custom-board-bundle-sample-.../firmware/controllers/trigger/trigger_decoder.cpp

277 lines
9.6 KiB
C++

/**
* @file trigger_decoder.cpp
*
* @date Dec 24, 2013
* @author Andrey Belomutskiy, (c) 2012-2014
*
* This file is part of rusEfi - see http://rusefi.com
*
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "main.h"
#include "obd_error_codes.h"
#include "trigger_decoder.h"
#include "cyclic_buffer.h"
#include "trigger_mazda.h"
#include "trigger_chrysler.h"
#include "trigger_gm.h"
#include "trigger_bmw.h"
extern "C" {
#include "trigger_structure.h"
#include "wave_math.h"
}
#if EFI_PROD_CODE || EFI_SIMULATOR
static Logging logger;
#endif
static cyclic_buffer errorDetection;
/**
* @return TRUE is something is wrong with trigger decoding
*/
int isTriggerDecoderError(void) {
return errorDetection.sum(6) > 4;
}
static inline int isSynchronizationGap(TriggerState const *shaftPositionState, trigger_shape_s const *triggerShape,
trigger_config_s const *triggerConfig, const int currentDuration) {
if (!triggerConfig->isSynchronizationNeeded)
return false;
return currentDuration > shaftPositionState->toothed_previous_duration * triggerConfig->syncRatioFrom
&& currentDuration < shaftPositionState->toothed_previous_duration * triggerConfig->syncRatioTo;
}
static inline int noSynchronizationResetNeeded(TriggerState *shaftPositionState, trigger_shape_s const *triggerShape,
trigger_config_s const*triggerConfig) {
if (triggerConfig->isSynchronizationNeeded)
return false;
if (!shaftPositionState->shaft_is_synchronized)
return TRUE;
/**
* in case of noise the counter could be above the expected number of events
*/
return shaftPositionState->getCurrentIndex() >= triggerShape->shaftPositionEventCount - 1;
}
/**
* @brief Trigger decoding happends here
* This method changes the state of trigger_state_s data structure according to the trigger event
*/
void TriggerState::decodeTriggerEvent(trigger_shape_s const*triggerShape, trigger_config_s const*triggerConfig,
trigger_event_e signal, uint64_t nowUs) {
int isLessImportant = (triggerConfig->useRiseEdge && signal != SHAFT_PRIMARY_UP)
|| (!triggerConfig->useRiseEdge && signal != SHAFT_PRIMARY_DOWN);
if (isLessImportant) {
/**
* For less important events we simply increment the index.
*/
nextTriggerEvent();
return;
}
int64_t currentDuration = isFirstEvent ? 0 : nowUs - toothed_previous_time;
isFirstEvent = false;
efiAssertVoid(currentDuration >= 0, "negative duration?");
// todo: skip a number of signal from the beginning
#if EFI_PROD_CODE
// scheduleMsg(&logger, "from %f to %f %d %d", triggerConfig->syncRatioFrom, triggerConfig->syncRatioTo, currentDuration, shaftPositionState->toothed_previous_duration);
// scheduleMsg(&logger, "ratio %f", 1.0 * currentDuration/ shaftPositionState->toothed_previous_duration);
#else
if (toothed_previous_duration != 0) {
// printf("ratio %f: cur=%d pref=%d\r\n", 1.0 * currentDuration / shaftPositionState->toothed_previous_duration,
// currentDuration, shaftPositionState->toothed_previous_duration);
}
#endif
if (noSynchronizationResetNeeded(this, triggerShape, triggerConfig)
|| isSynchronizationGap(this, triggerShape, triggerConfig, currentDuration)) {
/**
* We can check if things are fine by comparing the number of events in a cycle with the expected number of event.
*/
int isDecodingError = getCurrentIndex() != triggerShape->shaftPositionEventCount - 1;
errorDetection.add(isDecodingError);
if (isTriggerDecoderError())
warning(OBD_PCM_Processor_Fault, "trigger decoding issue");
shaft_is_synchronized = TRUE;
nextRevolution(triggerShape->shaftPositionEventCount);
} else {
nextTriggerEvent();
}
toothed_previous_duration = currentDuration;
toothed_previous_time = nowUs;
}
static void initializeSkippedToothTriggerShape(trigger_shape_s *s, int totalTeethCount, int skippedCount, operation_mode_e operationMode) {
efiAssertVoid(s != NULL, "trigger_shape_s is NULL");
s->reset(operationMode);
float toothWidth = 0.5;
for (int i = 0; i < totalTeethCount - skippedCount - 1; i++) {
float angleDown = 720.0 / totalTeethCount * (i + toothWidth);
float angleUp = 720.0 / totalTeethCount * (i + 1);
s->addEvent(angleDown, T_PRIMARY, TV_HIGH);
s->addEvent(angleUp, T_PRIMARY, TV_LOW);
}
float angleDown = 720.0 / totalTeethCount * (totalTeethCount - skippedCount - 1 + toothWidth);
s->addEvent(angleDown, T_PRIMARY, TV_HIGH);
s->addEvent(720, T_PRIMARY, TV_LOW);
}
void initializeSkippedToothTriggerShapeExt(engine_configuration2_s *engineConfiguration2, int totalTeethCount,
int skippedCount, operation_mode_e operationMode) {
efiAssertVoid(totalTeethCount > 0, "totalTeethCount is zero");
trigger_shape_s *s = &engineConfiguration2->triggerShape;
initializeSkippedToothTriggerShape(s, totalTeethCount, skippedCount, operationMode);
s->shaftPositionEventCount = ((totalTeethCount - skippedCount) * 2);
s->wave.checkSwitchTimes(s->getSize());
}
static void configureFordAspireTriggerShape(trigger_config_s *triggerConfig, trigger_shape_s * s) {
s->reset(FOUR_STROKE_CAM_SENSOR);
s->shaftPositionEventCount = 10;
s->addEvent(53.747, T_SECONDARY, TV_HIGH);
s->addEvent(121.90, T_SECONDARY, TV_LOW); // delta = 68.153
s->addEvent(232.76, T_SECONDARY, TV_HIGH); // delta = 110.86
s->addEvent(300.54, T_SECONDARY, TV_LOW); // delta = 67.78
s->addEvent(360, T_PRIMARY, TV_HIGH);
s->addEvent(409.8412, T_SECONDARY, TV_HIGH); // delta = 49.8412
s->addEvent(478.6505, T_SECONDARY, TV_LOW); // delta = 68.8093
s->addEvent(588.045, T_SECONDARY, TV_HIGH); // delta = 109.3945
s->addEvent(657.03, T_SECONDARY, TV_LOW);
s->addEvent(720, T_PRIMARY, TV_LOW);
}
/**
* External logger is needed because at this point our logger is not yet initialized
*/
void initializeTriggerShape(Logging *logger, engine_configuration_s *engineConfiguration,
engine_configuration2_s *engineConfiguration2) {
#if EFI_PROD_CODE
printMsg(logger, "initializeTriggerShape()");
#endif
trigger_config_s *triggerConfig = &engineConfiguration->triggerConfig;
trigger_shape_s *triggerShape = &engineConfiguration2->triggerShape;
switch (triggerConfig->triggerType) {
case TT_TOOTHED_WHEEL:
initializeSkippedToothTriggerShapeExt(engineConfiguration2, triggerConfig->totalToothCount, triggerConfig->skippedToothCount,
getOperationMode(engineConfiguration));
return;
case TT_MAZDA_MIATA_NB:
initializeMazdaMiataNbShape(triggerConfig, triggerShape);
return;
case TT_DODGE_NEON:
configureNeonTriggerShape(triggerConfig, triggerShape);
return;
case TT_FORD_ASPIRE:
configureFordAspireTriggerShape(triggerConfig, triggerShape);
return;
case TT_GM_7X:
configureGmTriggerShape(triggerConfig, triggerShape);
return;
case TT_FORD_ESCORT_GT:
configureMazdaProtegeLx(triggerConfig, triggerShape);
return;
case TT_MINI_COOPER_R50:
configureMiniCooperTriggerShape(triggerConfig, triggerShape);
return;
default:
firmwareError("initializeTriggerShape() not implemented: %d", triggerConfig->triggerType);
;
}
if (engineConfiguration2->triggerShape.shaftPositionEventCount != engineConfiguration2->triggerShape.getSize())
firmwareError("trigger size or shaftPositionEventCount?");
}
TriggerStimulatorHelper::TriggerStimulatorHelper() {
primaryWheelState = false;
secondaryWheelState = false;
}
void TriggerStimulatorHelper::nextStep(TriggerState *state, trigger_shape_s * shape, int i, trigger_config_s const*triggerConfig) {
int stateIndex = i % shape->getSize();
int loopIndex = i / shape->getSize();
int time = (int) (10000 * (loopIndex + shape->wave.getSwitchTime(stateIndex)));
bool newPrimaryWheelState = shape->wave.getChannelState(0, stateIndex);
bool newSecondaryWheelState = shape->wave.getChannelState(1, stateIndex);
if (primaryWheelState != newPrimaryWheelState) {
primaryWheelState = newPrimaryWheelState;
trigger_event_e s = primaryWheelState ? SHAFT_PRIMARY_UP : SHAFT_PRIMARY_DOWN;
state->decodeTriggerEvent(shape, triggerConfig, s, time);
}
if (secondaryWheelState != newSecondaryWheelState) {
secondaryWheelState = newSecondaryWheelState;
trigger_event_e s = secondaryWheelState ? SHAFT_SECONDARY_UP : SHAFT_SECONDARY_DOWN;
state->decodeTriggerEvent(shape, triggerConfig, s, time);
}
}
/**
* Trigger shape is defined in a way which is convenient for trigger shape definition
* On the other hand, trigger decoder indexing begins from synchronization event.
*
* This function finds the index of synchronization event within trigger_shape_s
*/
int findTriggerZeroEventIndex(trigger_shape_s * shape, trigger_config_s const*triggerConfig) {
TriggerState state;
errorDetection.clear();
TriggerStimulatorHelper helper;
for (int i = 0; i < 4 * PWM_PHASE_MAX_COUNT; i++) {
helper.nextStep(&state, shape, i, triggerConfig);
if (state.shaft_is_synchronized)
return i % shape->getSize();;
}
firmwareError("findTriggerZeroEventIndex() failed");
return -1;
}
void initTriggerDecoder(void) {
#if EFI_PROD_CODE || EFI_SIMULATOR
initLogging(&logger, "trigger decoder");
#endif
}