz, .config.minmax = { 5600, 5950 } },
#endif
#ifdef MAG
{ "magzero_x", VAR_INT16 | MASTER_VALUE, &compassConfig()->magZero.raw[X], .config.minmax = { INT16_MIN, INT16_MAX } },
{ "magzero_y", VAR_INT16 | MASTER_VALUE, &compassConfig()->magZero.raw[Y], .config.minmax = { INT16_MIN, INT16_MAX } },
{ "magzero_z", VAR_INT16 | MASTER_VALUE, &compassConfig()->magZero.raw[Z], .config.minmax = { INT16_MIN, INT16_MAX } },
#endif
#ifdef LED_STRIP
{ "ledstrip_visual_beeper", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &ledStripConfig()->ledstrip_visual_beeper, .config.lookup = { TABLE_OFF_ON } },
#endif
#if defined(USE_RTC6705)
{ "vtx_channel", VAR_UINT8 | MASTER_VALUE, &masterConfig.vtx_channel, .config.minmax = { 0, 39 } },
{ "vtx_power", VAR_UINT8 | MASTER_VALUE, &masterConfig.vtx_power, .config.minmax = { 0, 1 } },
#endif
#ifdef USE_SDCARD
{ "sdcard_dma", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &sdcardConfig()->useDma, .config.lookup = { TABLE_OFF_ON } },
#endif
#ifdef OSD
{ "osd_units", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &osdProfile()->units, .config.lookup = { TABLE_UNIT } },
{ "osd_rssi_alarm", VAR_UINT8 | MASTER_VALUE, &osdProfile()->rssi_alarm, .config.minmax = { 0, 100 } },
{ "osd_cap_alarm", VAR_UINT16 | MASTER_VALUE, &osdProfile()->cap_alarm, .config.minmax = { 0, 20000 } },
{ "osd_time_alarm", VAR_UINT16 | MASTER_VALUE, &osdProfile()->time_alarm, .config.minmax = { 0, 60 } },
{ "osd_alt_alarm", VAR_UINT16 | MASTER_VALUE, &osdProfile()->alt_alarm, .config.minmax = { 0, 10000 } },
{ "osd_vbat_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_MAIN_BATT_VOLTAGE], .config.minmax = { 0, OSD_POSCFG_MAX } },
{ "osd_rssi_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_RSSI_VALUE], .config.minmax = { 0, OSD_POSCFG_MAX } },
{ "osd_flytimer_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_FLYTIME], .config.minmax = { 0, OSD_POSCFG_MAX } },
{ "osd_ontimer_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_ONTIME], .config.minmax = { 0, OSD_POSCFG_MAX } },
{ "osd_flymode_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_FLYMODE], .config.minmax = { 0, OSD_POSCFG_MAX } },
{ "osd_throttle_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_THROTTLE_POS], .config.minmax = { 0, OSD_POSCFG_MAX } },
{ "osd_vtx_channel_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_VTX_CHANNEL], .config.minmax = { 0, OSD_POSCFG_MAX } },
{ "osd_crosshairs", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_CROSSHAIRS], .config.minmax = { 0, OSD_POSCFG_MAX } },
{ "osd_horizon_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_ARTIFICIAL_HORIZON], .config.minmax = { 0, OSD_POSCFG_MAX } },
{ "osd_current_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_CURRENT_DRAW], .config.minmax = { 0, OSD_POSCFG_MAX } },
{ "osd_mah_drawn_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_MAH_DRAWN], .config.minmax = { 0, OSD_POSCFG_MAX } },
{ "osd_craft_name_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_CRAFT_NAME], .config.minmax = { 0, OSD_POSCFG_MAX } },
{ "osd_gps_speed_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_GPS_SPEED], .config.minmax = { 0, OSD_POSCFG_MAX } },
{ "osd_gps_sats_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_GPS_SATS], .config.minmax = { 0, OSD_POSCFG_MAX } },
{ "osd_altitude_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_ALTITUDE], .config.minmax = { 0, OSD_POSCFG_MAX } },
{ "osd_pid_roll_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_ROLL_PIDS], .config.minmax = { 0, OSD_POSCFG_MAX } },
{ "osd_pid_pitch_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_PITCH_PIDS], .config.minmax = { 0, OSD_POSCFG_MAX } },
{ "osd_pid_yaw_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_YAW_PIDS], .config.minmax = { 0, OSD_POSCFG_MAX } },
{ "osd_power_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_POWER], .config.minmax = { 0, OSD_POSCFG_MAX } },
{ "osd_pidrate_profile_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_PIDRATE_PROFILE], .config.minmax = { 0, OSD_POSCFG_MAX } },
{ "osd_battery_warning_pos", VAR_UINT16 | MASTER_VALUE, &osdProfile()->item_pos[OSD_MAIN_BATT_WARNING], .config.minmax = { 0, OSD_POSCFG_MAX } },
#endif
#ifdef USE_MAX7456
{ "vcd_video_system", VAR_UINT8 | MASTER_VALUE, &vcdProfile()->video_system, .config.minmax = { 0, 2 } },
{ "vcd_h_offset", VAR_INT8 | MASTER_VALUE, &vcdProfile()->h_offset, .config.minmax = { -32, 31 } },
{ "vcd_v_offset", VAR_INT8 | MASTER_VALUE, &vcdProfile()->v_offset, .config.minmax = { -15, 16 } },
#endif
#ifdef USE_MSP_DISPLAYPORT
{ "displayport_msp_col_adjust", VAR_INT8 | MASTER_VALUE, &displayPortProfileMsp()->colAdjust, .config.minmax = { -6, 0 } },
{ "displayport_msp_row_adjust", VAR_INT8 | MASTER_VALUE, &displayPortProfileMsp()->rowAdjust, .config.minmax = { -3, 0 } },
#endif
#ifdef OSD
{ "displayport_max7456_col_adjust", VAR_INT8 | MASTER_VALUE, &displayPortProfileMax7456()->colAdjust, .config.minmax = { -6, 0 } },
{ "displayport_max7456_row_adjust", VAR_INT8 | MASTER_VALUE, &displayPortProfileMax7456()->rowAdjust, .config.minmax = { -3, 0 } },
#endif
};
#endif
#ifdef USE_PARAMETER_GROUPS
static featureConfig_t featureConfigCopy;
static gyroConfig_t gyroConfigCopy;
static accelerometerConfig_t accelerometerConfigCopy;
#ifdef MAG
static compassConfig_t compassConfigCopy;
#endif
#ifdef BARO
static barometerConfig_t barometerConfigCopy;
#endif
#ifdef PITOT
static pitotmeterConfig_t pitotmeterConfigCopy;
#endif
static featureConfig_t featureConfigCopy;
static rxConfig_t rxConfigCopy;
#ifdef BLACKBOX
static blackboxConfig_t blackboxConfigCopy;
#endif
static rxFailsafeChannelConfig_t rxFailsafeChannelConfigsCopy[MAX_SUPPORTED_RC_CHANNEL_COUNT];
static rxChannelRangeConfig_t rxChannelRangeConfigsCopy[NON_AUX_CHANNEL_COUNT];
static motorConfig_t motorConfigCopy;
static failsafeConfig_t failsafeConfigCopy;
static boardAlignment_t boardAlignmentCopy;
#ifdef USE_SERVOS
static servoConfig_t servoConfigCopy;
static gimbalConfig_t gimbalConfigCopy;
static servoMixer_t customServoMixersCopy[MAX_SERVO_RULES];
static servoParam_t servoParamsCopy[MAX_SUPPORTED_SERVOS];
#endif
static batteryConfig_t batteryConfigCopy;
static motorMixer_t customMotorMixerCopy[MAX_SUPPORTED_MOTORS];
static mixerConfig_t mixerConfigCopy;
static flight3DConfig_t flight3DConfigCopy;
static serialConfig_t serialConfigCopy;
static imuConfig_t imuConfigCopy;
static armingConfig_t armingConfigCopy;
static rcControlsConfig_t rcControlsConfigCopy;
#ifdef GPS
static gpsConfig_t gpsConfigCopy;
#endif
#ifdef NAV
static positionEstimationConfig_t positionEstimationConfigCopy;
static navConfig_t navConfigCopy;
#endif
#ifdef TELEMETRY
static telemetryConfig_t telemetryConfigCopy;
#endif
static modeActivationCondition_t modeActivationConditionsCopy[MAX_MODE_ACTIVATION_CONDITION_COUNT];
static adjustmentRange_t adjustmentRangesCopy[MAX_ADJUSTMENT_RANGE_COUNT];
#ifdef LED_STRIP
static ledStripConfig_t ledStripConfigCopy;
#endif
#ifdef OSD
static osdConfig_t osdConfigCopy;
#endif
static systemConfig_t systemConfigCopy;
#ifdef BEEPER
static beeperDevConfig_t beeperDevConfigCopy;
#endif
static controlRateConfig_t controlRateProfilesCopy[MAX_CONTROL_RATE_PROFILE_COUNT];
static pidProfile_t pidProfileCopy[MAX_PROFILE_COUNT];
#endif // USE_PARAMETER_GROUPS
static void cliPrint(const char *str)
{
while (*str) {
bufWriterAppend(cliWriter, *str++);
}
bufWriterFlush(cliWriter);
}
#ifdef MINIMAL_CLI
#define cliPrintHashLine(str)
#else
static void cliPrintHashLine(const char *str)
{
cliPrint("\r\n# ");
cliPrint(str);
cliPrint("\r\n");
}
#endif
static void cliPutp(void *p, char ch)
{
bufWriterAppend(p, ch);
}
typedef enum {
DUMP_MASTER = (1 << 0),
DUMP_PROFILE = (1 << 1),
DUMP_RATES = (1 << 2),
DUMP_ALL = (1 << 3),
DO_DIFF = (1 << 4),
SHOW_DEFAULTS = (1 << 5),
HIDE_UNUSED = (1 << 6)
} dumpFlags_e;
static bool cliDumpPrintf(uint8_t dumpMask, bool equalsDefault, const char *format, ...)
{
if (!((dumpMask & DO_DIFF) && equalsDefault)) {
va_list va;
va_start(va, format);
tfp_format(cliWriter, cliPutp, format, va);
va_end(va);
bufWriterFlush(cliWriter);
return true;
} else {
return false;
}
}
static void cliWrite(uint8_t ch)
{
bufWriterAppend(cliWriter, ch);
}
static bool cliDefaultPrintf(uint8_t dumpMask, bool equalsDefault, const char *format, ...)
{
if ((dumpMask & SHOW_DEFAULTS) && !equalsDefault) {
cliWrite('#');
va_list va;
va_start(va, format);
tfp_format(cliWriter, cliPutp, format, va);
va_end(va);
bufWriterFlush(cliWriter);
return true;
} else {
return false;
}
}
static void cliPrintf(const char *format, ...)
{
va_list va;
va_start(va, format);
tfp_format(cliWriter, cliPutp, format, va);
va_end(va);
bufWriterFlush(cliWriter);
}
static void printValuePointer(const clivalue_t *var, const void *valuePointer, uint32_t full)
{
int32_t value = 0;
char buf[8];
switch (var->type & VALUE_TYPE_MASK) {
case VAR_UINT8:
value = *(uint8_t *)valuePointer;
break;
case VAR_INT8:
value = *(int8_t *)valuePointer;
break;
case VAR_UINT16:
value = *(uint16_t *)valuePointer;
break;
case VAR_INT16:
value = *(int16_t *)valuePointer;
break;
/* not currently used
case VAR_UINT32:
value = *(uint32_t *)valuePointer;
break; */
case VAR_FLOAT:
cliPrintf("%s", ftoa(*(float *)valuePointer, buf));
if (full && (var->type & VALUE_MODE_MASK) == MODE_DIRECT) {
cliPrintf(" %s", ftoa((float)var->config.minmax.min, buf));
cliPrintf(" %s", ftoa((float)var->config.minmax.max, buf));
}
return; // return from case for float only
}
switch(var->type & VALUE_MODE_MASK) {
case MODE_DIRECT:
cliPrintf("%d", value);
if (full) {
cliPrintf(" %d %d", var->config.minmax.min, var->config.minmax.max);
}
break;
case MODE_LOOKUP:
cliPrintf(lookupTables[var->config.lookup.tableIndex].values[value]);
break;
}
}
#ifdef USE_PARAMETER_GROUPS
static bool valuePtrEqualsDefault(uint8_t type, const void *ptr, const void *ptrDefault)
{
bool result = false;
switch (type & VALUE_TYPE_MASK) {
case VAR_UINT8:
result = *(uint8_t *)ptr == *(uint8_t *)ptrDefault;
break;
case VAR_INT8:
result = *(int8_t *)ptr == *(int8_t *)ptrDefault;
break;
case VAR_UINT16:
result = *(uint16_t *)ptr == *(uint16_t *)ptrDefault;
break;
case VAR_INT16:
result = *(int16_t *)ptr == *(int16_t *)ptrDefault;
break;
/* not currently used
case VAR_UINT32:
result = *(uint32_t *)ptr == *(uint32_t *)ptrDefault;
break;*/
case VAR_FLOAT:
result = *(float *)ptr == *(float *)ptrDefault;
break;
}
return result;
}
typedef struct cliCurrentAndDefaultConfig_s {
const void *currentConfig; // the copy
const void *defaultConfig; // the PG value as set by default
} cliCurrentAndDefaultConfig_t;
static const cliCurrentAndDefaultConfig_t *getCurrentAndDefaultConfigs(pgn_t pgn)
{
static cliCurrentAndDefaultConfig_t ret;
switch (pgn) {
case PG_GYRO_CONFIG:
ret.currentConfig = &gyroConfigCopy;
ret.defaultConfig = gyroConfig();
break;
case PG_ACCELEROMETER_CONFIG:
ret.currentConfig = &accelerometerConfigCopy;
ret.defaultConfig = accelerometerConfig();
break;
#ifdef MAG
case PG_COMPASS_CONFIG:
ret.currentConfig = &compassConfigCopy;
ret.defaultConfig = compassConfig();
break;
#endif
#ifdef BARO
case PG_BAROMETER_CONFIG:
ret.currentConfig = &barometerConfigCopy;
ret.defaultConfig = barometerConfig();
break;
#endif
#ifdef PITOT
case PG_PITOTMETER_CONFIG:
ret.currentConfig = &pitotmeterConfigCopy;
ret.defaultConfig = pitotmeterConfig();
break;
#endif
case PG_FEATURE_CONFIG:
ret.currentConfig = &featureConfigCopy;
ret.defaultConfig = featureConfig();
break;
case PG_RX_CONFIG:
ret.currentConfig = &rxConfigCopy;
ret.defaultConfig = rxConfig();
break;
#ifdef BLACKBOX
case PG_BLACKBOX_CONFIG:
ret.currentConfig = &blackboxConfigCopy;
ret.defaultConfig = blackboxConfig();
break;
#endif
case PG_MOTOR_CONFIG:
ret.currentConfig = &motorConfigCopy;
ret.defaultConfig = motorConfig();
break;
case PG_FAILSAFE_CONFIG:
ret.currentConfig = &failsafeConfigCopy;
ret.defaultConfig = failsafeConfig();
break;
case PG_BOARD_ALIGNMENT:
ret.currentConfig = &boardAlignmentCopy;
ret.defaultConfig = boardAlignment();
break;
case PG_MIXER_CONFIG:
ret.currentConfig = &mixerConfigCopy;
ret.defaultConfig = mixerConfig();
break;
case PG_MOTOR_3D_CONFIG:
ret.currentConfig = &flight3DConfigCopy;
ret.defaultConfig = flight3DConfig();
break;
#ifdef USE_SERVOS
case PG_SERVO_CONFIG:
ret.currentConfig = &servoConfigCopy;
ret.defaultConfig = servoConfig();
break;
case PG_GIMBAL_CONFIG:
ret.currentConfig = &gimbalConfigCopy;
ret.defaultConfig = gimbalConfig();
break;
#endif
case PG_BATTERY_CONFIG:
ret.currentConfig = &batteryConfigCopy;
ret.defaultConfig = batteryConfig();
break;
case PG_SERIAL_CONFIG:
ret.currentConfig = &serialConfigCopy;
ret.defaultConfig = serialConfig();
break;
case PG_IMU_CONFIG:
ret.currentConfig = &imuConfigCopy;
ret.defaultConfig = imuConfig();
break;
case PG_RC_CONTROLS_CONFIG:
ret.currentConfig = &rcControlsConfigCopy;
ret.defaultConfig = rcControlsConfig();
break;
case PG_ARMING_CONFIG:
ret.currentConfig = &armingConfigCopy;
ret.defaultConfig = armingConfig();
break;
#ifdef GPS
case PG_GPS_CONFIG:
ret.currentConfig = &gpsConfigCopy;
ret.defaultConfig = gpsConfig();
break;
#endif
#ifdef NAV
case PG_POSITION_ESTIMATION_CONFIG:
ret.currentConfig = &positionEstimationConfigCopy;
ret.defaultConfig = positionEstimationConfig();
break;
case PG_NAV_CONFIG:
ret.currentConfig = &navConfigCopy;
ret.defaultConfig = navConfig();
break;
#endif
#ifdef TELEMETRY
case PG_TELEMETRY_CONFIG:
ret.currentConfig = &telemetryConfigCopy;
ret.defaultConfig = telemetryConfig();
break;
#endif
#ifdef LED_STRIP
case PG_LED_STRIP_CONFIG:
ret.currentConfig = &ledStripConfigCopy;
ret.defaultConfig = ledStripConfig();
break;
#endif
#ifdef OSD
case PG_OSD_CONFIG:
ret.currentConfig = &osdConfigCopy;
ret.defaultConfig = osdConfig();
break;
#endif
case PG_SYSTEM_CONFIG:
ret.currentConfig = &systemConfigCopy;
ret.defaultConfig = systemConfig();
break;
case PG_CONTROL_RATE_PROFILES:
ret.currentConfig = &controlRateProfilesCopy[0];
ret.defaultConfig = controlRateProfiles(0);
break;
case PG_PID_PROFILE:
ret.currentConfig = &pidProfileCopy[getConfigProfile()];
ret.defaultConfig = pidProfile();
break;
case PG_RX_FAILSAFE_CHANNEL_CONFIG:
ret.currentConfig = &rxFailsafeChannelConfigsCopy[0];
ret.defaultConfig = rxFailsafeChannelConfigs(0);
break;
case PG_RX_CHANNEL_RANGE_CONFIG:
ret.currentConfig = &rxChannelRangeConfigsCopy[0];
ret.defaultConfig = rxChannelRangeConfigs(0);
break;
#ifdef USE_SERVOS
case PG_SERVO_MIXER:
ret.currentConfig = &customServoMixersCopy[0];
ret.defaultConfig = customServoMixers(0);
break;
case PG_SERVO_PARAMS:
ret.currentConfig = &servoParamsCopy[0];
ret.defaultConfig = servoParams(0);
break;
#endif
case PG_MOTOR_MIXER:
ret.currentConfig = &customMotorMixerCopy[0];
ret.defaultConfig = customMotorMixer(0);
break;
case PG_MODE_ACTIVATION_PROFILE:
ret.currentConfig = &modeActivationConditionsCopy[0];
ret.defaultConfig = modeActivationConditions(0);
break;
case PG_ADJUSTMENT_RANGE_CONFIG:
ret.currentConfig = &adjustmentRangesCopy[0];
ret.defaultConfig = adjustmentRanges(0);
break;
case PG_BEEPER_CONFIG:
ret.currentConfig = &beeperDevConfigCopy;
ret.defaultConfig = beeperDevConfig();
break;
default:
ret.currentConfig = NULL;
ret.defaultConfig = NULL;
break;
}
return &ret;
}
static uint16_t getValueOffset(const clivalue_t *value)
{
switch (value->type & VALUE_SECTION_MASK) {
case MASTER_VALUE:
case PROFILE_VALUE:
return value->offset;
case PROFILE_RATE_VALUE:
return value->offset + sizeof(controlRateConfig_t) * getCurrentControlRateProfile();
}
return 0;
}
static void *getValuePointer(const clivalue_t *value)
{
const pgRegistry_t* rec = pgFind(value->pgn);
switch (value->type & VALUE_SECTION_MASK) {
case MASTER_VALUE:
case PROFILE_VALUE:
return rec->address + value->offset;
case PROFILE_RATE_VALUE:
return rec->address + value->offset + sizeof(controlRateConfig_t) * getCurrentControlRateProfile();
}
return NULL;
}
static void dumpPgValue(const clivalue_t *value, uint8_t dumpMask)
{
const char *format = "set %s = ";
const cliCurrentAndDefaultConfig_t *config = getCurrentAndDefaultConfigs(value->pgn);
if (config->currentConfig == NULL || config->defaultConfig == NULL) {
// has not been set up properly
cliPrintf("VALUE %s ERROR\r\n", value->name);
return;
}
const int valueOffset = getValueOffset(value);
switch (dumpMask & (DO_DIFF | SHOW_DEFAULTS)) {
case DO_DIFF:
if (valuePtrEqualsDefault(value->type, (uint8_t*)config->currentConfig + valueOffset, (uint8_t*)config->defaultConfig + valueOffset)) {
break;
}
// drop through, since not equal to default
case 0:
case SHOW_DEFAULTS:
cliPrintf(format, value->name);
printValuePointer(value, (uint8_t*)config->currentConfig + valueOffset, 0);
cliPrint("\r\n");
break;
}
}
static void dumpAllValues(uint16_t valueSection, uint8_t dumpMask)
{
for (uint32_t i = 0; i < ARRAYLEN(valueTable); i++) {
const clivalue_t *value = &valueTable[i];
bufWriterFlush(cliWriter);
if ((value->type & VALUE_SECTION_MASK) == valueSection) {
dumpPgValue(value, dumpMask);
}
}
}
#else
void *getValuePointer(const clivalue_t *value)
{
void *ptr = value->ptr;
if ((value->type & VALUE_SECTION_MASK) == PROFILE_VALUE) {
ptr = ((uint8_t *)ptr) + (sizeof(profile_t) * masterConfig.current_profile_index);
}
if ((value->type & VALUE_SECTION_MASK) == PROFILE_RATE_VALUE) {
ptr = ((uint8_t *)ptr) + (sizeof(profile_t) * masterConfig.current_profile_index) + (sizeof(controlRateConfig_t) * getCurrentControlRateProfile());
}
return ptr;
}
#endif
static void *getDefaultPointer(void *valuePointer, const master_t *defaultConfig)
{
return ((uint8_t *)valuePointer) - (uint32_t)&masterConfig + (uint32_t)defaultConfig;
}
static bool valueEqualsDefault(const clivalue_t *value, const master_t *defaultConfig)
{
void *ptr = getValuePointer(value);
void *ptrDefault = getDefaultPointer(ptr, defaultConfig);
bool result = false;
switch (value->type & VALUE_TYPE_MASK) {
case VAR_UINT8:
result = *(uint8_t *)ptr == *(uint8_t *)ptrDefault;
break;
case VAR_INT8:
result = *(int8_t *)ptr == *(int8_t *)ptrDefault;
break;
case VAR_UINT16:
result = *(uint16_t *)ptr == *(uint16_t *)ptrDefault;
break;
case VAR_INT16:
result = *(int16_t *)ptr == *(int16_t *)ptrDefault;
break;
/* not currently used
case VAR_UINT32:
result = *(uint32_t *)ptr == *(uint32_t *)ptrDefault;
break; */
case VAR_FLOAT:
result = *(float *)ptr == *(float *)ptrDefault;
break;
}
return result;
}
static void cliPrintVar(const clivalue_t *var, uint32_t full)
{
const void *ptr = getValuePointer(var);
printValuePointer(var, ptr, full);
}
static void cliPrintVarDefault(const clivalue_t *var, uint32_t full, const master_t *defaultConfig)
{
void *ptr = getValuePointer(var);
void *defaultPtr = getDefaultPointer(ptr, defaultConfig);
printValuePointer(var, defaultPtr, full);
}
static void dumpValues(uint16_t valueSection, uint8_t dumpMask, const master_t *defaultConfig)
{
const clivalue_t *value;
for (uint32_t i = 0; i < ARRAYLEN(valueTable); i++) {
value = &valueTable[i];
if ((value->type & VALUE_SECTION_MASK) != valueSection) {
continue;
}
const char *format = "set %s = ";
if (cliDefaultPrintf(dumpMask, valueEqualsDefault(value, defaultConfig), format, valueTable[i].name)) {
cliPrintVarDefault(value, 0, defaultConfig);
cliPrint("\r\n");
}
if (cliDumpPrintf(dumpMask, valueEqualsDefault(value, defaultConfig), format, valueTable[i].name)) {
cliPrintVar(value, 0);
cliPrint("\r\n");
}
}
}
static void cliPrintVarRange(const clivalue_t *var)
{
switch (var->type & VALUE_MODE_MASK) {
case (MODE_DIRECT): {
cliPrintf("Allowed range: %d - %d\r\n", var->config.minmax.min, var->config.minmax.max);
}
break;
case (MODE_LOOKUP): {
const lookupTableEntry_t *tableEntry = &lookupTables[var->config.lookup.tableIndex];
cliPrint("Allowed values:");
for (uint32_t i = 0; i < tableEntry->valueCount ; i++) {
if (i > 0)
cliPrint(",");
cliPrintf(" %s", tableEntry->values[i]);
}
cliPrint("\r\n");
}
break;
}
}
typedef union {
int32_t int_value;
float float_value;
} int_float_value_t;
static void cliSetVar(const clivalue_t *var, const int_float_value_t value)
{
void *ptr = getValuePointer(var);
switch (var->type & VALUE_TYPE_MASK) {
case VAR_UINT8:
case VAR_INT8:
*(int8_t *)ptr = value.int_value;
break;
case VAR_UINT16:
case VAR_INT16:
*(int16_t *)ptr = value.int_value;
break;
/* not currently used
case VAR_UINT32:
*(uint32_t *)ptr = value.int_value;
break; */
case VAR_FLOAT:
*(float *)ptr = (float)value.float_value;
break;
}
}
#ifndef MINIMAL_CLI
static void cliRepeat(char ch, uint8_t len)
{
for (int i = 0; i < len; i++) {
bufWriterAppend(cliWriter, ch);
}
cliPrint("\r\n");
}
#endif
static void cliPrompt(void)
{
cliPrint("\r\n# ");
}
static void cliShowParseError(void)
{
cliPrint("Parse error\r\n");
}
static void cliShowArgumentRangeError(char *name, int min, int max)
{
cliPrintf("%s not between %d and %d\r\n", name, min, max);
}
static const char *nextArg(const char *currentArg)
{
const char *ptr = strchr(currentArg, ' ');
while (ptr && *ptr == ' ') {
ptr++;
}
return ptr;
}
static const char *processChannelRangeArgs(const char *ptr, channelRange_t *range, uint8_t *validArgumentCount)
{
for (uint32_t argIndex = 0; argIndex < 2; argIndex++) {
ptr = nextArg(ptr);
if (ptr) {
int val = atoi(ptr);
val = CHANNEL_VALUE_TO_STEP(val);
if (val >= MIN_MODE_RANGE_STEP && val <= MAX_MODE_RANGE_STEP) {
if (argIndex == 0) {
range->startStep = val;
} else {
range->endStep = val;
}
(*validArgumentCount)++;
}
}
}
return ptr;
}
// Check if a string's length is zero
static bool isEmpty(const char *string)
{
return (string == NULL || *string == '\0') ? true : false;
}
static void printRxFailsafe(uint8_t dumpMask, const rxFailsafeChannelConfig_t *failsafeChannelConfig, const rxFailsafeChannelConfig_t *failsafeChannelConfigDefault)
{
// print out rxConfig failsafe settings
for (uint32_t channel = 0; channel < MAX_SUPPORTED_RC_CHANNEL_COUNT; channel++) {
const rxFailsafeChannelConfig_t *channelFailsafeConfig = &failsafeChannelConfig[channel];
const rxFailsafeChannelConfig_t *channelFailsafeConfigDefault = &failsafeChannelConfigDefault[channel];
const bool equalsDefault = channelFailsafeConfig->mode == channelFailsafeConfigDefault->mode
&& channelFailsafeConfig->step == channelFailsafeConfigDefault->step;
const bool requireValue = channelFailsafeConfig->mode == RX_FAILSAFE_MODE_SET;
if (requireValue) {
const char *format = "rxfail %u %c %d\r\n";
cliDefaultPrintf(dumpMask, equalsDefault, format,
channel,
rxFailsafeModeCharacters[channelFailsafeConfigDefault->mode],
RXFAIL_STEP_TO_CHANNEL_VALUE(channelFailsafeConfigDefault->step)
);
cliDumpPrintf(dumpMask, equalsDefault, format,
channel,
rxFailsafeModeCharacters[channelFailsafeConfig->mode],
RXFAIL_STEP_TO_CHANNEL_VALUE(channelFailsafeConfig->step)
);
} else {
const char *format = "rxfail %u %c\r\n";
cliDefaultPrintf(dumpMask, equalsDefault, format,
channel,
rxFailsafeModeCharacters[channelFailsafeConfigDefault->mode]
);
cliDumpPrintf(dumpMask, equalsDefault, format,
channel,
rxFailsafeModeCharacters[channelFailsafeConfig->mode]
);
}
}
}
static void cliRxFailsafe(char *cmdline)
{
uint8_t channel;
char buf[3];
if (isEmpty(cmdline)) {
// print out rxConfig failsafe settings
for (channel = 0; channel < MAX_SUPPORTED_RC_CHANNEL_COUNT; channel++) {
cliRxFailsafe(itoa(channel, buf, 10));
}
} else {
const char *ptr = cmdline;
channel = atoi(ptr++);
if ((channel < MAX_SUPPORTED_RC_CHANNEL_COUNT)) {
rxFailsafeChannelConfig_t *channelFailsafeConfig = &rxConfigMutable()->failsafe_channel_configurations[channel];
const rxFailsafeChannelType_e type = (channel < NON_AUX_CHANNEL_COUNT) ? RX_FAILSAFE_TYPE_FLIGHT : RX_FAILSAFE_TYPE_AUX;
rxFailsafeChannelMode_e mode = channelFailsafeConfig->mode;
bool requireValue = channelFailsafeConfig->mode == RX_FAILSAFE_MODE_SET;
ptr = nextArg(ptr);
if (ptr) {
const char *p = strchr(rxFailsafeModeCharacters, *(ptr));
if (p) {
const uint8_t requestedMode = p - rxFailsafeModeCharacters;
mode = rxFailsafeModesTable[type][requestedMode];
} else {
mode = RX_FAILSAFE_MODE_INVALID;
}
if (mode == RX_FAILSAFE_MODE_INVALID) {
cliShowParseError();
return;
}
requireValue = mode == RX_FAILSAFE_MODE_SET;
ptr = nextArg(ptr);
if (ptr) {
if (!requireValue) {
cliShowParseError();
return;
}
uint16_t value = atoi(ptr);
value = CHANNEL_VALUE_TO_RXFAIL_STEP(value);
if (value > MAX_RXFAIL_RANGE_STEP) {
cliPrint("Value out of range\r\n");
return;
}
channelFailsafeConfig->step = value;
} else if (requireValue) {
cliShowParseError();
return;
}
channelFailsafeConfig->mode = mode;
}
char modeCharacter = rxFailsafeModeCharacters[channelFailsafeConfig->mode];
// double use of cliPrintf below
// 1. acknowledge interpretation on command,
// 2. query current setting on single item,
if (requireValue) {
cliPrintf("rxfail %u %c %d\r\n",
channel,
modeCharacter,
RXFAIL_STEP_TO_CHANNEL_VALUE(channelFailsafeConfig->step)
);
} else {
cliPrintf("rxfail %u %c\r\n",
channel,
modeCharacter
);
}
} else {
cliShowArgumentRangeError("channel", 0, MAX_SUPPORTED_RC_CHANNEL_COUNT - 1);
}
}
}
static void printAux(uint8_t dumpMask, const modeActivationCondition_t *modeActivationConditions, const modeActivationCondition_t *defaultModeActivationConditions)
{
const char *format = "aux %u %u %u %u %u\r\n";
// print out aux channel settings
for (uint32_t i = 0; i < MAX_MODE_ACTIVATION_CONDITION_COUNT; i++) {
const modeActivationCondition_t *mac = &modeActivationConditions[i];
bool equalsDefault = false;
if (defaultModeActivationConditions) {
const modeActivationCondition_t *macDefault = &defaultModeActivationConditions[i];
equalsDefault = mac->modeId == macDefault->modeId
&& mac->auxChannelIndex == macDefault->auxChannelIndex
&& mac->range.startStep == macDefault->range.startStep
&& mac->range.endStep == macDefault->range.endStep;
cliDefaultPrintf(dumpMask, equalsDefault, format,
i,
macDefault->modeId,
macDefault->auxChannelIndex,
MODE_STEP_TO_CHANNEL_VALUE(macDefault->range.startStep),
MODE_STEP_TO_CHANNEL_VALUE(macDefault->range.endStep)
);
}
cliDumpPrintf(dumpMask, equalsDefault, format,
i,
mac->modeId,
mac->auxChannelIndex,
MODE_STEP_TO_CHANNEL_VALUE(mac->range.startStep),
MODE_STEP_TO_CHANNEL_VALUE(mac->range.endStep)
);
}
}
static void cliAux(char *cmdline)
{
int i, val = 0;
const char *ptr;
if (isEmpty(cmdline)) {
printAux(DUMP_MASTER, modeActivationProfile()->modeActivationConditions, NULL);
} else {
ptr = cmdline;
i = atoi(ptr++);
if (i < MAX_MODE_ACTIVATION_CONDITION_COUNT) {
modeActivationCondition_t *mac = &modeActivationProfile()->modeActivationConditions[i];
uint8_t validArgumentCount = 0;
ptr = nextArg(ptr);
if (ptr) {
val = atoi(ptr);
if (val >= 0 && val < CHECKBOX_ITEM_COUNT) {
mac->modeId = val;
validArgumentCount++;
}
}
ptr = nextArg(ptr);
if (ptr) {
val = atoi(ptr);
if (val >= 0 && val < MAX_AUX_CHANNEL_COUNT) {
mac->auxChannelIndex = val;
validArgumentCount++;
}
}
ptr = processChannelRangeArgs(ptr, &mac->range, &validArgumentCount);
if (validArgumentCount != 4) {
memset(mac, 0, sizeof(modeActivationCondition_t));
}
} else {
cliShowArgumentRangeError("index", 0, MAX_MODE_ACTIVATION_CONDITION_COUNT - 1);
}
}
}
static void printSerial(uint8_t dumpMask, const serialConfig_t *serialConfig, const serialConfig_t *serialConfigDefault)
{
const char *format = "serial %d %d %ld %ld %ld %ld\r\n";
for (uint32_t i = 0; i < SERIAL_PORT_COUNT; i++) {
if (!serialIsPortAvailable(serialConfig->portConfigs[i].identifier)) {
continue;
};
bool equalsDefault = false;
if (serialConfigDefault) {
equalsDefault = serialConfig->portConfigs[i].identifier == serialConfigDefault->portConfigs[i].identifier
&& serialConfig->portConfigs[i].functionMask == serialConfigDefault->portConfigs[i].functionMask
&& serialConfig->portConfigs[i].msp_baudrateIndex == serialConfigDefault->portConfigs[i].msp_baudrateIndex
&& serialConfig->portConfigs[i].gps_baudrateIndex == serialConfigDefault->portConfigs[i].gps_baudrateIndex
&& serialConfig->portConfigs[i].telemetry_baudrateIndex == serialConfigDefault->portConfigs[i].telemetry_baudrateIndex
&& serialConfig->portConfigs[i].blackbox_baudrateIndex == serialConfigDefault->portConfigs[i].blackbox_baudrateIndex;
cliDefaultPrintf(dumpMask, equalsDefault, format,
serialConfigDefault->portConfigs[i].identifier,
serialConfigDefault->portConfigs[i].functionMask,
baudRates[serialConfigDefault->portConfigs[i].msp_baudrateIndex],
baudRates[serialConfigDefault->portConfigs[i].gps_baudrateIndex],
baudRates[serialConfigDefault->portConfigs[i].telemetry_baudrateIndex],
baudRates[serialConfigDefault->portConfigs[i].blackbox_baudrateIndex]
);
}
cliDumpPrintf(dumpMask, equalsDefault, format,
serialConfig->portConfigs[i].identifier,
serialConfig->portConfigs[i].functionMask,
baudRates[serialConfig->portConfigs[i].msp_baudrateIndex],
baudRates[serialConfig->portConfigs[i].gps_baudrateIndex],
baudRates[serialConfig->portConfigs[i].telemetry_baudrateIndex],
baudRates[serialConfig->portConfigs[i].blackbox_baudrateIndex]
);
}
}
static void cliSerial(char *cmdline)
{
if (isEmpty(cmdline)) {
printSerial(DUMP_MASTER, serialConfig(), NULL);
return;
}
serialPortConfig_t portConfig;
memset(&portConfig, 0 , sizeof(portConfig));
serialPortConfig_t *currentConfig;
uint8_t validArgumentCount = 0;
const char *ptr = cmdline;
int val = atoi(ptr++);
currentConfig = serialFindPortConfiguration(val);
if (currentConfig) {
portConfig.identifier = val;
validArgumentCount++;
}
ptr = nextArg(ptr);
if (ptr) {
val = atoi(ptr);
portConfig.functionMask = val & 0xFFFF;
validArgumentCount++;
}
for (int i = 0; i < 4; i ++) {
ptr = nextArg(ptr);
if (!ptr) {
break;
}
val = atoi(ptr);
uint8_t baudRateIndex = lookupBaudRateIndex(val);
if (baudRates[baudRateIndex] != (uint32_t) val) {
break;
}
switch(i) {
case 0:
if (baudRateIndex < BAUD_9600 || baudRateIndex > BAUD_1000000) {
continue;
}
portConfig.msp_baudrateIndex = baudRateIndex;
break;
case 1:
if (baudRateIndex < BAUD_9600 || baudRateIndex > BAUD_115200) {
continue;
}
portConfig.gps_baudrateIndex = baudRateIndex;
break;
case 2:
if (baudRateIndex != BAUD_AUTO && baudRateIndex > BAUD_115200) {
continue;
}
portConfig.telemetry_baudrateIndex = baudRateIndex;
break;
case 3:
if (baudRateIndex < BAUD_19200 || baudRateIndex > BAUD_250000) {
continue;
}
portConfig.blackbox_baudrateIndex = baudRateIndex;
break;
}
validArgumentCount++;
}
if (validArgumentCount < 6) {
cliShowParseError();
return;
}
memcpy(currentConfig, &portConfig, sizeof(portConfig));
}
#ifndef SKIP_SERIAL_PASSTHROUGH
static void cliSerialPassthrough(char *cmdline)
{
if (isEmpty(cmdline)) {
cliShowParseError();
return;
}
int id = -1;
uint32_t baud = 0;
unsigned mode = 0;
char *saveptr;
char* tok = strtok_r(cmdline, " ", &saveptr);
int index = 0;
while (tok != NULL) {
switch(index) {
case 0:
id = atoi(tok);
break;
case 1:
baud = atoi(tok);
break;
case 2:
if (strstr(tok, "rx") || strstr(tok, "RX"))
mode |= MODE_RX;
if (strstr(tok, "tx") || strstr(tok, "TX"))
mode |= MODE_TX;
break;
}
index++;
tok = strtok_r(NULL, " ", &saveptr);
}
serialPort_t *passThroughPort;
serialPortUsage_t *passThroughPortUsage = findSerialPortUsageByIdentifier(id);
if (!passThroughPortUsage || passThroughPortUsage->serialPort == NULL) {
if (!baud) {
printf("Port %d is closed, must specify baud.\r\n", id);
return;
}
if (!mode)
mode = MODE_RXTX;
passThroughPort = openSerialPort(id, FUNCTION_NONE, NULL,
baud, mode,
SERIAL_NOT_INVERTED);
if (!passThroughPort) {
printf("Port %d could not be opened.\r\n", id);
return;
}
printf("Port %d opened, baud = %d.\r\n", id, baud);
} else {
passThroughPort = passThroughPortUsage->serialPort;
// If the user supplied a mode, override the port's mode, otherwise
// leave the mode unchanged. serialPassthrough() handles one-way ports.
printf("Port %d already open.\r\n", id);
if (mode && passThroughPort->mode != mode) {
printf("Adjusting mode from %d to %d.\r\n",
passThroughPort->mode, mode);
serialSetMode(passThroughPort, mode);
}
// If this port has a rx callback associated we need to remove it now.
// Otherwise no data will be pushed in the serial port buffer!
if (passThroughPort->rxCallback) {
printf("Removing rxCallback\r\n");
passThroughPort->rxCallback = 0;
}
}
printf("Forwarding data to %d, power cycle to exit.\r\n", id);
serialPassthrough(cliPort, passThroughPort, NULL, NULL);
}
#endif
static void printAdjustmentRange(uint8_t dumpMask, const adjustmentRange_t *adjustmentRanges, const adjustmentRange_t *defaultAdjustmentRanges)
{
const char *format = "adjrange %u %u %u %u %u %u %u\r\n";
// print out adjustment ranges channel settings
for (uint32_t i = 0; i < MAX_ADJUSTMENT_RANGE_COUNT; i++) {
const adjustmentRange_t *ar = &adjustmentRanges[i];
bool equalsDefault = false;
if (defaultAdjustmentRanges) {
const adjustmentRange_t *arDefault = &defaultAdjustmentRanges[i];
equalsDefault = ar->auxChannelIndex == arDefault->auxChannelIndex
&& ar->range.startStep == arDefault->range.startStep
&& ar->range.endStep == arDefault->range.endStep
&& ar->adjustmentFunction == arDefault->adjustmentFunction
&& ar->auxSwitchChannelIndex == arDefault->auxSwitchChannelIndex
&& ar->adjustmentIndex == arDefault->adjustmentIndex;
cliDefaultPrintf(dumpMask, equalsDefault, format,
i,
arDefault->adjustmentIndex,
arDefault->auxChannelIndex,
MODE_STEP_TO_CHANNEL_VALUE(arDefault->range.startStep),
MODE_STEP_TO_CHANNEL_VALUE(arDefault->range.endStep),
arDefault->adjustmentFunction,
arDefault->auxSwitchChannelIndex
);
}
cliDumpPrintf(dumpMask, equalsDefault, format,
i,
ar->adjustmentIndex,
ar->auxChannelIndex,
MODE_STEP_TO_CHANNEL_VALUE(ar->range.startStep),
MODE_STEP_TO_CHANNEL_VALUE(ar->range.endStep),
ar->adjustmentFunction,
ar->auxSwitchChannelIndex
);
}
}
static void cliAdjustmentRange(char *cmdline)
{
int i, val = 0;
const char *ptr;
if (isEmpty(cmdline)) {
printAdjustmentRange(DUMP_MASTER, adjustmentProfile()->adjustmentRanges, NULL);
} else {
ptr = cmdline;
i = atoi(ptr++);
if (i < MAX_ADJUSTMENT_RANGE_COUNT) {
adjustmentRange_t *ar = &adjustmentProfile()->adjustmentRanges[i];
uint8_t validArgumentCount = 0;
ptr = nextArg(ptr);
if (ptr) {
val = atoi(ptr);
if (val >= 0 && val < MAX_SIMULTANEOUS_ADJUSTMENT_COUNT) {
ar->adjustmentIndex = val;
validArgumentCount++;
}
}
ptr = nextArg(ptr);
if (ptr) {
val = atoi(ptr);
if (val >= 0 && val < MAX_AUX_CHANNEL_COUNT) {
ar->auxChannelIndex = val;
validArgumentCount++;
}
}
ptr = processChannelRangeArgs(ptr, &ar->range, &validArgumentCount);
ptr = nextArg(ptr);
if (ptr) {
val = atoi(ptr);
if (val >= 0 && val < ADJUSTMENT_FUNCTION_COUNT) {
ar->adjustmentFunction = val;
validArgumentCount++;
}
}
ptr = nextArg(ptr);
if (ptr) {
val = atoi(ptr);
if (val >= 0 && val < MAX_AUX_CHANNEL_COUNT) {
ar->auxSwitchChannelIndex = val;
validArgumentCount++;
}
}
if (validArgumentCount != 6) {
memset(ar, 0, sizeof(adjustmentRange_t));
cliShowParseError();
}
} else {
cliShowArgumentRangeError("index", 0, MAX_ADJUSTMENT_RANGE_COUNT - 1);
}
}
}
#ifndef USE_QUAD_MIXER_ONLY
static void printMotorMix(uint8_t dumpMask, const motorMixer_t *customMotorMixer, const motorMixer_t *defaultCustomMotorMixer)
{
const char *format = "mmix %d %s %s %s %s\r\n";
char buf0[8];
char buf1[8];
char buf2[8];
char buf3[8];
for (uint32_t i = 0; i < MAX_SUPPORTED_MOTORS; i++) {
if (customMotorMixer[i].throttle == 0.0f)
break;
const float thr = customMotorMixer[i].throttle;
const float roll = customMotorMixer[i].roll;
const float pitch = customMotorMixer[i].pitch;
const float yaw = customMotorMixer[i].yaw;
bool equalsDefault = false;
if (defaultCustomMotorMixer) {
const float thrDefault = defaultCustomMotorMixer[i].throttle;
const float rollDefault = defaultCustomMotorMixer[i].roll;
const float pitchDefault = defaultCustomMotorMixer[i].pitch;
const float yawDefault = defaultCustomMotorMixer[i].yaw;
const bool equalsDefault = thr == thrDefault && roll == rollDefault && pitch == pitchDefault && yaw == yawDefault;
cliDefaultPrintf(dumpMask, equalsDefault, format,
i,
ftoa(thrDefault, buf0),
ftoa(rollDefault, buf1),
ftoa(pitchDefault, buf2),
ftoa(yawDefault, buf3));
}
cliDumpPrintf(dumpMask, equalsDefault, format,
i,
ftoa(thr, buf0),
ftoa(roll, buf1),
ftoa(pitch, buf2),
ftoa(yaw, buf3));
}
}
#endif // USE_QUAD_MIXER_ONLY
static void cliMotorMix(char *cmdline)
{
#ifdef USE_QUAD_MIXER_ONLY
UNUSED(cmdline);
#else
int check = 0;
uint8_t len;
const char *ptr;
if (isEmpty(cmdline)) {
printMotorMix(DUMP_MASTER, customMotorMixer(0), NULL);
} else if (strncasecmp(cmdline, "reset", 5) == 0) {
// erase custom mixer
for (uint32_t i = 0; i < MAX_SUPPORTED_MOTORS; i++) {
customMotorMixerMutable(i)->throttle = 0.0f;
}
} else if (strncasecmp(cmdline, "load", 4) == 0) {
ptr = nextArg(cmdline);
if (ptr) {
len = strlen(ptr);
for (uint32_t i = 0; ; i++) {
if (mixerNames[i] == NULL) {
cliPrint("Invalid name\r\n");
break;
}
if (strncasecmp(ptr, mixerNames[i], len) == 0) {
mixerLoadMix(i, customMotorMixerMutable(0));
cliPrintf("Loaded %s\r\n", mixerNames[i]);
cliMotorMix("");
break;
}
}
}
} else {
ptr = cmdline;
uint32_t i = atoi(ptr); // get motor number
if (i < MAX_SUPPORTED_MOTORS) {
ptr = nextArg(ptr);
if (ptr) {
customMotorMixerMutable(i)->throttle = fastA2F(ptr);
check++;
}
ptr = nextArg(ptr);
if (ptr) {
customMotorMixerMutable(i)->roll = fastA2F(ptr);
check++;
}
ptr = nextArg(ptr);
if (ptr) {
customMotorMixerMutable(i)->pitch = fastA2F(ptr);
check++;
}
ptr = nextArg(ptr);
if (ptr) {
customMotorMixerMutable(i)->yaw = fastA2F(ptr);
check++;
}
if (check != 4) {
cliShowParseError();
} else {
printMotorMix(DUMP_MASTER, customMotorMixer(0), NULL);
}
} else {
cliShowArgumentRangeError("index", 0, MAX_SUPPORTED_MOTORS - 1);
}
}
#endif
}
static void printRxRange(uint8_t dumpMask, const rxChannelRangeConfig_t *channelRangeConfigs, const rxChannelRangeConfig_t *defaultChannelRangeConfigs)
{
const char *format = "rxrange %u %u %u\r\n";
for (uint32_t i = 0; i < NON_AUX_CHANNEL_COUNT; i++) {
bool equalsDefault = false;
if (defaultChannelRangeConfigs) {
equalsDefault = channelRangeConfigs[i].min == defaultChannelRangeConfigs[i].min
&& channelRangeConfigs[i].max == defaultChannelRangeConfigs[i].max;
cliDefaultPrintf(dumpMask, equalsDefault, format,
i,
defaultChannelRangeConfigs[i].min,
defaultChannelRangeConfigs[i].max
);
}
cliDumpPrintf(dumpMask, equalsDefault, format,
i,
channelRangeConfigs[i].min,
channelRangeConfigs[i].max
);
}
}
static void cliRxRange(char *cmdline)
{
int i, validArgumentCount = 0;
const char *ptr;
if (isEmpty(cmdline)) {
printRxRange(DUMP_MASTER, rxConfig()->channelRanges, NULL);
} else if (strcasecmp(cmdline, "reset") == 0) {
resetAllRxChannelRangeConfigurations(rxConfigMutable()->channelRanges);
} else {
ptr = cmdline;
i = atoi(ptr);
if (i >= 0 && i < NON_AUX_CHANNEL_COUNT) {
int rangeMin, rangeMax;
ptr = nextArg(ptr);
if (ptr) {
rangeMin = atoi(ptr);
validArgumentCount++;
}
ptr = nextArg(ptr);
if (ptr) {
rangeMax = atoi(ptr);
validArgumentCount++;
}
if (validArgumentCount != 2) {
cliShowParseError();
} else if (rangeMin < PWM_PULSE_MIN || rangeMin > PWM_PULSE_MAX || rangeMax < PWM_PULSE_MIN || rangeMax > PWM_PULSE_MAX) {
cliShowParseError();
} else {
rxChannelRangeConfig_t *channelRangeConfig = &rxConfigMutable()->channelRanges[i];
channelRangeConfig->min = rangeMin;
channelRangeConfig->max = rangeMax;
}
} else {
cliShowArgumentRangeError("channel", 0, NON_AUX_CHANNEL_COUNT - 1);
}
}
}
#ifdef LED_STRIP
static void printLed(uint8_t dumpMask, const ledConfig_t *ledConfigs, const ledConfig_t *defaultLedConfigs)
{
const char *format = "led %u %s\r\n";
char ledConfigBuffer[20];
char ledConfigDefaultBuffer[20];
for (uint32_t i = 0; i < LED_MAX_STRIP_LENGTH; i++) {
ledConfig_t ledConfig = ledConfigs[i];
generateLedConfig(&ledConfig, ledConfigBuffer, sizeof(ledConfigBuffer));
bool equalsDefault = false;
if (defaultLedConfigs) {
ledConfig_t ledConfigDefault = defaultLedConfigs[i];
equalsDefault = ledConfig == ledConfigDefault;
generateLedConfig(&ledConfigDefault, ledConfigDefaultBuffer, sizeof(ledConfigDefaultBuffer));
cliDefaultPrintf(dumpMask, equalsDefault, format, i, ledConfigDefaultBuffer);
}
cliDumpPrintf(dumpMask, equalsDefault, format, i, ledConfigBuffer);
}
}
static void cliLed(char *cmdline)
{
int i;
const char *ptr;
if (isEmpty(cmdline)) {
printLed(DUMP_MASTER, ledStripConfig()->ledConfigs, NULL);
} else {
ptr = cmdline;
i = atoi(ptr);
if (i < LED_MAX_STRIP_LENGTH) {
ptr = nextArg(cmdline);
if (!parseLedStripConfig(i, ptr)) {
cliShowParseError();
}
} else {
cliShowArgumentRangeError("index", 0, LED_MAX_STRIP_LENGTH - 1);
}
}
}
static void printColor(uint8_t dumpMask, const hsvColor_t *colors, const hsvColor_t *defaultColors)
{
const char *format = "color %u %d,%u,%u\r\n";
for (uint32_t i = 0; i < LED_CONFIGURABLE_COLOR_COUNT; i++) {
const hsvColor_t *color = &colors[i];
bool equalsDefault = false;
if (defaultColors) {
const hsvColor_t *colorDefault = &defaultColors[i];
equalsDefault = color->h == colorDefault->h
&& color->s == colorDefault->s
&& color->v == colorDefault->v;
cliDefaultPrintf(dumpMask, equalsDefault, format, i,colorDefault->h, colorDefault->s, colorDefault->v);
}
cliDumpPrintf(dumpMask, equalsDefault, format, i, color->h, color->s, color->v);
}
}
static void cliColor(char *cmdline)
{
if (isEmpty(cmdline)) {
printColor(DUMP_MASTER, ledStripConfig()->colors, NULL);
} else {
const char *ptr = cmdline;
const int i = atoi(ptr);
if (i < LED_CONFIGURABLE_COLOR_COUNT) {
ptr = nextArg(cmdline);
if (!parseColor(i, ptr)) {
cliShowParseError();
}
} else {
cliShowArgumentRangeError("index", 0, LED_CONFIGURABLE_COLOR_COUNT - 1);
}
}
}
static void printModeColor(uint8_t dumpMask, const ledStripConfig_t *ledStripConfig, const ledStripConfig_t *defaultLedStripConfig)
{
const char *format = "mode_color %u %u %u\r\n";
for (uint32_t i = 0; i < LED_MODE_COUNT; i++) {
for (uint32_t j = 0; j < LED_DIRECTION_COUNT; j++) {
int colorIndex = ledStripConfig->modeColors[i].color[j];
bool equalsDefault = false;
if (defaultLedStripConfig) {
int colorIndexDefault = defaultLedStripConfig->modeColors[i].color[j];
equalsDefault = colorIndex == colorIndexDefault;
cliDefaultPrintf(dumpMask, equalsDefault, format, i, j, colorIndexDefault);
}
cliDumpPrintf(dumpMask, equalsDefault, format, i, j, colorIndex);
}
}
for (uint32_t j = 0; j < LED_SPECIAL_COLOR_COUNT; j++) {
const int colorIndex = ledStripConfig->specialColors.color[j];
bool equalsDefault = false;
if (defaultLedStripConfig) {
const int colorIndexDefault = defaultLedStripConfig->specialColors.color[j];
equalsDefault = colorIndex == colorIndexDefault;
cliDefaultPrintf(dumpMask, equalsDefault, format, LED_SPECIAL, j, colorIndexDefault);
}
cliDumpPrintf(dumpMask, equalsDefault, format, LED_SPECIAL, j, colorIndex);
}
const int ledStripAuxChannel = ledStripConfig->ledstrip_aux_channel;
bool equalsDefault = false;
if (defaultLedStripConfig) {
const int ledStripAuxChannelDefault = defaultLedStripConfig->ledstrip_aux_channel;
equalsDefault = ledStripAuxChannel == ledStripAuxChannelDefault;
cliDefaultPrintf(dumpMask, equalsDefault, format, LED_AUX_CHANNEL, 0, ledStripAuxChannelDefault);
}
cliDumpPrintf(dumpMask, equalsDefault, format, LED_AUX_CHANNEL, 0, ledStripAuxChannel);
}
static void cliModeColor(char *cmdline)
{
if (isEmpty(cmdline)) {
printModeColor(DUMP_MASTER, ledStripConfig(), NULL);
} else {
enum {MODE = 0, FUNCTION, COLOR, ARGS_COUNT};
int args[ARGS_COUNT];
int argNo = 0;
char *saveptr;
const char* ptr = strtok_r(cmdline, " ", &saveptr);
while (ptr && argNo < ARGS_COUNT) {
args[argNo++] = atoi(ptr);
ptr = strtok_r(NULL, " ", &saveptr);
}
if (ptr != NULL || argNo != ARGS_COUNT) {
cliShowParseError();
return;
}
int modeIdx = args[MODE];
int funIdx = args[FUNCTION];
int color = args[COLOR];
if(!setModeColor(modeIdx, funIdx, color)) {
cliShowParseError();
return;
}
// values are validated
cliPrintf("mode_color %u %u %u\r\n", modeIdx, funIdx, color);
}
}
#endif
#ifdef USE_SERVOS
static void printServo(uint8_t dumpMask, const servoParam_t *servoParams, const servoParam_t *servoParamsDefault)
{
// print out servo settings
const char *format = "servo %u %d %d %d %d %d %d %d\r\n";
for (uint32_t i = 0; i < MAX_SUPPORTED_SERVOS; i++) {
const servoParam_t *servoConf = &servoParams[i];
bool equalsDefault = false;
if (servoParamsDefault) {
const servoParam_t *servoConfDefault = &servoParamsDefault[i];
equalsDefault = servoConf->min == servoConfDefault->min
&& servoConf->max == servoConfDefault->max
&& servoConf->middle == servoConfDefault->middle
&& servoConf->angleAtMin == servoConfDefault->angleAtMax
&& servoConf->rate == servoConfDefault->rate
&& servoConf->forwardFromChannel == servoConfDefault->forwardFromChannel;
cliDefaultPrintf(dumpMask, equalsDefault, format,
i,
servoConfDefault->min,
servoConfDefault->max,
servoConfDefault->middle,
servoConfDefault->angleAtMin,
servoConfDefault->angleAtMax,
servoConfDefault->rate,
servoConfDefault->forwardFromChannel
);
}
cliDumpPrintf(dumpMask, equalsDefault, format,
i,
servoConf->min,
servoConf->max,
servoConf->middle,
servoConf->angleAtMin,
servoConf->angleAtMax,
servoConf->rate,
servoConf->forwardFromChannel
);
}
}
static void cliServo(char *cmdline)
{
enum { SERVO_ARGUMENT_COUNT = 8 };
int16_t arguments[SERVO_ARGUMENT_COUNT];
servoParam_t *servo;
int i;
char *ptr;
if (isEmpty(cmdline)) {
printServo(DUMP_MASTER, servoProfile()->servoConf, NULL);
} else {
int validArgumentCount = 0;
ptr = cmdline;
// Command line is integers (possibly negative) separated by spaces, no other characters allowed.
// If command line doesn't fit the format, don't modify the config
while (*ptr) {
if (*ptr == '-' || (*ptr >= '0' && *ptr <= '9')) {
if (validArgumentCount >= SERVO_ARGUMENT_COUNT) {
cliShowParseError();
return;
}
arguments[validArgumentCount++] = atoi(ptr);
do {
ptr++;
} while (*ptr >= '0' && *ptr <= '9');
} else if (*ptr == ' ') {
ptr++;
} else {
cliShowParseError();
return;
}
}
enum {INDEX = 0, MIN, MAX, MIDDLE, ANGLE_AT_MIN, ANGLE_AT_MAX, RATE, FORWARD};
i = arguments[INDEX];
// Check we got the right number of args and the servo index is correct (don't validate the other values)
if (validArgumentCount != SERVO_ARGUMENT_COUNT || i < 0 || i >= MAX_SUPPORTED_SERVOS) {
cliShowParseError();
return;
}
servo = &servoProfile()->servoConf[i];
if (
arguments[MIN] < PWM_PULSE_MIN || arguments[MIN] > PWM_PULSE_MAX ||
arguments[MAX] < PWM_PULSE_MIN || arguments[MAX] > PWM_PULSE_MAX ||
arguments[MIDDLE] < arguments[MIN] || arguments[MIDDLE] > arguments[MAX] ||
arguments[MIN] > arguments[MAX] || arguments[MAX] < arguments[MIN] ||
arguments[RATE] < -100 || arguments[RATE] > 100 ||
arguments[FORWARD] >= MAX_SUPPORTED_RC_CHANNEL_COUNT ||
arguments[ANGLE_AT_MIN] < 0 || arguments[ANGLE_AT_MIN] > 180 ||
arguments[ANGLE_AT_MAX] < 0 || arguments[ANGLE_AT_MAX] > 180
) {
cliShowParseError();
return;
}
servo->min = arguments[1];
servo->max = arguments[2];
servo->middle = arguments[3];
servo->angleAtMin = arguments[4];
servo->angleAtMax = arguments[5];
servo->rate = arguments[6];
servo->forwardFromChannel = arguments[7];
}
}
#endif
#ifdef USE_SERVOS
static void printServoMix(uint8_t dumpMask, const master_t *defaultConfig)
{
const char *format = "smix %d %d %d %d %d %d %d %d\r\n";
for (uint32_t i = 0; i < MAX_SERVO_RULES; i++) {
const servoMixer_t customServoMixer = *customServoMixers(i);
if (customServoMixer.rate == 0) {
break;
}
bool equalsDefault = false;
if (defaultConfig) {
servoMixer_t customServoMixerDefault = defaultConfig->customServoMixer[i];
equalsDefault = customServoMixer.targetChannel == customServoMixerDefault.targetChannel
&& customServoMixer.inputSource == customServoMixerDefault.inputSource
&& customServoMixer.rate == customServoMixerDefault.rate
&& customServoMixer.speed == customServoMixerDefault.speed
&& customServoMixer.min == customServoMixerDefault.min
&& customServoMixer.max == customServoMixerDefault.max
&& customServoMixer.box == customServoMixerDefault.box;
cliDefaultPrintf(dumpMask, equalsDefault, format,
i,
customServoMixerDefault.targetChannel,
customServoMixerDefault.inputSource,
customServoMixerDefault.rate,
customServoMixerDefault.speed,
customServoMixerDefault.min,
customServoMixerDefault.max,
customServoMixerDefault.box
);
}
cliDumpPrintf(dumpMask, equalsDefault, format,
i,
customServoMixer.targetChannel,
customServoMixer.inputSource,
customServoMixer.rate,
customServoMixer.speed,
customServoMixer.min,
customServoMixer.max,
customServoMixer.box
);
}
cliPrint("\r\n");
// print servo directions
for (uint32_t i = 0; i < MAX_SUPPORTED_SERVOS; i++) {
const char *format = "smix reverse %d %d r\r\n";
const servoParam_t *servoConf = &servoProfile()->servoConf[i];
if (defaultConfig) {
const servoParam_t *servoConfDefault = &defaultConfig->servoProfile.servoConf[i];
bool equalsDefault = servoConf->reversedSources == servoConfDefault->reversedSources;
for (uint32_t channel = 0; channel < INPUT_SOURCE_COUNT; channel++) {
equalsDefault = ~(servoConf->reversedSources ^ servoConfDefault->reversedSources) & (1 << channel);
if (servoConfDefault->reversedSources & (1 << channel)) {
cliDefaultPrintf(dumpMask, equalsDefault, format, i , channel);
}
if (servoConf->reversedSources & (1 << channel)) {
cliDumpPrintf(dumpMask, equalsDefault, format, i , channel);
}
}
} else {
for (uint32_t channel = 0; channel < INPUT_SOURCE_COUNT; channel++) {
if (servoConf->reversedSources & (1 << channel)) {
cliDumpPrintf(dumpMask, true, format, i , channel);
}
}
}
}
}
static void cliServoMix(char *cmdline)
{
int args[8], check = 0;
int len = strlen(cmdline);
if (len == 0) {
printServoMix(DUMP_MASTER, NULL);
} else if (strncasecmp(cmdline, "reset", 5) == 0) {
// erase custom mixer
memset(masterConfig.customServoMixer, 0, sizeof(masterConfig.customServoMixer));
for (uint32_t i = 0; i < MAX_SUPPORTED_SERVOS; i++) {
servoProfile()->servoConf[i].reversedSources = 0;
}
} else if (strncasecmp(cmdline, "load", 4) == 0) {
const char *ptr = nextArg(cmdline);
if (ptr) {
len = strlen(ptr);
for (uint32_t i = 0; ; i++) {
if (mixerNames[i] == NULL) {
cliPrintf("Invalid name\r\n");
break;
}
if (strncasecmp(ptr, mixerNames[i], len) == 0) {
servoMixerLoadMix(i, masterConfig.customServoMixer);
cliPrintf("Loaded %s\r\n", mixerNames[i]);
cliServoMix("");
break;
}
}
}
} else if (strncasecmp(cmdline, "reverse", 7) == 0) {
enum {SERVO = 0, INPUT, REVERSE, ARGS_COUNT};
char *ptr = strchr(cmdline, ' ');
len = strlen(ptr);
if (len == 0) {
cliPrintf("s");
for (uint32_t inputSource = 0; inputSource < INPUT_SOURCE_COUNT; inputSource++)
cliPrintf("\ti%d", inputSource);
cliPrintf("\r\n");
for (uint32_t servoIndex = 0; servoIndex < MAX_SUPPORTED_SERVOS; servoIndex++) {
cliPrintf("%d", servoIndex);
for (uint32_t inputSource = 0; inputSource < INPUT_SOURCE_COUNT; inputSource++)
cliPrintf("\t%s ", (servoProfile()->servoConf[servoIndex].reversedSources & (1 << inputSource)) ? "r" : "n");
cliPrintf("\r\n");
}
return;
}
char *saveptr;
ptr = strtok_r(ptr, " ", &saveptr);
while (ptr != NULL && check < ARGS_COUNT - 1) {
args[check++] = atoi(ptr);
ptr = strtok_r(NULL, " ", &saveptr);
}
if (ptr == NULL || check != ARGS_COUNT - 1) {
cliShowParseError();
return;
}
if (args[SERVO] >= 0 && args[SERVO] < MAX_SUPPORTED_SERVOS
&& args[INPUT] >= 0 && args[INPUT] < INPUT_SOURCE_COUNT
&& (*ptr == 'r' || *ptr == 'n')) {
if (*ptr == 'r')
servoProfile()->servoConf[args[SERVO]].reversedSources |= 1 << args[INPUT];
else
servoProfile()->servoConf[args[SERVO]].reversedSources &= ~(1 << args[INPUT]);
} else
cliShowParseError();
cliServoMix("reverse");
} else {
enum {RULE = 0, TARGET, INPUT, RATE, SPEED, MIN, MAX, BOX, ARGS_COUNT};
char *saveptr;
char *ptr = strtok_r(cmdline, " ", &saveptr);
while (ptr != NULL && check < ARGS_COUNT) {
args[check++] = atoi(ptr);
ptr = strtok_r(NULL, " ", &saveptr);
}
if (ptr != NULL || check != ARGS_COUNT) {
cliShowParseError();
return;
}
int32_t i = args[RULE];
if (i >= 0 && i < MAX_SERVO_RULES &&
args[TARGET] >= 0 && args[TARGET] < MAX_SUPPORTED_SERVOS &&
args[INPUT] >= 0 && args[INPUT] < INPUT_SOURCE_COUNT &&
args[RATE] >= -100 && args[RATE] <= 100 &&
args[SPEED] >= 0 && args[SPEED] <= MAX_SERVO_SPEED &&
args[MIN] >= 0 && args[MIN] <= 100 &&
args[MAX] >= 0 && args[MAX] <= 100 && args[MIN] < args[MAX] &&
args[BOX] >= 0 && args[BOX] <= MAX_SERVO_BOXES) {
customServoMixersMutable(i)->targetChannel = args[TARGET];
customServoMixersMutable(i)->inputSource = args[INPUT];
customServoMixersMutable(i)->rate = args[RATE];
customServoMixersMutable(i)->speed = args[SPEED];
customServoMixersMutable(i)->min = args[MIN];
customServoMixersMutable(i)->max = args[MAX];
customServoMixersMutable(i)->box = args[BOX];
cliServoMix("");
} else {
cliShowParseError();
}
}
}
#endif
#ifdef USE_SDCARD
static void cliWriteBytes(const uint8_t *buffer, int count)
{
while (count > 0) {
cliWrite(*buffer);
buffer++;
count--;
}
}
static void cliSdInfo(char *cmdline)
{
UNUSED(cmdline);
cliPrint("SD card: ");
if (!sdcard_isInserted()) {
cliPrint("None inserted\r\n");
return;
}
if (!sdcard_isInitialized()) {
cliPrint("Startup failed\r\n");
return;
}
const sdcardMetadata_t *metadata = sdcard_getMetadata();
cliPrintf("Manufacturer 0x%x, %ukB, %02d/%04d, v%d.%d, '",
metadata->manufacturerID,
metadata->numBlocks / 2, /* One block is half a kB */
metadata->productionMonth,
metadata->productionYear,
metadata->productRevisionMajor,
metadata->productRevisionMinor
);
cliWriteBytes((uint8_t*)metadata->productName, sizeof(metadata->productName));
cliPrint("'\r\n" "Filesystem: ");
switch (afatfs_getFilesystemState()) {
case AFATFS_FILESYSTEM_STATE_READY:
cliPrint("Ready");
break;
case AFATFS_FILESYSTEM_STATE_INITIALIZATION:
cliPrint("Initializing");
break;
case AFATFS_FILESYSTEM_STATE_UNKNOWN:
case AFATFS_FILESYSTEM_STATE_FATAL:
cliPrint("Fatal");
switch (afatfs_getLastError()) {
case AFATFS_ERROR_BAD_MBR:
cliPrint(" - no FAT MBR partitions");
break;
case AFATFS_ERROR_BAD_FILESYSTEM_HEADER:
cliPrint(" - bad FAT header");
break;
case AFATFS_ERROR_GENERIC:
case AFATFS_ERROR_NONE:
; // Nothing more detailed to print
break;
}
break;
}
cliPrint("\r\n");
}
#endif
#ifdef USE_FLASHFS
static void cliFlashInfo(char *cmdline)
{
const flashGeometry_t *layout = flashfsGetGeometry();
UNUSED(cmdline);
cliPrintf("Flash sectors=%u, sectorSize=%u, pagesPerSector=%u, pageSize=%u, totalSize=%u, usedSize=%u\r\n",
layout->sectors, layout->sectorSize, layout->pagesPerSector, layout->pageSize, layout->totalSize, flashfsGetOffset());
}
static void cliFlashErase(char *cmdline)
{
UNUSED(cmdline);
#ifndef MINIMAL_CLI
uint32_t i = 0;
cliPrintf("Erasing, please wait ... \r\n");
#else
cliPrintf("Erasing,\r\n");
#endif
bufWriterFlush(cliWriter);
flashfsEraseCompletely();
while (!flashfsIsReady()) {
#ifndef MINIMAL_CLI
cliPrintf(".");
if (i++ > 120) {
i=0;
cliPrintf("\r\n");
}
bufWriterFlush(cliWriter);
#endif
delay(100);
}
beeper(BEEPER_BLACKBOX_ERASE);
cliPrintf("\r\nDone.\r\n");
}
#ifdef USE_FLASH_TOOLS
static void cliFlashWrite(char *cmdline)
{
const uint32_t address = atoi(cmdline);
const char *text = strchr(cmdline, ' ');
if (!text) {
cliShowParseError();
} else {
flashfsSeekAbs(address);
flashfsWrite((uint8_t*)text, strlen(text), true);
flashfsFlushSync();
cliPrintf("Wrote %u bytes at %u.\r\n", strlen(text), address);
}
}
static void cliFlashRead(char *cmdline)
{
uint32_t address = atoi(cmdline);
uint8_t buffer[32];
const char *nextArg = strchr(cmdline, ' ');
if (!nextArg) {
cliShowParseError();
} else {
uint32_t length = atoi(nextArg);
cliPrintf("Reading %u bytes at %u:\r\n", length, address);
while (length > 0) {
int bytesRead = flashfsReadAbs(address, buffer, length < sizeof(buffer) ? length : sizeof(buffer));
for (int i = 0; i < bytesRead; i++) {
cliWrite(buffer[i]);
}
length -= bytesRead;
address += bytesRead;
if (bytesRead == 0) {
//Assume we reached the end of the volume or something fatal happened
break;
}
}
cliPrintf("\r\n");
}
}
#endif
#endif
#ifdef VTX
static void printVtx(uint8_t dumpMask, const master_t *defaultConfig)
{
// print out vtx channel settings
const char *format = "vtx %u %u %u %u %u %u\r\n";
bool equalsDefault = false;
for (uint32_t i = 0; i < MAX_CHANNEL_ACTIVATION_CONDITION_COUNT; i++) {
const vtxChannelActivationCondition_t *cac = &masterConfig.vtxChannelActivationConditions[i];
if (defaultConfig) {
const vtxChannelActivationCondition_t *cacDefault = &defaultConfig->vtxChannelActivationConditions[i];
equalsDefault = cac->auxChannelIndex == cacDefault->auxChannelIndex
&& cac->band == cacDefault->band
&& cac->channel == cacDefault->channel
&& cac->range.startStep == cacDefault->range.startStep
&& cac->range.endStep == cacDefault->range.endStep;
cliDefaultPrintf(dumpMask, equalsDefault, format,
i,
cacDefault->auxChannelIndex,
cacDefault->band,
cacDefault->channel,
MODE_STEP_TO_CHANNEL_VALUE(cacDefault->range.startStep),
MODE_STEP_TO_CHANNEL_VALUE(cacDefault->range.endStep)
);
}
cliDumpPrintf(dumpMask, equalsDefault, format,
i,
cac->auxChannelIndex,
cac->band,
cac->channel,
MODE_STEP_TO_CHANNEL_VALUE(cac->range.startStep),
MODE_STEP_TO_CHANNEL_VALUE(cac->range.endStep)
);
}
}
static void cliVtx(char *cmdline)
{
int i, val = 0;
const char *ptr;
if (isEmpty(cmdline)) {
printVtx(DUMP_MASTER, NULL);
} else {
ptr = cmdline;
i = atoi(ptr++);
if (i < MAX_CHANNEL_ACTIVATION_CONDITION_COUNT) {
vtxChannelActivationCondition_t *cac = &masterConfig.vtxChannelActivationConditions[i];
uint8_t validArgumentCount = 0;
ptr = nextArg(ptr);
if (ptr) {
val = atoi(ptr);
if (val >= 0 && val < MAX_AUX_CHANNEL_COUNT) {
cac->auxChannelIndex = val;
validArgumentCount++;
}
}
ptr = nextArg(ptr);
if (ptr) {
val = atoi(ptr);
if (val >= VTX_BAND_MIN && val <= VTX_BAND_MAX) {
cac->band = val;
validArgumentCount++;
}
}
ptr = nextArg(ptr);
if (ptr) {
val = atoi(ptr);
if (val >= VTX_CHANNEL_MIN && val <= VTX_CHANNEL_MAX) {
cac->channel = val;
validArgumentCount++;
}
}
ptr = processChannelRangeArgs(ptr, &cac->range, &validArgumentCount);
if (validArgumentCount != 5) {
memset(cac, 0, sizeof(vtxChannelActivationCondition_t));
}
} else {
cliShowArgumentRangeError("index", 0, MAX_CHANNEL_ACTIVATION_CONDITION_COUNT - 1);
}
}
}
#endif
static void printName(uint8_t dumpMask)
{
const bool equalsDefault = strlen(systemConfig()->name) == 0;
cliDumpPrintf(dumpMask, equalsDefault, "name %s\r\n", equalsDefault ? emptyName : systemConfig()->name);
}
static void cliName(char *cmdline)
{
const uint32_t len = strlen(cmdline);
if (len > 0) {
memset(systemConfigMutable()->name, 0, ARRAYLEN(systemConfig()->name));
if (strncmp(cmdline, emptyName, len)) {
strncpy(systemConfigMutable()->name, cmdline, MIN(len, MAX_NAME_LENGTH));
}
}
printName(DUMP_MASTER);
}
static void printFeature(uint8_t dumpMask, const featureConfig_t *featureConfigDefault)
{
const uint32_t mask = featureMask();
const uint32_t defaultMask = featureConfigDefault->enabledFeatures;
for (uint32_t i = 0; ; i++) { // disable all feature first
if (featureNames[i] == NULL)
break;
const char *format = "feature -%s\r\n";
cliDefaultPrintf(dumpMask, (defaultMask | ~mask) & (1 << i), format, featureNames[i]);
cliDumpPrintf(dumpMask, (~defaultMask | mask) & (1 << i), format, featureNames[i]);
}
for (uint32_t i = 0; ; i++) { // reenable what we want.
if (featureNames[i] == NULL)
break;
const char *format = "feature %s\r\n";
if (defaultMask & (1 << i)) {
cliDefaultPrintf(dumpMask, (~defaultMask | mask) & (1 << i), format, featureNames[i]);
}
if (mask & (1 << i)) {
cliDumpPrintf(dumpMask, (defaultMask | ~mask) & (1 << i), format, featureNames[i]);
}
}
}
static void cliFeature(char *cmdline)
{
uint32_t len = strlen(cmdline);
uint32_t mask = featureMask();
if (len == 0) {
cliPrint("Enabled: ");
for (uint32_t i = 0; ; i++) {
if (featureNames[i] == NULL)
break;
if (mask & (1 << i))
cliPrintf("%s ", featureNames[i]);
}
cliPrint("\r\n");
} else if (strncasecmp(cmdline, "list", len) == 0) {
cliPrint("Available: ");
for (uint32_t i = 0; ; i++) {
if (featureNames[i] == NULL)
break;
cliPrintf("%s ", featureNames[i]);
}
cliPrint("\r\n");
return;
} else {
bool remove = false;
if (cmdline[0] == '-') {
// remove feature
remove = true;
cmdline++; // skip over -
len--;
}
for (uint32_t i = 0; ; i++) {
if (featureNames[i] == NULL) {
cliPrint("Invalid name\r\n");
break;
}
if (strncasecmp(cmdline, featureNames[i], len) == 0) {
mask = 1 << i;
#ifndef GPS
if (mask & FEATURE_GPS) {
cliPrint("unavailable\r\n");
break;
}
#endif
#ifndef SONAR
if (mask & FEATURE_SONAR) {
cliPrint("unavailable\r\n");
break;
}
#endif
if (remove) {
featureClear(mask);
cliPrint("Disabled");
} else {
featureSet(mask);
cliPrint("Enabled");
}
cliPrintf(" %s\r\n", featureNames[i]);
break;
}
}
}
}
#ifdef BEEPER
static void printBeeper(uint8_t dumpMask, const master_t *defaultConfig)
{
const uint8_t beeperCount = beeperTableEntryCount();
const uint32_t mask = getBeeperOffMask();
const uint32_t defaultMask = defaultConfig->beeper_off_flags;
for (int32_t i = 0; i < beeperCount - 2; i++) {
const char *formatOff = "beeper -%s\r\n";
const char *formatOn = "beeper %s\r\n";
cliDefaultPrintf(dumpMask, ~(mask ^ defaultMask) & (1 << i), mask & (1 << i) ? formatOn : formatOff, beeperNameForTableIndex(i));
cliDumpPrintf(dumpMask, ~(mask ^ defaultMask) & (1 << i), mask & (1 << i) ? formatOff : formatOn, beeperNameForTableIndex(i));
}
}
static void cliBeeper(char *cmdline)
{
uint32_t len = strlen(cmdline);
uint8_t beeperCount = beeperTableEntryCount();
uint32_t mask = getBeeperOffMask();
if (len == 0) {
cliPrintf("Disabled:");
for (int32_t i = 0; ; i++) {
if (i == beeperCount - 2){
if (mask == 0)
cliPrint(" none");
break;
}
if (mask & (1 << i))
cliPrintf(" %s", beeperNameForTableIndex(i));
}
cliPrint("\r\n");
} else if (strncasecmp(cmdline, "list", len) == 0) {
cliPrint("Available:");
for (uint32_t i = 0; i < beeperCount; i++)
cliPrintf(" %s", beeperNameForTableIndex(i));
cliPrint("\r\n");
return;
} else {
bool remove = false;
if (cmdline[0] == '-') {
remove = true; // this is for beeper OFF condition
cmdline++;
len--;
}
for (uint32_t i = 0; ; i++) {
if (i == beeperCount) {
cliPrint("Invalid name\r\n");
break;
}
if (strncasecmp(cmdline, beeperNameForTableIndex(i), len) == 0) {
if (remove) { // beeper off
if (i == BEEPER_ALL-1)
beeperOffSetAll(beeperCount-2);
else
if (i == BEEPER_PREFERENCE-1)
setBeeperOffMask(getPreferredBeeperOffMask());
else {
mask = 1 << i;
beeperOffSet(mask);
}
cliPrint("Disabled");
}
else { // beeper on
if (i == BEEPER_ALL-1)
beeperOffClearAll();
else
if (i == BEEPER_PREFERENCE-1)
setPreferredBeeperOffMask(getBeeperOffMask());
else {
mask = 1 << i;
beeperOffClear(mask);
}
cliPrint("Enabled");
}
cliPrintf(" %s\r\n", beeperNameForTableIndex(i));
break;
}
}
}
}
#endif
static void printMap(uint8_t dumpMask, const rxConfig_t *rxConfig, const rxConfig_t *defaultRxConfig)
{
bool equalsDefault = true;
char buf[16];
char bufDefault[16];
uint32_t i;
for (i = 0; i < MAX_MAPPABLE_RX_INPUTS; i++) {
buf[rxConfig->rcmap[i]] = rcChannelLetters[i];
if (defaultRxConfig) {
bufDefault[defaultRxConfig->rcmap[i]] = rcChannelLetters[i];
equalsDefault = equalsDefault && (rxConfig->rcmap[i] == defaultRxConfig->rcmap[i]);
}
}
buf[i] = '\0';
const char *formatMap = "map %s\r\n";
cliDefaultPrintf(dumpMask, equalsDefault, formatMap, bufDefault);
cliDumpPrintf(dumpMask, equalsDefault, formatMap, buf);
}
static void cliMap(char *cmdline)
{
uint32_t len;
char out[9];
len = strlen(cmdline);
if (len == 8) {
// uppercase it
for (uint32_t i = 0; i < 8; i++)
cmdline[i] = toupper((unsigned char)cmdline[i]);
for (uint32_t i = 0; i < 8; i++) {
if (strchr(rcChannelLetters, cmdline[i]) && !strchr(cmdline + i + 1, cmdline[i]))
continue;
cliShowParseError();
return;
}
parseRcChannels(cmdline, &masterConfig.rxConfig);
}
cliPrint("Map: ");
uint32_t i;
for (i = 0; i < 8; i++)
out[rxConfig()->rcmap[i]] = rcChannelLetters[i];
out[i] = '\0';
cliPrintf("%s\r\n", out);
}
static char *checkCommand(char *cmdLine, const char *command)
{
if(!strncasecmp(cmdLine, command, strlen(command)) // command names match
&& !isalnum((unsigned)cmdLine[strlen(command)])) { // next characted in bufffer is not alphanumeric (command is correctly terminated)
return cmdLine + strlen(command) + 1;
} else {
return 0;
}
}
static void cliRebootEx(bool bootLoader)
{
cliPrint("\r\nRebooting");
bufWriterFlush(cliWriter);
waitForSerialPortToFinishTransmitting(cliPort);
stopPwmAllMotors();
if (bootLoader) {
systemResetToBootloader();
return;
}
systemReset();
}
static void cliReboot(void)
{
cliRebootEx(false);
}
static void cliDfu(char *cmdLine)
{
UNUSED(cmdLine);
cliPrintHashLine("restarting in DFU mode");
cliRebootEx(true);
}
static void cliExit(char *cmdline)
{
UNUSED(cmdline);
cliPrintHashLine("leaving CLI mode, unsaved changes lost");
bufWriterFlush(cliWriter);
*cliBuffer = '\0';
bufferIndex = 0;
cliMode = 0;
// incase a motor was left running during motortest, clear it here
mixerResetDisarmedMotors();
cliReboot();
cliWriter = NULL;
}
#ifdef GPS
static void cliGpsPassthrough(char *cmdline)
{
UNUSED(cmdline);
gpsEnablePassthrough(cliPort);
}
#endif
#ifdef USE_ESCSERIAL
static void cliEscPassthrough(char *cmdline)
{
uint8_t mode = 0;
int index = 0;
int i = 0;
char *pch = NULL;
char *saveptr;
if (isEmpty(cmdline)) {
cliShowParseError();
return;
}
pch = strtok_r(cmdline, " ", &saveptr);
while (pch != NULL) {
switch (i) {
case 0:
if(strncasecmp(pch, "sk", strlen(pch)) == 0)
{
mode = 0;
}
else if(strncasecmp(pch, "bl", strlen(pch)) == 0)
{
mode = 1;
}
else if(strncasecmp(pch, "ki", strlen(pch)) == 0)
{
mode = 2;
}
else if(strncasecmp(pch, "cc", strlen(pch)) == 0)
{
mode = 4;
}
else
{
cliShowParseError();
return;
}
break;
case 1:
index = atoi(pch);
if(mode == 2 && index == 255)
{
printf("passthrough on all outputs enabled\r\n");
}
else{
if ((index >= 0) && (index < USABLE_TIMER_CHANNEL_COUNT)) {
printf("passthrough on output %d enabled\r\n", index);
}
else {
printf("invalid output, range: 1 to %d\r\n", USABLE_TIMER_CHANNEL_COUNT);
return;
}
}
break;
}
i++;
pch = strtok_r(NULL, " ", &saveptr);
}
escEnablePassthrough(cliPort,index,mode);
}
#endif
#ifndef USE_QUAD_MIXER_ONLY
static void cliMixer(char *cmdline)
{
int len;
len = strlen(cmdline);
if (len == 0) {
cliPrintf("Mixer: %s\r\n", mixerNames[mixerConfig()->mixerMode - 1]);
return;
} else if (strncasecmp(cmdline, "list", len) == 0) {
cliPrint("Available mixers: ");
for (uint32_t i = 0; ; i++) {
if (mixerNames[i] == NULL)
break;
cliPrintf("%s ", mixerNames[i]);
}
cliPrint("\r\n");
return;
}
for (uint32_t i = 0; ; i++) {
if (mixerNames[i] == NULL) {
cliPrint("Invalid name\r\n");
return;
}
if (strncasecmp(cmdline, mixerNames[i], len) == 0) {
mixerConfigMutable()->mixerMode = i + 1;
break;
}
}
cliMixer("");
}
#endif
static void cliMotor(char *cmdline)
{
int motor_index = 0;
int motor_value = 0;
int index = 0;
char *pch = NULL;
char *saveptr;
if (isEmpty(cmdline)) {
cliShowParseError();
return;
}
pch = strtok_r(cmdline, " ", &saveptr);
while (pch != NULL) {
switch (index) {
case 0:
motor_index = atoi(pch);
break;
case 1:
motor_value = atoi(pch);
break;
}
index++;
pch = strtok_r(NULL, " ", &saveptr);
}
if (motor_index < 0 || motor_index >= MAX_SUPPORTED_MOTORS) {
cliShowArgumentRangeError("index", 0, MAX_SUPPORTED_MOTORS - 1);
return;
}
if (index == 2) {
if (motor_value < PWM_RANGE_MIN || motor_value > PWM_RANGE_MAX) {
cliShowArgumentRangeError("value", 1000, 2000);
return;
} else {
motor_disarmed[motor_index] = convertExternalToMotor(motor_value);
}
}
cliPrintf("motor %d: %d\r\n", motor_index, convertMotorToExternal(motor_disarmed[motor_index]));
}
#ifndef MINIMAL_CLI
static void cliPlaySound(char *cmdline)
{
int i;
const char *name;
static int lastSoundIdx = -1;
if (isEmpty(cmdline)) {
i = lastSoundIdx + 1; //next sound index
if ((name=beeperNameForTableIndex(i)) == NULL) {
while (true) { //no name for index; try next one
if (++i >= beeperTableEntryCount())
i = 0; //if end then wrap around to first entry
if ((name=beeperNameForTableIndex(i)) != NULL)
break; //if name OK then play sound below
if (i == lastSoundIdx + 1) { //prevent infinite loop
cliPrintf("Error playing sound\r\n");
return;
}
}
}
} else { //index value was given
i = atoi(cmdline);
if ((name=beeperNameForTableIndex(i)) == NULL) {
cliPrintf("No sound for index %d\r\n", i);
return;
}
}
lastSoundIdx = i;
beeperSilence();
cliPrintf("Playing sound %d: %s\r\n", i, name);
beeper(beeperModeForTableIndex(i));
}
#endif
static void cliProfile(char *cmdline)
{
if (isEmpty(cmdline)) {
cliPrintf("profile %d\r\n", getCurrentProfile());
return;
} else {
const int i = atoi(cmdline);
if (i >= 0 && i < MAX_PROFILE_COUNT) {
masterConfig.current_profile_index = i;
writeEEPROM();
readEEPROM();
cliProfile("");
}
}
}
static void cliRateProfile(char *cmdline)
{
if (isEmpty(cmdline)) {
cliPrintf("rateprofile %d\r\n", getCurrentControlRateProfile());
return;
} else {
const int i = atoi(cmdline);
if (i >= 0 && i < MAX_RATEPROFILES) {
changeControlRateProfile(i);
cliRateProfile("");
}
}
}
static void cliDumpProfile(uint8_t profileIndex, uint8_t dumpMask, const master_t *defaultConfig)
{
if (profileIndex >= MAX_PROFILE_COUNT) {
// Faulty values
return;
}
changeProfile(profileIndex);
cliPrintHashLine("profile");
cliProfile("");
cliPrint("\r\n");
#ifdef USE_PARAMETER_GROUPS
(void)(defaultConfig);
dumpAllValues(PROFILE_VALUE, dumpMask);
dumpAllValues(PROFILE_RATE_VALUE, dumpMask);
#else
dumpValues(PROFILE_VALUE, dumpMask, defaultConfig);
#endif
cliRateProfile("");
}
static void cliDumpRateProfile(uint8_t rateProfileIndex, uint8_t dumpMask, const master_t *defaultConfig)
{
if (rateProfileIndex >= MAX_RATEPROFILES) {
// Faulty values
return;
}
changeControlRateProfile(rateProfileIndex);
cliPrintHashLine("rateprofile");
cliRateProfile("");
cliPrint("\r\n");
dumpValues(PROFILE_RATE_VALUE, dumpMask, defaultConfig);
}
static void cliSave(char *cmdline)
{
UNUSED(cmdline);
cliPrintHashLine("saving");
writeEEPROM();
cliReboot();
}
static void cliDefaults(char *cmdline)
{
UNUSED(cmdline);
cliPrintHashLine("resetting to defaults");
resetEEPROM();
cliReboot();
}
static void cliGet(char *cmdline)
{
const clivalue_t *val;
int matchedCommands = 0;
for (uint32_t i = 0; i < ARRAYLEN(valueTable); i++) {
if (strstr(valueTable[i].name, cmdline)) {
val = &valueTable[i];
cliPrintf("%s = ", valueTable[i].name);
cliPrintVar(val, 0);
cliPrint("\r\n");
cliPrintVarRange(val);
cliPrint("\r\n");
matchedCommands++;
}
}
if (matchedCommands) {
return;
}
cliPrint("Invalid name\r\n");
}
static void cliSet(char *cmdline)
{
uint32_t len;
const clivalue_t *val;
char *eqptr = NULL;
len = strlen(cmdline);
if (len == 0 || (len == 1 && cmdline[0] == '*')) {
cliPrint("Current settings: \r\n");
for (uint32_t i = 0; i < ARRAYLEN(valueTable); i++) {
val = &valueTable[i];
cliPrintf("%s = ", valueTable[i].name);
cliPrintVar(val, len); // when len is 1 (when * is passed as argument), it will print min/max values as well, for gui
cliPrint("\r\n");
}
} else if ((eqptr = strstr(cmdline, "=")) != NULL) {
// has equals
char *lastNonSpaceCharacter = eqptr;
while (*(lastNonSpaceCharacter - 1) == ' ') {
lastNonSpaceCharacter--;
}
uint8_t variableNameLength = lastNonSpaceCharacter - cmdline;
// skip the '=' and any ' ' characters
eqptr++;
while (*(eqptr) == ' ') {
eqptr++;
}
for (uint32_t i = 0; i < ARRAYLEN(valueTable); i++) {
val = &valueTable[i];
// ensure exact match when setting to prevent setting variables with shorter names
if (strncasecmp(cmdline, valueTable[i].name, strlen(valueTable[i].name)) == 0 && variableNameLength == strlen(valueTable[i].name)) {
bool changeValue = false;
int_float_value_t tmp = { 0 };
switch (valueTable[i].type & VALUE_MODE_MASK) {
case MODE_DIRECT: {
int32_t value = 0;
float valuef = 0;
value = atoi(eqptr);
valuef = fastA2F(eqptr);
if (valuef >= valueTable[i].config.minmax.min && valuef <= valueTable[i].config.minmax.max) { // note: compare float value
if ((valueTable[i].type & VALUE_TYPE_MASK) == VAR_FLOAT)
tmp.float_value = valuef;
else
tmp.int_value = value;
changeValue = true;
}
}
break;
case MODE_LOOKUP: {
const lookupTableEntry_t *tableEntry = &lookupTables[valueTable[i].config.lookup.tableIndex];
bool matched = false;
for (uint32_t tableValueIndex = 0; tableValueIndex < tableEntry->valueCount && !matched; tableValueIndex++) {
matched = strcasecmp(tableEntry->values[tableValueIndex], eqptr) == 0;
if (matched) {
tmp.int_value = tableValueIndex;
changeValue = true;
}
}
}
break;
}
if (changeValue) {
cliSetVar(val, tmp);
cliPrintf("%s set to ", valueTable[i].name);
cliPrintVar(val, 0);
} else {
cliPrint("Invalid value\r\n");
cliPrintVarRange(val);
}
return;
}
}
cliPrint("Invalid name\r\n");
} else {
// no equals, check for matching variables.
cliGet(cmdline);
}
}
static void cliStatus(char *cmdline)
{
UNUSED(cmdline);
cliPrintf("System Uptime: %d seconds\r\n", millis() / 1000);
cliPrintf("Voltage: %d * 0.1V (%dS battery - %s)\r\n", getVbat(), batteryCellCount, getBatteryStateString());
cliPrintf("CPU Clock=%dMHz", (SystemCoreClock / 1000000));
#if defined(USE_SENSOR_NAMES)
const uint32_t detectedSensorsMask = sensorsMask();
for (uint32_t i = 0; ; i++) {
if (sensorTypeNames[i] == NULL) {
break;
}
const uint32_t mask = (1 << i);
if ((detectedSensorsMask & mask) && (mask & SENSOR_NAMES_MASK)) {
const uint8_t sensorHardwareIndex = detectedSensors[i];
const char *sensorHardware = sensorHardwareNames[i][sensorHardwareIndex];
cliPrintf(", %s=%s", sensorTypeNames[i], sensorHardware);
if (mask == SENSOR_ACC && acc.dev.revisionCode) {
cliPrintf(".%c", acc.dev.revisionCode);
}
}
}
#endif /* USE_SENSOR_NAMES */
cliPrint("\r\n");
#ifdef USE_SDCARD
cliSdInfo(NULL);
#endif
#ifdef USE_I2C
const uint16_t i2cErrorCounter = i2cGetErrorCounter();
#else
const uint16_t i2cErrorCounter = 0;
#endif
#ifdef STACK_CHECK
cliPrintf("Stack used: %d, ", stackUsedSize());
#endif
cliPrintf("Stack size: %d, Stack address: 0x%x\r\n", stackTotalSize(), stackHighMem());
cliPrintf("I2C Errors: %d, config size: %d\r\n", i2cErrorCounter, sizeof(master_t));
const int gyroRate = getTaskDeltaTime(TASK_GYROPID) == 0 ? 0 : (int)(1000000.0f / ((float)getTaskDeltaTime(TASK_GYROPID)));
const int rxRate = getTaskDeltaTime(TASK_RX) == 0 ? 0 : (int)(1000000.0f / ((float)getTaskDeltaTime(TASK_RX)));
const int systemRate = getTaskDeltaTime(TASK_SYSTEM) == 0 ? 0 : (int)(1000000.0f / ((float)getTaskDeltaTime(TASK_SYSTEM)));
cliPrintf("CPU:%d%%, cycle time: %d, GYRO rate: %d, RX rate: %d, System rate: %d\r\n",
constrain(averageSystemLoadPercent, 0, 100), getTaskDeltaTime(TASK_GYROPID), gyroRate, rxRate, systemRate);
}
#ifndef SKIP_TASK_STATISTICS
static void cliTasks(char *cmdline)
{
UNUSED(cmdline);
int maxLoadSum = 0;
int averageLoadSum = 0;
#ifndef MINIMAL_CLI
if (masterConfig.task_statistics) {
cliPrintf("Task list rate/hz max/us avg/us maxload avgload total/ms\r\n");
} else {
cliPrintf("Task list\r\n");
}
#endif
for (cfTaskId_e taskId = 0; taskId < TASK_COUNT; taskId++) {
cfTaskInfo_t taskInfo;
getTaskInfo(taskId, &taskInfo);
if (taskInfo.isEnabled) {
int taskFrequency;
int subTaskFrequency;
if (taskId == TASK_GYROPID) {
subTaskFrequency = taskInfo.latestDeltaTime == 0 ? 0 : (int)(1000000.0f / ((float)taskInfo.latestDeltaTime));
taskFrequency = subTaskFrequency / pidConfig()->pid_process_denom;
if (pidConfig()->pid_process_denom > 1) {
cliPrintf("%02d - (%13s) ", taskId, taskInfo.taskName);
} else {
taskFrequency = subTaskFrequency;
cliPrintf("%02d - (%9s/%3s) ", taskId, taskInfo.subTaskName, taskInfo.taskName);
}
} else {
taskFrequency = taskInfo.latestDeltaTime == 0 ? 0 : (int)(1000000.0f / ((float)taskInfo.latestDeltaTime));
cliPrintf("%02d - (%13s) ", taskId, taskInfo.taskName);
}
const int maxLoad = taskInfo.maxExecutionTime == 0 ? 0 :(taskInfo.maxExecutionTime * taskFrequency + 5000) / 1000;
const int averageLoad = taskInfo.averageExecutionTime == 0 ? 0 : (taskInfo.averageExecutionTime * taskFrequency + 5000) / 1000;
if (taskId != TASK_SERIAL) {
maxLoadSum += maxLoad;
averageLoadSum += averageLoad;
}
if (masterConfig.task_statistics) {
cliPrintf("%6d %7d %7d %4d.%1d%% %4d.%1d%% %9d\r\n",
taskFrequency, taskInfo.maxExecutionTime, taskInfo.averageExecutionTime,
maxLoad/10, maxLoad%10, averageLoad/10, averageLoad%10, taskInfo.totalExecutionTime / 1000);
} else {
cliPrintf("%6d\r\n", taskFrequency);
}
if (taskId == TASK_GYROPID && pidConfig()->pid_process_denom > 1) {
cliPrintf(" - (%13s) %6d\r\n", taskInfo.subTaskName, subTaskFrequency);
}
}
}
if (masterConfig.task_statistics) {
cfCheckFuncInfo_t checkFuncInfo;
getCheckFuncInfo(&checkFuncInfo);
cliPrintf("RX Check Function %17d %7d %25d\r\n", checkFuncInfo.maxExecutionTime, checkFuncInfo.averageExecutionTime, checkFuncInfo.totalExecutionTime / 1000);
cliPrintf("Total (excluding SERIAL) %23d.%1d%% %4d.%1d%%\r\n", maxLoadSum/10, maxLoadSum%10, averageLoadSum/10, averageLoadSum%10);
}
}
#endif
static void cliVersion(char *cmdline)
{
UNUSED(cmdline);
cliPrintf("# %s / %s %s %s / %s (%s)\r\n",
FC_FIRMWARE_NAME,
targetName,
FC_VERSION_STRING,
buildDate,
buildTime,
shortGitRevision
);
}
#if defined(USE_RESOURCE_MGMT)
#define MAX_RESOURCE_INDEX(x) ((x) == 0 ? 1 : (x))
typedef struct {
const uint8_t owner;
ioTag_t *ptr;
const uint8_t maxIndex;
} cliResourceValue_t;
const cliResourceValue_t resourceTable[] = {
#ifdef BEEPER
{ OWNER_BEEPER, &beeperDevConfig()->ioTag, 0 },
#endif
{ OWNER_MOTOR, &motorConfig()->dev.ioTags[0], MAX_SUPPORTED_MOTORS },
#ifdef USE_SERVOS
{ OWNER_SERVO, &servoConfig()->dev.ioTags[0], MAX_SUPPORTED_SERVOS },
#endif
#if defined(USE_PWM) || defined(USE_PPM)
{ OWNER_PPMINPUT, &ppmConfig()->ioTag, 0 },
{ OWNER_PWMINPUT, &pwmConfig()->ioTags[0], PWM_INPUT_PORT_COUNT },
#endif
#ifdef SONAR
{ OWNER_SONAR_TRIGGER, &sonarConfig()->triggerTag, 0 },
{ OWNER_SONAR_ECHO, &sonarConfig()->echoTag, 0 },
#endif
#ifdef LED_STRIP
{ OWNER_LED_STRIP, &ledStripConfig()->ioTag, 0 },
#endif
};
static void printResource(uint8_t dumpMask, const master_t *defaultConfig)
{
for (unsigned int i = 0; i < ARRAYLEN(resourceTable); i++) {
const char* owner;
owner = ownerNames[resourceTable[i].owner];
for (int index = 0; index < MAX_RESOURCE_INDEX(resourceTable[i].maxIndex); index++) {
ioTag_t ioTag = *(resourceTable[i].ptr + index);
ioTag_t ioTagDefault = *(resourceTable[i].ptr + index - (uint32_t)&masterConfig + (uint32_t)defaultConfig);
bool equalsDefault = ioTag == ioTagDefault;
const char *format = "resource %s %d %c%02d\r\n";
const char *formatUnassigned = "resource %s %d NONE\r\n";
if (!ioTagDefault) {
cliDefaultPrintf(dumpMask, equalsDefault, formatUnassigned, owner, RESOURCE_INDEX(index));
} else {
cliDefaultPrintf(dumpMask, equalsDefault, format, owner, RESOURCE_INDEX(index), IO_GPIOPortIdxByTag(ioTagDefault) + 'A', IO_GPIOPinIdxByTag(ioTagDefault));
}
if (!ioTag) {
if (!(dumpMask & HIDE_UNUSED)) {
cliDumpPrintf(dumpMask, equalsDefault, formatUnassigned, owner, RESOURCE_INDEX(index));
}
} else {
cliDumpPrintf(dumpMask, equalsDefault, format, owner, RESOURCE_INDEX(index), IO_GPIOPortIdxByTag(ioTag) + 'A', IO_GPIOPinIdxByTag(ioTag));
}
}
}
}
static void printResourceOwner(uint8_t owner, uint8_t index)
{
cliPrintf("%s", ownerNames[resourceTable[owner].owner]);
if (resourceTable[owner].maxIndex > 0) {
cliPrintf(" %d", RESOURCE_INDEX(index));
}
}
static void resourceCheck(uint8_t resourceIndex, uint8_t index, ioTag_t tag)
{
if (!tag) {
return;
}
const char * format = "\r\nNOTE: %c%02d already assigned to ";
for (int r = 0; r < (int)ARRAYLEN(resourceTable); r++) {
for (int i = 0; i < MAX_RESOURCE_INDEX(resourceTable[r].maxIndex); i++) {
if (*(resourceTable[r].ptr + i) == tag) {
bool cleared = false;
if (r == resourceIndex) {
if (i == index) {
continue;
}
*(resourceTable[r].ptr + i) = IO_TAG_NONE;
cleared = true;
}
cliPrintf(format, DEFIO_TAG_GPIOID(tag) + 'A', DEFIO_TAG_PIN(tag));
printResourceOwner(r, i);
if (cleared) {
cliPrintf(". ");
printResourceOwner(r, i);
cliPrintf(" disabled");
}
cliPrint(".\r\n");
}
}
}
}
static void cliResource(char *cmdline)
{
int len = strlen(cmdline);
if (len == 0) {
printResource(DUMP_MASTER | HIDE_UNUSED, NULL);
return;
} else if (strncasecmp(cmdline, "list", len) == 0) {
#ifdef MINIMAL_CLI
cliPrintf("IO\r\n");
#else
cliPrintf("Currently active IO resource assignments:\r\n(reboot to update)\r\n");
cliRepeat('-', 20);
#endif
for (int i = 0; i < DEFIO_IO_USED_COUNT; i++) {
const char* owner;
owner = ownerNames[ioRecs[i].owner];
cliPrintf("%c%02d: %s ", IO_GPIOPortIdx(ioRecs + i) + 'A', IO_GPIOPinIdx(ioRecs + i), owner);
if (ioRecs[i].index > 0) {
cliPrintf("%d", ioRecs[i].index);
}
cliPrintf("\r\n");
}
cliPrintf("\r\n\r\n");
#ifdef MINIMAL_CLI
cliPrintf("DMA:\r\n");
#else
cliPrintf("Currently active DMA:\r\n");
cliRepeat('-', 20);
#endif
for (int i = 0; i < DMA_MAX_DESCRIPTORS; i++) {
const char* owner;
owner = ownerNames[dmaGetOwner(i)];
cliPrintf(DMA_OUTPUT_STRING, i / DMA_MOD_VALUE + 1, (i % DMA_MOD_VALUE) + DMA_MOD_OFFSET);
uint8_t resourceIndex = dmaGetResourceIndex(i);
if (resourceIndex > 0) {
cliPrintf(" %s %d\r\n", owner, resourceIndex);
} else {
cliPrintf(" %s\r\n", owner);
}
}
#ifndef MINIMAL_CLI
cliPrintf("\r\nUse: 'resource' to see how to change resources.\r\n");
#endif
return;
}
uint8_t resourceIndex = 0;
int index = 0;
char *pch = NULL;
char *saveptr;
pch = strtok_r(cmdline, " ", &saveptr);
for (resourceIndex = 0; ; resourceIndex++) {
if (resourceIndex >= ARRAYLEN(resourceTable)) {
cliPrint("Invalid\r\n");
return;
}
if (strncasecmp(pch, ownerNames[resourceTable[resourceIndex].owner], len) == 0) {
break;
}
}
pch = strtok_r(NULL, " ", &saveptr);
index = atoi(pch);
if (resourceTable[resourceIndex].maxIndex > 0 || index > 0) {
if (index <= 0 || index > MAX_RESOURCE_INDEX(resourceTable[resourceIndex].maxIndex)) {
cliShowArgumentRangeError("index", 1, MAX_RESOURCE_INDEX(resourceTable[resourceIndex].maxIndex));
return;
}
index -= 1;
pch = strtok_r(NULL, " ", &saveptr);
}
ioTag_t *tag = (ioTag_t*)(resourceTable[resourceIndex].ptr + index);
uint8_t pin = 0;
if (strlen(pch) > 0) {
if (strcasecmp(pch, "NONE") == 0) {
*tag = IO_TAG_NONE;
#ifdef MINIMAL_CLI
cliPrintf("Freed\r\n");
#else
cliPrintf("Resource is freed\r\n");
#endif
return;
} else {
uint8_t port = (*pch) - 'A';
if (port >= 8) {
port = (*pch) - 'a';
}
if (port < 8) {
pch++;
pin = atoi(pch);
if (pin < 16) {
ioRec_t *rec = IO_Rec(IOGetByTag(DEFIO_TAG_MAKE(port, pin)));
if (rec) {
resourceCheck(resourceIndex, index, DEFIO_TAG_MAKE(port, pin));
#ifdef MINIMAL_CLI
cliPrintf(" %c%02d set\r\n", port + 'A', pin);
#else
cliPrintf("\r\nResource is set to %c%02d!\r\n", port + 'A', pin);
#endif
*tag = DEFIO_TAG_MAKE(port, pin);
} else {
cliShowParseError();
}
return;
}
}
}
}
cliShowParseError();
}
#endif /* USE_RESOURCE_MGMT */
#ifdef USE_PARAMETER_GROUPS
static void backupConfigs(void)
{
// make copies of configs to do differencing
PG_FOREACH(reg) {
// currentConfig is the copy
const cliCurrentAndDefaultConfig_t *cliCurrentAndDefaultConfig = getCurrentAndDefaultConfigs(pgN(reg));
if (cliCurrentAndDefaultConfig->currentConfig) {
if (pgIsProfile(reg)) {
//memcpy((uint8_t *)cliCurrentAndDefaultConfig->currentConfig, reg->address, reg->size * MAX_PROFILE_COUNT);
} else {
memcpy((uint8_t *)cliCurrentAndDefaultConfig->currentConfig, reg->address, reg->size);
}
#ifdef SERIAL_CLI_DEBUG
} else {
cliPrintf("BACKUP %d SET UP INCORRECTLY\r\n", pgN(reg));
#endif
}
}
const pgRegistry_t* reg = pgFind(PG_PID_PROFILE);
memcpy(&pidProfileCopy[0], reg->address, sizeof(pidProfile_t) * MAX_PROFILE_COUNT);
}
static void restoreConfigs(void)
{
PG_FOREACH(reg) {
// currentConfig is the copy
const cliCurrentAndDefaultConfig_t *cliCurrentAndDefaultConfig = getCurrentAndDefaultConfigs(pgN(reg));
if (cliCurrentAndDefaultConfig->currentConfig) {
if (pgIsProfile(reg)) {
//memcpy(reg->address, (uint8_t *)cliCurrentAndDefaultConfig->currentConfig, reg->size * MAX_PROFILE_COUNT);
} else {
memcpy(reg->address, (uint8_t *)cliCurrentAndDefaultConfig->currentConfig, reg->size);
}
#ifdef SERIAL_CLI_DEBUG
} else {
cliPrintf("RESTORE %d SET UP INCORRECTLY\r\n", pgN(reg));
#endif
}
}
const pgRegistry_t* reg = pgFind(PG_PID_PROFILE);
memcpy(reg->address, &pidProfileCopy[0], sizeof(pidProfile_t) * MAX_PROFILE_COUNT);
}
#endif
static void printConfig(char *cmdline, bool doDiff)
{
uint8_t dumpMask = DUMP_MASTER;
char *options;
if ((options = checkCommand(cmdline, "master"))) {
dumpMask = DUMP_MASTER; // only
} else if ((options = checkCommand(cmdline, "profile"))) {
dumpMask = DUMP_PROFILE; // only
} else if ((options = checkCommand(cmdline, "rates"))) {
dumpMask = DUMP_RATES; // only
} else if ((options = checkCommand(cmdline, "all"))) {
dumpMask = DUMP_ALL; // all profiles and rates
} else {
options = cmdline;
}
if (doDiff) {
dumpMask = dumpMask | DO_DIFF;
}
static master_t defaultConfig;
createDefaultConfig(&defaultConfig);
#ifdef USE_PARAMETER_GROUPS
backupConfigs();
// reset all configs to defaults to do differencing
resetConfigs();
#if defined(TARGET_CONFIG)
targetConfiguration(&defaultConfig);
#endif
#endif
if (checkCommand(options, "showdefaults")) {
dumpMask = dumpMask | SHOW_DEFAULTS; // add default values as comments for changed values
}
if ((dumpMask & DUMP_MASTER) || (dumpMask & DUMP_ALL)) {
cliPrintHashLine("version");
cliVersion(NULL);
if ((dumpMask & (DUMP_ALL | DO_DIFF)) == (DUMP_ALL | DO_DIFF)) {
cliPrintHashLine("reset configuration to default settings");
cliPrint("defaults\r\n");
}
cliPrintHashLine("name");
printName(dumpMask);
#ifdef USE_RESOURCE_MGMT
cliPrintHashLine("resources");
printResource(dumpMask, &defaultConfig);
#endif
#ifndef USE_QUAD_MIXER_ONLY
cliPrintHashLine("mixer");
const bool equalsDefault = mixerConfig()->mixerMode == defaultConfig.mixerConfig.mixerMode;
const char *formatMixer = "mixer %s\r\n";
cliDefaultPrintf(dumpMask, equalsDefault, formatMixer, mixerNames[defaultConfig.mixerConfig.mixerMode - 1]);
cliDumpPrintf(dumpMask, equalsDefault, formatMixer, mixerNames[mixerConfig()->mixerMode - 1]);
cliDumpPrintf(dumpMask, masterConfig.customMotorMixer[0].throttle == 0.0f, "\r\nmmix reset\r\n\r\n");
printMotorMix(dumpMask, customMotorMixer(0), defaultConfig.customMotorMixer);
#ifdef USE_SERVOS
cliPrintHashLine("servo");
printServo(dumpMask, servoProfile()->servoConf, defaultConfig.servoProfile.servoConf);
cliPrintHashLine("servo mix");
// print custom servo mixer if exists
cliDumpPrintf(dumpMask, masterConfig.customServoMixer[0].rate == 0, "smix reset\r\n\r\n");
printServoMix(dumpMask, &defaultConfig);
#endif
#endif
cliPrintHashLine("feature");
printFeature(dumpMask, &defaultConfig.featureConfig);
#ifdef BEEPER
cliPrintHashLine("beeper");
printBeeper(dumpMask, &defaultConfig);
#endif
cliPrintHashLine("map");
printMap(dumpMask, rxConfig(), &defaultConfig.rxConfig);
cliPrintHashLine("serial");
printSerial(dumpMask, serialConfig(), &defaultConfig.serialConfig);
#ifdef LED_STRIP
cliPrintHashLine("led");
printLed(dumpMask, ledStripConfig()->ledConfigs, defaultConfig.ledStripConfig.ledConfigs);
cliPrintHashLine("color");
printColor(dumpMask, ledStripConfig()->colors, defaultConfig.ledStripConfig.colors);
cliPrintHashLine("mode_color");
printModeColor(dumpMask, ledStripConfig(), &defaultConfig.ledStripConfig);
#endif
cliPrintHashLine("aux");
printAux(dumpMask, modeActivationProfile()->modeActivationConditions, defaultConfig.modeActivationProfile.modeActivationConditions);
cliPrintHashLine("adjrange");
printAdjustmentRange(dumpMask, adjustmentProfile()->adjustmentRanges, defaultConfig.adjustmentProfile.adjustmentRanges);
cliPrintHashLine("rxrange");
printRxRange(dumpMask, rxConfig()->channelRanges, defaultConfig.rxConfig.channelRanges);
#ifdef VTX
cliPrintHashLine("vtx");
printVtx(dumpMask, &defaultConfig);
#endif
cliPrintHashLine("rxfail");
printRxFailsafe(dumpMask, rxConfig()->failsafe_channel_configurations, defaultConfig.rxConfig.failsafe_channel_configurations);
cliPrintHashLine("master");
dumpValues(MASTER_VALUE, dumpMask, &defaultConfig);
if (dumpMask & DUMP_ALL) {
uint8_t activeProfile = masterConfig.current_profile_index;
for (uint32_t profileCount=0; profileCount<MAX_PROFILE_COUNT;profileCount++) {
cliDumpProfile(profileCount, dumpMask, &defaultConfig);
uint8_t currentRateIndex = currentProfile->activeRateProfile;
for (uint32_t rateCount = 0; rateCount<MAX_RATEPROFILES; rateCount++) {
cliDumpRateProfile(rateCount, dumpMask, &defaultConfig);
}
changeControlRateProfile(currentRateIndex);
cliPrintHashLine("restore original rateprofile selection");
cliRateProfile("");
}
changeProfile(activeProfile);
cliPrintHashLine("restore original profile selection");
cliProfile("");
cliPrintHashLine("save configuration");
cliPrint("save");
} else {
cliDumpProfile(masterConfig.current_profile_index, dumpMask, &defaultConfig);
cliDumpRateProfile(currentProfile->activeRateProfile, dumpMask, &defaultConfig);
}
}
if (dumpMask & DUMP_PROFILE) {
cliDumpProfile(masterConfig.current_profile_index, dumpMask, &defaultConfig);
}
if (dumpMask & DUMP_RATES) {
cliDumpRateProfile(currentProfile->activeRateProfile, dumpMask, &defaultConfig);
}
#ifdef USE_PARAMETER_GROUPS
// restore configs from copies
restoreConfigs();
#endif
}
static void cliDump(char *cmdline)
{
printConfig(cmdline, false);
}
static void cliDiff(char *cmdline)
{
printConfig(cmdline, true);
}
typedef struct {
const char *name;
#ifndef MINIMAL_CLI
const char *description;
const char *args;
#endif
void (*func)(char *cmdline);
} clicmd_t;
#ifndef MINIMAL_CLI
#define CLI_COMMAND_DEF(name, description, args, method) \
{ \
name , \
description , \
args , \
method \
}
#else
#define CLI_COMMAND_DEF(name, description, args, method) \
{ \
name, \
method \
}
#endif
static void cliHelp(char *cmdline);
// should be sorted a..z for bsearch()
const clicmd_t cmdTable[] = {
CLI_COMMAND_DEF("adjrange", "configure adjustment ranges", NULL, cliAdjustmentRange),
CLI_COMMAND_DEF("aux", "configure modes", NULL, cliAux),
#ifdef BEEPER
CLI_COMMAND_DEF("beeper", "turn on/off beeper", "list\r\n"
"\t<+|->[name]", cliBeeper),
#endif
#ifdef LED_STRIP
CLI_COMMAND_DEF("color", "configure colors", NULL, cliColor),
#endif
CLI_COMMAND_DEF("defaults", "reset to defaults and reboot", NULL, cliDefaults),
CLI_COMMAND_DEF("dfu", "DFU mode on reboot", NULL, cliDfu),
CLI_COMMAND_DEF("diff", "list configuration changes from default",
"[master|profile|rates|all] {showdefaults}", cliDiff),
CLI_COMMAND_DEF("dump", "dump configuration",
"[master|profile|rates|all] {showdefaults}", cliDump),
#ifdef USE_ESCSERIAL
CLI_COMMAND_DEF("escprog", "passthrough esc to serial", "<mode [sk/bl/ki/cc]> <index>", cliEscPassthrough),
#endif
CLI_COMMAND_DEF("exit", NULL, NULL, cliExit),
CLI_COMMAND_DEF("feature", "configure features",
"list\r\n"
"\t<+|->[name]", cliFeature),
#ifdef USE_FLASHFS
CLI_COMMAND_DEF("flash_erase", "erase flash chip", NULL, cliFlashErase),
CLI_COMMAND_DEF("flash_info", "show flash chip info", NULL, cliFlashInfo),
#ifdef USE_FLASH_TOOLS
CLI_COMMAND_DEF("flash_read", NULL, "<length> <address>", cliFlashRead),
CLI_COMMAND_DEF("flash_write", NULL, "<address> <message>", cliFlashWrite),
#endif
#endif
CLI_COMMAND_DEF("get", "get variable value", "[name]", cliGet),
#ifdef GPS
CLI_COMMAND_DEF("gpspassthrough", "passthrough gps to serial", NULL, cliGpsPassthrough),
#endif
CLI_COMMAND_DEF("help", NULL, NULL, cliHelp),
#ifdef LED_STRIP
CLI_COMMAND_DEF("led", "configure leds", NULL, cliLed),
#endif
CLI_COMMAND_DEF("map", "configure rc channel order", "[<map>]", cliMap),
#ifndef USE_QUAD_MIXER_ONLY
CLI_COMMAND_DEF("mixer", "configure mixer", "list\r\n\t<name>", cliMixer),
#endif
CLI_COMMAND_DEF("mmix", "custom motor mixer", NULL, cliMotorMix),
#ifdef LED_STRIP
CLI_COMMAND_DEF("mode_color", "configure mode and special colors", NULL, cliModeColor),
#endif
CLI_COMMAND_DEF("motor", "get/set motor", "<index> [<value>]", cliMotor),
CLI_COMMAND_DEF("name", "name of craft", NULL, cliName),
#ifndef MINIMAL_CLI
CLI_COMMAND_DEF("play_sound", NULL, "[<index>]", cliPlaySound),
#endif
CLI_COMMAND_DEF("profile", "change profile", "[<index>]", cliProfile),
CLI_COMMAND_DEF("rateprofile", "change rate profile", "[<index>]", cliRateProfile),
#if defined(USE_RESOURCE_MGMT)
CLI_COMMAND_DEF("resource", "show/set resources", NULL, cliResource),
#endif
CLI_COMMAND_DEF("rxfail", "show/set rx failsafe settings", NULL, cliRxFailsafe),
CLI_COMMAND_DEF("rxrange", "configure rx channel ranges", NULL, cliRxRange),
CLI_COMMAND_DEF("save", "save and reboot", NULL, cliSave),
#ifdef USE_SDCARD
CLI_COMMAND_DEF("sd_info", "sdcard info", NULL, cliSdInfo),
#endif
CLI_COMMAND_DEF("serial", "configure serial ports", NULL, cliSerial),
#ifndef SKIP_SERIAL_PASSTHROUGH
CLI_COMMAND_DEF("serialpassthrough", "passthrough serial data to port", "<id> [baud] [mode] : passthrough to serial", cliSerialPassthrough),
#endif
#ifdef USE_SERVOS
CLI_COMMAND_DEF("servo", "configure servos", NULL, cliServo),
#endif
CLI_COMMAND_DEF("set", "change setting", "[<name>=<value>]", cliSet),
#ifdef USE_SERVOS
CLI_COMMAND_DEF("smix", "servo mixer", "<rule> <servo> <source> <rate> <speed> <min> <max> <box>\r\n"
"\treset\r\n"
"\tload <mixer>\r\n"
"\treverse <servo> <source> r|n", cliServoMix),
#endif
CLI_COMMAND_DEF("status", "show status", NULL, cliStatus),
#ifndef SKIP_TASK_STATISTICS
CLI_COMMAND_DEF("tasks", "show task stats", NULL, cliTasks),
#endif
CLI_COMMAND_DEF("version", "show version", NULL, cliVersion),
#ifdef VTX
CLI_COMMAND_DEF("vtx", "vtx channels on switch", NULL, cliVtx),
#endif
};
static void cliHelp(char *cmdline)
{
UNUSED(cmdline);
for (uint32_t i = 0; i < ARRAYLEN(cmdTable); i++) {
cliPrint(cmdTable[i].name);
#ifndef MINIMAL_CLI
if (cmdTable[i].description) {
cliPrintf(" - %s", cmdTable[i].description);
}
if (cmdTable[i].args) {
cliPrintf("\r\n\t%s", cmdTable[i].args);
}
#endif
cliPrint("\r\n");
}
}
void cliProcess(void)
{
if (!cliWriter) {
return;
}
// Be a little bit tricky. Flush the last inputs buffer, if any.
bufWriterFlush(cliWriter);
while (serialRxBytesWaiting(cliPort)) {
uint8_t c = serialRead(cliPort);
if (c == '\t' || c == '?') {
// do tab completion
const clicmd_t *cmd, *pstart = NULL, *pend = NULL;
uint32_t i = bufferIndex;
for (cmd = cmdTable; cmd < cmdTable + ARRAYLEN(cmdTable); cmd++) {
if (bufferIndex && (strncasecmp(cliBuffer, cmd->name, bufferIndex) != 0))
continue;
if (!pstart)
pstart = cmd;
pend = cmd;
}
if (pstart) { /* Buffer matches one or more commands */
for (; ; bufferIndex++) {
if (pstart->name[bufferIndex] != pend->name[bufferIndex])
break;
if (!pstart->name[bufferIndex] && bufferIndex < sizeof(cliBuffer) - 2) {
/* Unambiguous -- append a space */
cliBuffer[bufferIndex++] = ' ';
cliBuffer[bufferIndex] = '\0';
break;
}
cliBuffer[bufferIndex] = pstart->name[bufferIndex];
}
}
if (!bufferIndex || pstart != pend) {
/* Print list of ambiguous matches */
cliPrint("\r\033[K");
for (cmd = pstart; cmd <= pend; cmd++) {
cliPrint(cmd->name);
cliWrite('\t');
}
cliPrompt();
i = 0; /* Redraw prompt */
}
for (; i < bufferIndex; i++)
cliWrite(cliBuffer[i]);
} else if (!bufferIndex && c == 4) { // CTRL-D
cliExit(cliBuffer);
return;
} else if (c == 12) { // NewPage / CTRL-L
// clear screen
cliPrint("\033[2J\033[1;1H");
cliPrompt();
} else if (bufferIndex && (c == '\n' || c == '\r')) {
// enter pressed
cliPrint("\r\n");
// Strip comment starting with # from line
char *p = cliBuffer;
p = strchr(p, '#');
if (NULL != p) {
bufferIndex = (uint32_t)(p - cliBuffer);
}
// Strip trailing whitespace
while (bufferIndex > 0 && cliBuffer[bufferIndex - 1] == ' ') {
bufferIndex--;
}
// Process non-empty lines
if (bufferIndex > 0) {
cliBuffer[bufferIndex] = 0; // null terminate
const clicmd_t *cmd;
char *options;
for (cmd = cmdTable; cmd < cmdTable + ARRAYLEN(cmdTable); cmd++) {
if ((options = checkCommand(cliBuffer, cmd->name))) {
break;
}
}
if(cmd < cmdTable + ARRAYLEN(cmdTable))
cmd->func(options);
else
cliPrint("Unknown command, try 'help'");
bufferIndex = 0;
}
memset(cliBuffer, 0, sizeof(cliBuffer));
// 'exit' will reset this flag, so we don't need to print prompt again
if (!cliMode)
return;
cliPrompt();
} else if (c == 127) {
// backspace
if (bufferIndex) {
cliBuffer[--bufferIndex] = 0;
cliPrint("\010 \010");
}
} else if (bufferIndex < sizeof(cliBuffer) && c >= 32 && c <= 126) {
if (!bufferIndex && c == ' ')
continue; // Ignore leading spaces
cliBuffer[bufferIndex++] = c;
cliWrite(c);
}
}
}
void cliEnter(serialPort_t *serialPort)
{
cliMode = 1;
cliPort = serialPort;
setPrintfSerialPort(cliPort);
cliWriter = bufWriterInit(cliWriteBuffer, sizeof(cliWriteBuffer), (bufWrite_t)serialWriteBufShim, serialPort);
schedulerSetCalulateTaskStatistics(masterConfig.task_statistics);
#ifndef MINIMAL_CLI
cliPrint("\r\nEntering CLI Mode, type 'exit' to return, or 'help'\r\n");
#else
cliPrint("\r\nCLI\r\n");
#endif
cliPrompt();
ENABLE_ARMING_FLAG(PREVENT_ARMING);
}
void cliInit(const serialConfig_t *serialConfig)
{
UNUSED(serialConfig);
BUILD_BUG_ON(LOOKUP_TABLE_COUNT != ARRAYLEN(lookupTables));
}
#endif // USE_CLI