custom-board-bundle-sample-.../firmware/controllers/algo/fuel/injector_model.cpp

179 lines
5.1 KiB
C++
Raw Normal View History

// here am flirting with not using pch.h and not including at least Engine
#include <rusefi/interpolation.h>
#include <rusefi/arrays.h>
#include "engine_configuration.h"
#include "sensor.h"
#include "error_handling.h"
#include "injector_model.h"
#include "fuel_computer.h"
void InjectorModelBase::prepare() {
float flowRatio = getInjectorFlowRatio();
// "large pulse" flow rate
m_massFlowRate = flowRatio * getBaseFlowRate();
m_deadtime = getDeadtime();
if (getNonlinearMode() == INJ_FordModel) {
m_smallPulseFlowRate = flowRatio * getSmallPulseFlowRate();
m_smallPulseBreakPoint = getSmallPulseBreakPoint();
// amount added to small pulses to correct for the "kink" from low flow region
m_smallPulseOffset = 1000 * ((m_smallPulseBreakPoint / m_massFlowRate) - (m_smallPulseBreakPoint / m_smallPulseFlowRate));
}
}
constexpr float convertToGramsPerSecond(float ccPerMinute) {
return ccPerMinute * (fuelDensity / 60.f);
}
float InjectorModel::getBaseFlowRate() const {
if (engineConfiguration->injectorFlowAsMassFlow) {
return engineConfiguration->injector.flow;
} else {
return convertToGramsPerSecond(engineConfiguration->injector.flow);
}
}
float InjectorModel::getSmallPulseFlowRate() const {
return engineConfiguration->fordInjectorSmallPulseSlope;
}
float InjectorModel::getSmallPulseBreakPoint() const {
// convert milligrams -> grams
return 0.001f * engineConfiguration->fordInjectorSmallPulseBreakPoint;
}
InjectorNonlinearMode InjectorModel::getNonlinearMode() const {
return engineConfiguration->injectorNonlinearMode;
}
expected<float> InjectorModel::getAbsoluteRailPressure() const {
switch (engineConfiguration->injectorCompensationMode) {
case ICM_FixedRailPressure:
// Add barometric pressure, as "fixed" really means "fixed pressure above atmosphere"
return engineConfiguration->fuelReferencePressure + Sensor::get(SensorType::BarometricPressure).value_or(101.325f);
case ICM_SensedRailPressure:
if (!Sensor::hasSensor(SensorType::FuelPressureInjector)) {
firmwareError(OBD_PCM_Processor_Fault, "Fuel pressure compensation is set to use a pressure sensor, but none is configured.");
return unexpected;
}
// TODO: what happens when the sensor fails?
return Sensor::get(SensorType::FuelPressureInjector);
default: return unexpected;
}
}
2021-12-26 09:59:53 -08:00
float InjectorModel::getInjectorFlowRatio() {
// Compensation disabled, use reference flow.
if (engineConfiguration->injectorCompensationMode == ICM_None) {
return 1.0f;
}
float referencePressure = engineConfiguration->fuelReferencePressure;
2022-08-31 17:32:37 -07:00
if (referencePressure < 50) {
// impossibly low fuel ref pressure
firmwareError(OBD_PCM_Processor_Fault, "Impossible fuel reference pressure: %f", referencePressure);
return 1.0f;
}
expected<float> absRailPressure = getAbsoluteRailPressure();
// If sensor failed, best we can do is disable correction
if (!absRailPressure) {
return 1.0f;
}
auto map = Sensor::get(SensorType::Map);
// Map has failed, assume nominal pressure
if (!map) {
return 1.0f;
}
2021-12-26 09:59:53 -08:00
pressureDelta = absRailPressure.Value - map.Value;
// Somehow pressure delta is less than 0, assume failed sensor and return default flow
if (pressureDelta <= 0) {
return 1.0f;
}
2021-12-26 09:59:53 -08:00
pressureRatio = pressureDelta / referencePressure;
// todo: live data model?
float flowRatio = sqrtf(pressureRatio);
// TODO: should the flow ratio be clamped?
return flowRatio;
}
float InjectorModel::getDeadtime() const {
return interpolate2d(
2021-03-11 20:07:18 -08:00
Sensor::get(SensorType::BatteryVoltage).value_or(VBAT_FALLBACK_VALUE),
engineConfiguration->injector.battLagCorrBins,
engineConfiguration->injector.battLagCorr
);
}
float InjectorModelBase::getInjectionDuration(float fuelMassGram) const {
if (fuelMassGram <= 0) {
// If 0 mass, don't do any math, just skip the injection.
return 0.0f;
}
// Get the no-offset duration
float baseDuration = getBaseDurationImpl(fuelMassGram);
// Add deadtime offset
return baseDuration + m_deadtime;
}
float InjectorModelBase::getFuelMassForDuration(floatms_t duration) const {
// Convert from ms -> grams
return duration * m_massFlowRate * 0.001f;
}
float InjectorModelBase::getBaseDurationImpl(float fuelMassGram) const {
floatms_t baseDuration = fuelMassGram / m_massFlowRate * 1000;
switch (getNonlinearMode()) {
case INJ_FordModel:
if (fuelMassGram < m_smallPulseBreakPoint) {
// Small pulse uses a different slope, and adds the "zero fuel pulse" offset
return (fuelMassGram / m_smallPulseFlowRate * 1000) + m_smallPulseOffset;
} else {
// Large pulse
return baseDuration;
}
case INJ_PolynomialAdder:
return correctInjectionPolynomial(baseDuration);
case INJ_None:
default:
return baseDuration;
}
}
float InjectorModelBase::correctInjectionPolynomial(float baseDuration) const {
if (baseDuration > engineConfiguration->applyNonlinearBelowPulse) {
// Large pulse, skip correction.
return baseDuration;
}
auto& is = engineConfiguration->injectorCorrectionPolynomial;
float xi = 1;
float adder = 0;
// Add polynomial terms, starting with x^0
for (size_t i = 0; i < efi::size(is); i++) {
adder += is[i] * xi;
xi *= baseDuration;
}
return baseDuration + adder;
}