wiki.js/Secondary_Serial_IO_interfa...

14 KiB

title description published date tags editor dateCreated
Secondary Serial IO interface true 2023-02-22T16:44:14.084Z undefined 2020-01-06T01:37:19.933Z

Overview

The Arduino Mega2560 version of Speeduino supports the use of Serial3 for supplemetry IO. The STM32F4XX and Teensy3.5/6 versions use Serial2 . On a Mega 2560 Serial3 can be found on the board at pins 14 and 15 - these are not broken out to the IDC connector on the 0.3 or 0.4 boards. The connection speed is 115200baud, 8 bits, parity none and 1 stop bit. Supplementry IO via Canbus is under development for Teensy and Mega2560 mcu types. The use of canbus will also enable more advanced features to be added in the future.

Settings

Enable Secondary IO interface

To enable use of the Secondary io interface it must be enabled in TunerStudio.

Dependant on if CAN_COMMANDS have been enabled will vary the type of dropdown menu you will see

accdrop_nocan.jpg

select option "Secondary Serial IO Interface" or "CanBus/Secondary Serial IO Interface" as appropriate.

Secondary IO Configuration Options

Again dependant on if CAN_COMMANDS have been enabled will vary what options you have to enable Secondary serial.

auxindrop_nocan.jpg

  • Enable options
    1. Disabled
    1. Enabled Secondary IO via Serial port
    1. Enabled Secondary IO via canbus (this option will only be available when CAN_COMMANDS are enabled

How to use it

Depending on if the secondary port is a simple serial port or is a canbus port there are several things that the Secondary io interface is capable of.

A Simple Serial Port

A Serial port offers ,

  1. Retrieve the current realtime data from Speeduino . This can be a simple or full(enhanced) data set. This is the same realtime data as sent to TunerStudio.
  2. Retrieve specific current realtime data from Speeduino.
  3. Read in the Analog data values from 16 remote sensors as requested by Speeduino.
  4. Activate External Outputs(coming soon!)
A Canbus Port

A Canbus port offers ,

  1. OBD2 formatted data of current realtime data .
  2. Broadcast selected current realtime data and function status .(COMING SOON!)
  3. Read in Analog and Digital data values from other devices on the BUS including those from OEM devices/ECU.(COMING SOON!)

Serial Port Functions

Retrieve realtime data

To get Speeduino to send out the realtime data to your device connected on a Secondary Serial IO port you must send either an "A", an "n" or an "r" to it. An 'A' will retreive a simple set of data whereas an 'n' will retreive an enhanced set of realtime data. An 'r' will retrieve specific data starting at a selected position in the list for x number of bytes.

  • Send an "A"

If you send an "A" to the port it will reply with ,

  1. A "A" confirming the received instruction (sent as 0x41 in hex),
  2. The port will then transmit the first 75 realtime data values from the list below(simple data set).

The "A" command data set will not be changed or expanded upon and is maintained for legacy devices. Designers of new devices are recommended to use the newer "n" command to enable use of any additonal enhanced realtime data available beyond the orignal 75 This command supports.

  • Send an "n"

If you send an "n" to the Serial port it will reply with,

  1. A "n" confirming the received instruction (sent as 0x6E in hex (110 in DEC) ).
  2. A single hex byte ,this value is the type of "n" command about to be sent. In this case the value is 0x32 in Hex.
  3. A single hex byte , this value is the number of data bytes the port will be transmitting next as part ofthe command. At the time of writing (09/07/2021) this is 0x77 (119 dec)
  4. The port will now transmit the realtime data.
  • Send an "r"

if you send an "r" to the port you must also send 6 further additional bytes immediately after the "r". These are the Speeduino TS canID, The r type command 0x30(48 in decimal), A 2 byte offset and a 2 byte length. the offset is the position in the realtime list you want the data returned to start from and the 2 byte length is the number of bytes you want returned. the bytes are sent LSB first .

The port will reply with ,

  1. A "r" confirming the received instruction (send as 0x72 in hex).
  2. The port will now transmit a single byte in hex ,this is the type of the "r" type command about to be sent,This confirms what was requested (this is typically 0x30).
  3. The port will then transmit the realtime data requested starting at the byte position set by the offset value for the number of bytes set by the length value.
  • ' The Realtime Data List'

As of 23/02/2020 the data list is as follows

BIT 0 - currentStatus.secl

     secl is simply a counter that increments each second

1 - currentStatus.status1

     Status1 Bitfield(was squirt) inj1Status(0), inj2Status(1),inj3Status(2), inj4Status(3), DFCOOn(4), boostCutFuel(5), toothLog1Ready(6), toothLog2Ready(7)

2 - currentStatus.engine

     Engine Status Bitfield running(0), crank(1), ase(2), warmup(3), tpsacden(5), mapaccden(7)

3 - (byte)(divu100(currentStatus.dwell))

     Dwell in ms * 10

4 - lowByte(currentStatus.MAP)

5 - highByte(currentStatus.MAP)

6 - (byte)(currentStatus.IAT + CALIBRATION_TEMPERATURE_OFFSET)

     mat

7 - (byte)(currentStatus.coolant + CALIBRATION_TEMPERATURE_OFFSET)

     Coolant ADC

8 - currentStatus.batCorrection

     Battery voltage correction (%)

9 - currentStatus.battery10

     battery voltage

10 - currentStatus.O2;

     primary O2

11 - currentStatus.egoCorrection

     Exhaust gas correction (%)

12 - currentStatus.iatCorrection

     Air temperature Correction (%)

13 - currentStatus.wueCorrection

     Warmup enrichment (%)

14 - lowByte(currentStatus.RPM)

    rpm LB

15 - highByte(currentStatus.RPM)

     rpm HB

16 - currentStatus.TAEamount

     acceleration enrichment (%)

17 - currentStatus.corrections

     Total GammaE (%)

18 - currentStatus ve

     Current VE 1 (%)

19 - currentStatus.afrTarget

     chosen afr target

20 - lowByte(currentStatus.PW1)

     Pulsewidth 1 multiplied by 10 in ms. Have to convert from uS to mS.

21 - highByte(currentStatus.PW1);

     Pulsewidth 1 multiplied by 10 in ms. Have to convert from uS to mS.

22 - currentStatus.tpsDOT

     TPS DOT

23 - currentStatus.advance

     Current spark advance

24 - currentStatus.TPS

     TPS (0% to 100%)

25 - lowByte(currentStatus.loopsPerSecond)

     loops per second LB

26 - highByte(currentStatus.loopsPerSecond)

     loops per second HB

27 - lowByte(currentStatus.freeRAM)

     freeRam LB

28 - highByte(currentStatus.freeRAM)

     freeRam HB

29 - currentStatus.boostTarget

     Target boost pressure

30 - currentStatus.boostDuty

     current pwm boost dutycycle

31 - currentStatus.spark

     Spark related bitfield launchHard(0), launchSoft(1), hardLimitOn(2), softLimitOn(3), boostCutSpark(4), error(5), idleControlOn(6), sync(7)

32 - lowByte(currentStatus.rpmDOT)

     rpmDOT must be sent as a signed integer

33 - highByte(currentStatus.rpmDOT)

     rpmDOT HB

34 - currentStatus.ethanolPct

     Flex sensor value (or 0 if not used)

35 - currentStatus.flexCorrection

     Flex fuel correction (% above or below 100)

36 - currentStatus.flexIgnCorrection

     Ignition correction (Increased degrees of advance) for flex fuel

37 - currentStatus.idleLoad

     idleload

38 - currentStatus.testOutputs

     testoutputs bitfield testEnabled(0), testActive(1)

39 - currentStatus.O2_2

     Second O2

40 - currentStatus.baro

     Barometer value

41 - lowByte(currentStatus.canin[0]);

42 - highByte(currentStatus.canin[0]);

43 - lowByte(currentStatus.canin[1]);

44 - highByte(currentStatus.canin[1]);

45 - lowByte(currentStatus.canin[2]);

46 - highByte(currentStatus.canin[2]);

47 - lowByte(currentStatus.canin[3]);

48 - highByte(currentStatus.canin[3]);

49 - lowByte(currentStatus.canin[4]);

50 - highByte(currentStatus.canin[4]);

51 - lowByte(currentStatus.canin[5]);

52 - highByte(currentStatus.canin[5]);

53 - lowByte(currentStatus.canin[6]);

54 - highByte(currentStatus.canin[6]);

55 - lowByte(currentStatus.canin[7]);

56 - highByte(currentStatus.canin[7]);

57 - lowByte(currentStatus.canin[8]);

58 - highByte(currentStatus.canin[8]);

59 - lowByte(currentStatus.canin[9]);

60 - highByte(currentStatus.canin[9]);

61 - lowByte(currentStatus.canin[10]);

62 - highByte(currentStatus.canin[10]);

63 - lowByte(currentStatus.canin[11]);

64 - highByte(currentStatus.canin[11]);

65 - lowByte(currentStatus.canin[12]);

66 - highByte(currentStatus.canin[12]);

67 - lowByte(currentStatus.canin[13]);

68 - highByte(currentStatus.canin[13]);

69 - lowByte(currentStatus.canin[14]);

70 - highByte(currentStatus.canin[14]);

71 - lowByte(currentStatus.canin[15]);

72 - highByte(currentStatus.canin[15])

73 - currentStatus.tpsADC

     TPS (Raw 0-255)

74 - getNextError()

     Error codes errorNum(0:1), currentError(2:7)

75 - currentStatus.launchCorrection

76 - lowByte(currentStatus.PW2) Pulsewidth 2 multiplied by 10 in ms. Have to convert from uS to mS.

77 - highByte(currentStatus.PW2) Pulsewidth 2 multiplied by 10 in ms. Have to convert from uS to mS.

78 - lowByte(currentStatus.PW3) Pulsewidth 3 multiplied by 10 in ms. Have to convert from uS to mS.

79 - highByte(currentStatus.PW3) Pulsewidth 3 multiplied by 10 in ms. Have to convert from uS to mS.

80 - lowByte(currentStatus.PW4) Pulsewidth 4 multiplied by 10 in ms. Have to convert from uS to mS.

81 - highByte(currentStatus.PW4) Pulsewidth 4 multiplied by 10 in ms. Have to convert from uS to mS.

82 - currentStatus.status3 resentLockOn(0), nitrousOn(1), fuel2Active(2), vssRefresh(3), halfSync(4), nSquirts(6:7)

83 - currentStatus.engineProtectStatus RPM(0), MAP(1), OIL(2), AFR(3), Unused(4:7)

84 - lowByte(currentStatus.fuelLoad)

85 - highByte(currentStatus.fuelLoad)

86 - lowByte(currentStatus.ignLoad)

87 - highByte(currentStatus.ignLoad)

88 - lowByte(currentStatus.injAngle)

89 - highByte(currentStatus.injAngle)

90 - currentStatus.idleDuty

91 - currentStatus.CLIdleTarget closed loop idle target

92 - currentStatus.mapDOT rate of change of the map

93 - (int8_t)currentStatus.vvt1Angle

94 - currentStatus.vvt1TargetAngle

95 - currentStatus.vvt1Duty

96 - lowByte(currentStatus.flexBoostCorrection)

97 - highByte(currentStatus.flexBoostCorrection)

98 - currentStatus.baroCorrection

99 - currentStatus.ASEValue Current ASE (%)

100 - lowByte(currentStatus.vss) lowByte of speed reading from the speed sensor

101 - highByte(currentStatus.vss) highByte of speed reading from the speed sensor

102 - currentStatus.gear

103 - currentStatus.fuelPressure

104 - currentStatus.oilPressure

105 - currentStatus.wmiPW

106 - currentStatus.status4 wmiEmptyBit(0), vvt1Error(1), vvt2Error(2), UnusedBits(3:7)

107 - (int8_t)currentStatus.vvt2Angle

108 - currentStatus.vvt2TargetAngle

109 - currentStatus.vvt2Duty

110 - currentStatus.outputsStatus

111 - (byte)(currentStatus.fuelTemp + CALIBRATION_TEMPERATURE_OFFSET) Fuel temperature from flex sensor

112 - currentStatus.fuelTempCorrection Fuel temperature Correction (%)

113 - currentStatus.VE1 VE 1 (%)

114 - currentStatus.VE2 VE 2 (%)

115 - currentStatus.advance1 advance 1

116 - currentStatus.advance2 advance 2

117 - currentStatus.nitrous_status

118 - currentStatus.TS_SD_Status SD card status

Read external analog data from a remote device

To get Speeduino to read analog data over the Secondary Serial Port you must enable it. this is done in TS on an per channel basis.

Canbus_input_config_new.jpg

You set the Source Can address(this is the address of the remote device that you wish to source the data value from.This is not used in direct Serial3 connections), input start byte number,input parameter number of bytes according to the sensor being accessed. Once enabled and configured Speeduino will periodically poll for that device on Serial3

Remote Device response to Speeduino Serial Port

Using Example 1 this is how to get your remote device to reply to the request from Speeduino for data.

IF the remote device is connected directly to Serial3.

  1. Speeduino will send an "R"
  2. Followed by the Can input channel that the data will be placed into.
  3. Then the Can address the data is to be sourced from(this is sent in two bytes LSB first). As your remote device is connected directly to the Serial3 port then you can ignore the Can Address.

IF the remote device is connected directly to Serial3.

  1. You must first send an "G".
  2. Then a '1' to flag the cmd is valid.
  3. Then the Can input channel (this is the channel number that Speeduino issued with the request.
  4. Then send 8 bytes of data. The Data you wish to send should be placed in bytes 0 and 1 (LSB and MSB respectively)if the data is two bytes long or in byte 0 if it is only a single byte long .

Remote Device response to Speeduino Canbus Port

If the remote device is connected via CANBUS.

Speeduino will issue an "R" request for the Can address selected for the Can input channel.

Speeduino will now await the response.

If the remote device is connected via CANBUS.

The remote device upon hearing its ID requested will respond to the Speeduino(at the address that was sent in the outgoing packet) with the Can input channel and 8 bytes of data.It is recommended that the Data you wish to send is placed in bytes 0 and 1 (LSB and MSB respectively)if it is two bytes long or in byte 0 if it is only a single byte long, but the data can be placed in any of the data bytes(just ensure that Speeduino is configured to read those bytes in the config table above.

The value sent is readable in Tunerstudio using the CanIN gauges