wiki.js/reference/Interface_Protocol.md

23 KiB

title description published date tags editor dateCreated
Interface Protocols true 2021-07-29T23:09:00.579Z undefined 2021-07-29T18:45:18.652Z

Interface Protocols

This information is intended for Advanced users ,a typical user does not need to have an understanding of the protocols used by the Interfaces in order to use Speeduino. {.is-warning}

Speeduino can be interfaced to via several ways.

  1. USB
  2. Secondary Serial
  3. Canbus (MCU dependent)

1. USB

This is the primary interface and the way in which TunerStudio connects to Speeduino in order to program/configure its settings. Only a single device can communicate with Speeduino via the USB at a time, this is usually a laptop or other computer running the TunerStudio Application software. It is also possible to use this interface with other devices if the correct communication protocol is used. Great care must be taken as it is possible to corrupt the configuration of your Speeduino MCU such that it no longer functions correctly or at all!

It is highly recommended to connect Dashes,Dataloggers and other Third party devices via the Secondary Serial interface or Canbus(if available) {.is-warning}

The Primary Protocol

The Speeduino Primary serial protocol uses a request/response method, in that untill it recieves the correct set of commands it will not transmit data out.You must not send additional commands until the current one has been actioned. All data is little-endian. (Low byte first.) Data is sent in binary format and there is no conversion to text.Commands are case sensitive.

The Commands

'a' Command

This Command is for legacy use only. It returns the current realtime data. The data value list speeduino replies with can be seen below , along with their function.ONLY the data value is sent NOT its order number or description.

The format to send is 'a' , '0' , '6'

Speeduino replies with

  1. highByte(currentStatus.secl)

  2. lowByte(currentStatus.secl)

  3. highByte(currentStatus.PW1)

  4. lowByte(currentStatus.PW1)

  5. highByte(currentStatus.PW2)

  6. lowByte(currentStatus.PW2)

  7. highByte(currentStatus.RPM)

  8. lowByte(currentStatus.RPM)

  9. highByte(currentStatus.advance * 10)

  10. lowByte(currentStatus.advance * 10)

  11. currentStatus.nSquirts);

  12. currentStatus.engine);

  13. currentStatus.afrTarget);

  14. currentStatus.afrTarget); // send twice so afrtgt1 == afrtgt2

  15. (99) // send dummy data as we don't have wbo2_en1

  16. (99) // send dummy data as we don't have wbo2_en2

  17. highByte(currentStatus.baro * 10)

  18. lowByte(currentStatus.baro * 10)

  19. highByte(currentStatus.MAP * 10)

  20. lowByte(currentStatus.MAP * 10)

  21. highByte(currentStatus.IAT * 10)

  22. lowByte(currentStatus.IAT * 10)

  23. highByte(currentStatus.coolant * 10)

  24. lowByte(currentStatus.coolant * 10)

  25. highByte(currentStatus.TPS * 10)

  26. lowByte(currentStatus.TPS * 10)

  27. highByte(currentStatus.battery10)

  28. lowByte(currentStatus.battery10)

  29. highByte(currentStatus.O2)

  30. lowByte(currentStatus.O2)

  31. highByte(currentStatus.O2_2)

  32. lowByte(currentStatus.O2_2)

  33. (99) // blank data for knock

  34. (99) // blank data for knock

  35. highByte(currentStatus.egoCorrection * 10) // egocor1

  36. lowByte(currentStatus.egoCorrection * 10) // egocor1

  37. highByte(currentStatus.egoCorrection * 10) // egocor2

  38. lowByte(currentStatus.egoCorrection * 10) // egocor2

  39. highByte(currentStatus.iatCorrection * 10) // aircor

  40. lowByte(currentStatus.iatCorrection * 10) // aircor

  41. highByte(currentStatus.wueCorrection * 10) // warmcor

  42. lowByte(currentStatus.wueCorrection * 10) // warmcor

  43. (99) // blank data for accelEnrich

  44. (99) // blank data for accelEnrich

  45. (99) // blank data for tpsFuelCut

  46. (99) // blank data for tpsFuelCut

  47. (99) // blank data for baroCorrection

  48. (99) // blank data for baroCorrection

  49. highByte(currentStatus.corrections * 10) // gammaEnrich

  50. lowByte(currentStatus.corrections * 10) // gammaEnrich

  51. highByte(currentStatus.VE * 10) // ve1

  52. lowByte(currentStatus.VE * 10) // ve1

  53. highByte(currentStatus.VE2 * 10) // ve2

  54. lowByte(currentStatus.VE2 * 10) // ve2

  55. (99) // blank data for iacstep

  56. (99) // blank data for iacstep

  57. (99) // blank data for cold_adv_deg

  58. (99) // blank data for cold_adv_deg

  59. highByte(currentStatus.tpsDOT * 10) // TPSdot

  60. lowByte(currentStatus.tpsDOT * 10) // TPSdot

  61. highByte(currentStatus.mapDOT * 10) // MAPdot

  62. lowByte(currentStatus.mapDOT * 10) // MAPdot

  63. highByte(currentStatus.dwell * 10) // dwell

  64. lowByte(currentStatus.dwell * 10) // dwell

  65. (99) // blank data for MAF

  66. (99) // blank data for MAF

  67. (currentStatus.fuelLoad*10) // fuelload

  68. (99) // blank data for fuelcor

  69. (99) // blank data for fuelcor

  70. (99) // blank data for portStatus

  71. highByte(currentStatus.advance1 * 10)

  72. lowByte(currentStatus.advance1 * 10)

  73. highByte(currentStatus.advance2 * 10)

  74. lowByte(currentStatus.advance2 * 10)

  75. to 114. (99) // bytes 75 to 114 blank data to fill buffer

'A' Command

This returns all the current realtime data(120 bytes 29/07/2021). The data value list speeduino replies with can be seen below , along with their function.ONLY the data value is sent NOT its order number or description. The Format to send is 'A'

Speeduino replies with

  1. currentStatus.secl //secl is simply a counter that increments each second. Used to track unexpected resets (Which will reset this count to 0)

  2. currentStatus.status1 //status1 Bitfield

  3. currentStatus.engine
    //Engine Status Bitfield

  4. currentStatus.syncLossCounter

  5. lowByte(currentStatus.MAP)

  6. highByte(currentStatus.MAP)

  7. (byte)(currentStatus.IAT + CALIBRATION_TEMPERATURE_OFFSET) //mat

  8. (byte)(currentStatus.coolant + CALIBRATION_TEMPERATURE_OFFSET) //Coolant ADC

  9. currentStatus.batCorrection //Battery voltage correction (%)

  10. currentStatus.battery10 //battery voltage

  11. currentStatus.O2 //O2

  12. currentStatus.egoCorrection //Exhaust gas correction (%)

  13. currentStatus.iatCorrection //Air temperature Correction (%)

  14. currentStatus.wueCorrection //Warmup enrichment (%)

  15. lowByte(currentStatus.RPM) //rpm HB

  16. highByte(currentStatus.RPM) //rpm LB

  17. (byte)(currentStatus.AEamount >> 1) //TPS acceleration enrichment (%) divided by 2 (Can exceed 255)

  18. lowByte(currentStatus.corrections) //Total GammaE (%)

  19. highByte(currentStatus.corrections) //Total GammaE (%)

  20. currentStatus.VE1 //VE 1 (%)

  21. currentStatus.VE2 //VE 2 (%)

  22. currentStatus.afrTarget

  23. currentStatus.tpsDOT //TPS DOT

  24. currentStatus.advance

  25. currentStatus.TPS // TPS (0% to 100%)

  26. lowByte(currentStatus.loopsPerSecond)

  27. highByte(currentStatus.loopsPerSecond)

  28. lowByte(currentStatus.freeRAM)

  29. highByte(currentStatus.freeRAM)

  30. (byte)(currentStatus.boostTarget >> 1 //Divide boost target by 2 to fit in a byte

  31. (byte)(currentStatus.boostDuty / 100)

  32. currentStatus.spark //Spark related bitfield

  33. lowByte(currentStatus.rpmDOT) // rpmDOT must be sent as a signed integer

  34. highByte(currentStatus.rpmDOT)

  35. currentStatus.ethanolPct // Flex sensor value (or 0 if not used)

  36. currentStatus.flexCorrection // Flex fuel correction (% above or below 100)

  37. currentStatus.flexIgnCorrection //Ignition correction (Increased degrees of advance) for flex fuel

  38. currentStatus.idleLoad

  39. currentStatus.testOutputs

  40. currentStatus.O2_2 //O2

  41. currentStatus.baro //Barometer value

  42. lowByte(currentStatus.canin[0])

  43. highByte(currentStatus.canin[0])

  44. lowByte(currentStatus.canin[1])

  45. highByte(currentStatus.canin[1])

  46. lowByte(currentStatus.canin[2])

  47. highByte(currentStatus.canin[2])

  48. lowByte(currentStatus.canin[3])

  49. highByte(currentStatus.canin[3])

  50. lowByte(currentStatus.canin[4])

  51. highByte(currentStatus.canin[4])

  52. lowByte(currentStatus.canin[5])

  53. highByte(currentStatus.canin[5])

  54. lowByte(currentStatus.canin[6])

  55. highByte(currentStatus.canin[6])

  56. lowByte(currentStatus.canin[7])

  57. highByte(currentStatus.canin[7])

  58. lowByte(currentStatus.canin[8])

  59. highByte(currentStatus.canin[8])

  60. lowByte(currentStatus.canin[9])

  61. highByte(currentStatus.canin[9])

  62. lowByte(currentStatus.canin[10])

  63. highByte(currentStatus.canin[10])

  64. lowByte(currentStatus.canin[11])

  65. highByte(currentStatus.canin[11])

  66. lowByte(currentStatus.canin[12])

  67. highByte(currentStatus.canin[12])

  68. lowByte(currentStatus.canin[13])

  69. highByte(currentStatus.canin[13])

  70. lowByte(currentStatus.canin[14])

  71. highByte(currentStatus.canin[14])

  72. lowByte(currentStatus.canin[15])

  73. highByte(currentStatus.canin[15])

  74. currentStatus.tpsADC

  75. getNextError()

  76. lowByte(currentStatus.PW1) //Pulsewidth 1 multiplied by 10 in ms. Have to convert from uS to mS.

  77. highByte(currentStatus.PW1) //Pulsewidth 1 multiplied by 10 in ms. Have to convert from uS to mS.

  78. lowByte(currentStatus.PW2) //Pulsewidth 2 multiplied by 10 in ms. Have to convert from uS to mS.

  79. highByte(currentStatus.PW2) //Pulsewidth 2 multiplied by 10 in ms. Have to convert from uS to mS.

  80. lowByte(currentStatus.PW3) //Pulsewidth 3 multiplied by 10 in ms. Have to convert from uS to mS.

  81. highByte(currentStatus.PW3) //Pulsewidth 3 multiplied by 10 in ms. Have to convert from uS to mS.

  82. lowByte(currentStatus.PW4) //Pulsewidth 4 multiplied by 10 in ms. Have to convert from uS to mS.

  83. highByte(currentStatus.PW4) //Pulsewidth 4 multiplied by 10 in ms. Have to convert from uS to mS.

  84. currentStatus.status3

  85. currentStatus.engineProtectStatus

  86. lowByte(currentStatus.fuelLoad)

  87. highByte(currentStatus.fuelLoad)

  88. lowByte(currentStatus.ignLoad)

  89. highByte(currentStatus.ignLoad)

  90. lowByte(currentStatus.dwell)

  91. highByte(currentStatus.dwell)

  92. currentStatus.CLIdleTarget

  93. currentStatus.mapDOT

  94. lowByte(currentStatus.vvt1Angle) //2 bytes for vvt1Angle

  95. highByte(currentStatus.vvt1Angle)

  96. currentStatus.vvt1TargetAngle

  97. (byte)(currentStatus.vvt1Duty)

  98. lowByte(currentStatus.flexBoostCorrection)

  99. highByte(currentStatus.flexBoostCorrection)

  100. currentStatus.baroCorrection

  101. currentStatus.VE //Current VE (%). Can be equal to VE1 or VE2 or a calculated value from both of them

  102. currentStatus.ASEValue //Current ASE (%)

  103. lowByte(currentStatus.vss)

  104. highByte(currentStatus.vss)

  105. currentStatus.gear

  106. currentStatus.fuelPressure

  107. currentStatus.oilPressure

  108. currentStatus.wmiPW

  109. currentStatus.status4

  110. lowByte(currentStatus.vvt2Angle)

  111. highByte(currentStatus.vvt2Angle)

  112. currentStatus.vvt2TargetAngle

  113. (byte)(currentStatus.vvt2Duty)

  114. currentStatus.outputsStatus

  115. (byte)(currentStatus.fuelTemp + CALIBRATION_TEMPERATURE_OFFSET) //Fuel temperature from flex sensor

  116. currentStatus.fuelTempCorrection //Fuel temperature Correction (%)

  117. currentStatus.advance1 //advance 1 (%)

  118. currentStatus.advance2 //advance 2 (%)

  119. currentStatus.TS_SD_Status //SD card status

  120. lowByte(currentStatus.EMAP)

  121. highByte(currentStatus.EMAP)

'b' Command

New EEPROM burn command to only burn a single page at a time The Format to send is 'b' , '0' , '*' Where * is the config page number

Speeduino response (none)

'B' Command

This Burns the current configuration from RAM into EEPROM/non-volatile storage. The Format to send is 'B'

Speeduino response (none)

'c' Command

Send the current loops/sec value

The Format to send is 'c'

Speeduino response lowByte(currentStatus.loopsPerSecond) , highByte(currentStatus.loopsPerSecond)

'C' Command

Test communications. This is used by Tunerstudio to see whether there is an ECU on a given serial port The Format to send is 'B'

Speeduino response

'd' Command

Send a CRC32 hash of a given page The Format to send is 'd' , '0' , '*' where * is the value to calc the hash of.

The response is 3 bytes calculated as follows. CRC32_val = calculateCRC32( * ) ((CRC32_val >> 24) & 255) ) byte 1 = ( ((CRC32_val >> 16) & 255) ) byte 2 = ( ((CRC32_val >> 8) & 255) ) byte 3 = ( (CRC32_val & 255) )

Speeduino response byte 1 , byte 2 , byte 3

'E' Command

Command button commands. Commands are built as cmdCombined = word(cmdGroup, cmdValue). this is the current(29/07/2021) list of valid cmdCombined command values.

TS_CMD_TEST_DSBL 256 TS_CMD_TEST_ENBL 257

TS_CMD_INJ1_ON 513 TS_CMD_INJ1_OFF 514 TS_CMD_INJ1_50PC 515 TS_CMD_INJ2_ON 516 TS_CMD_INJ2_OFF 517 TS_CMD_INJ2_50PC 518 TS_CMD_INJ3_ON 519 TS_CMD_INJ3_OFF 520 TS_CMD_INJ3_50PC 521 TS_CMD_INJ4_ON 522 TS_CMD_INJ4_OFF 523 TS_CMD_INJ4_50PC 524 TS_CMD_INJ5_ON 525 TS_CMD_INJ5_OFF 526 TS_CMD_INJ5_50PC 527 TS_CMD_INJ6_ON 528 TS_CMD_INJ6_OFF 529 TS_CMD_INJ6_50PC 530 TS_CMD_INJ7_ON 531 TS_CMD_INJ7_OFF 532 TS_CMD_INJ7_50PC 533 TS_CMD_INJ8_ON 534 TS_CMD_INJ8_OFF 535 TS_CMD_INJ8_50PC 536 TS_CMD_IGN1_ON 769 TS_CMD_IGN1_OFF 770 TS_CMD_IGN1_50PC 771 TS_CMD_IGN2_ON 772 TS_CMD_IGN2_OFF 773 TS_CMD_IGN2_50PC 774 TS_CMD_IGN3_ON 775 TS_CMD_IGN3_OFF 776 TS_CMD_IGN3_50PC 777 TS_CMD_IGN4_ON 778 TS_CMD_IGN4_OFF 779 TS_CMD_IGN4_50PC 780 TS_CMD_IGN5_ON 781 TS_CMD_IGN5_OFF 782 TS_CMD_IGN5_50PC 783 TS_CMD_IGN6_ON 784 TS_CMD_IGN6_OFF 785 TS_CMD_IGN6_50PC 786 TS_CMD_IGN7_ON 787 TS_CMD_IGN7_OFF 788 TS_CMD_IGN7_50PC 789 TS_CMD_IGN8_ON 790 TS_CMD_IGN8_OFF 791 TS_CMD_IGN8_50PC 792

TS_CMD_STM32_REBOOT 12800 TS_CMD_STM32_BOOTLOADER 12801

TS_CMD_VSS_60KMH 39168 //0x99x00 TS_CMD_VSS_RATIO1 39169 TS_CMD_VSS_RATIO2 39170

TS_CMD_VSS_RATIO3 39171 TS_CMD_VSS_RATIO4 39172 TS_CMD_VSS_RATIO5 39173 TS_CMD_VSS_RATIO6 39174

The Format to send is 'E' , cmdGroup , cmdValue
eg for cmdtestspk1on send 'E' , '0x03' , '0x01'

Speeduino response (none , hardware action only)

'F' Command

send serial protocol version The Format to send is 'F'

Speeduino response '0' , '0' , '1' NOTE these values are sent in ASCII.

'h' Command

Stop the tooth logger This reconnects the crank and cam input interrupts back to the normal input trigger code.

The Format to send is 'h'

Speeduino response (none)

'H' Command

Start the tooth logger This disconnects the crank and cam input interrupts from their normal input trigger code and routes them to the tooth logger code.An acknowledge reply is made by speeduino.

The Format to send is 'H'

Speeduino response '1'

'j' Command

Stop the composite logger This reconnects the crank and cam input interrupts back to the normal input trigger code.

The Format to send is 'j'

Speeduino response

'J' Command

Start the composite logger This disconnects the crank and cam input interrupts from their normal input trigger code and routes them to the composite logger code.An acknowledge reply is made by speeduino.

The Format to send is 'J'

Speeduino response '1'

'L' Command

List the contents of current page in human readable form You must set the current page prior to issuing this command to set the required page to be generated. the data structure is as follows.

currentPage veMapPage: Serial.println(F("\nVE Map")); serial_print_3dtable(fuelTable);

currentPage veSetPage: Serial.println(F("\nPg 2 Cfg")); // The following loop displays in human readable form of all byte values in config page 1 up to but not including the first array. serial_println_range((byte )&configPage2, configPage2.wueValues); serial_print_space_delimited_array(configPage2.wueValues); // This displays all the byte values between the last array up to but not including the first unsigned int on config page 1 serial_println_range(_end_range_byte_address(configPage2.wueValues), (byte)&configPage2.injAng); // The following loop displays four unsigned ints serial_println_range(configPage2.injAng, configPage2.injAng + _countof(configPage2.injAng)); // Following loop displays byte values between the unsigned ints serial_println_range(_end_range_byte_address(configPage2.injAng), (byte*)&configPage2.mapMax); Serial.println(configPage2.mapMax); // Following loop displays remaining byte values of the page serial_println_range(&configPage2.fpPrime, (byte *)&configPage2 + sizeof(configPage2)); break;

currentPage ignMapPage: Serial.println(F("\nIgnition Map")); serial_print_3dtable(ignitionTable);

currentPage ignSetPage: Serial.println(F("\nPg 4 Cfg")); Serial.println(configPage4.triggerAngle);// configPage4.triggerAngle is an int so just display it without complication // Following loop displays byte values after that first int up to but not including the first array in config page 2 serial_println_range((byte*)&configPage4.FixAng, configPage4.taeBins); serial_print_space_delimited_array(configPage4.taeBins); serial_print_space_delimited_array(configPage4.taeValues); serial_print_space_delimited_array(configPage4.wueBins); Serial.println(configPage4.dwellLimit);// Little lonely byte stuck between two arrays. No complications just display it. serial_print_space_delimited_array(configPage4.dwellCorrectionValues); serial_println_range(_end_range_byte_address(configPage4.dwellCorrectionValues), (byte *)&configPage4 + sizeof(configPage4));

currentPage afrMapPage: Serial.println(F("\nAFR Map")); serial_print_3dtable(afrTable); break;

currentPage afrSetPage: Serial.println(F("\nPg 6 Config")); serial_println_range((byte *)&configPage6, configPage6.voltageCorrectionBins); serial_print_space_delimited_array(configPage6.voltageCorrectionBins); serial_print_space_delimited_array(configPage6.injVoltageCorrectionValues); serial_print_space_delimited_array(configPage6.airDenBins); serial_print_space_delimited_array(configPage6.airDenRates); serial_println_range(_end_range_byte_address(configPage6.airDenRates), configPage6.iacCLValues); serial_print_space_delimited_array(configPage6.iacCLValues); serial_print_space_delimited_array(configPage6.iacOLStepVal); serial_print_space_delimited_array(configPage6.iacOLPWMVal); serial_print_space_delimited_array(configPage6.iacBins); serial_print_space_delimited_array(configPage6.iacCrankSteps); serial_print_space_delimited_array(configPage6.iacCrankDuty); serial_print_space_delimited_array(configPage6.iacCrankBins); // Following loop is for remaining byte value of page serial_println_range(_end_range_byte_address(configPage6.iacCrankBins), (byte *)&configPage6 + sizeof(configPage6)); break;

currentPage boostvvtPage: Serial.println(F("\nBoost Map")); serial_print_3dtable(boostTable); Serial.println(F("\nVVT Map")); serial_print_3dtable(vvtTable); break;

currentPage seqFuelPage: Serial.println(F("\nTrim 1 Table")); serial_print_3dtable(trim1Table); break;

currentPage canbusPage: Serial.println(F("\nPage 9 Cfg")); serial_println_range((byte *)&configPage9, (byte *)&configPage9 + sizeof(configPage9)); break;

currentPage fuelMap2Page: Serial.println(F("\n2nd Fuel Map")); serial_print_3dtable(fuelTable2); break;

currentPage ignMap2Page: Serial.println(F("\n2nd Ignition Map")); serial_print_3dtable(ignitionTable2); break;

currentPage warmupPage: N/A currentPage progOutsPage: N/A

'm' Command

Send the current free memory The Format to send is 'm'

Speeduino response 'lowByte(currentStatus.freeRAM)' , 'highByte(currentStatus.freeRAM)'

'M' Command

'N' Command

Displays a new line. Like pushing enter in a text editor The Format to send is 'N'

Speeduino response ' ' NOTE this is sent as plain text NOT ASCII

'p' Command

Sets the current Page.This is the new foramt used by TunerStudio. 6 bytes are required:

  •     2 byte - Page identifier
    
  •     2 byte - offset
    
  •     2 byte - Length
    

'P' Command

Sets the current page. This is a legacy function and is no longer used by TunerStudio. It is maintained for compatibility with other systems. The Format to send is 'P' , '*' Where * is the Page number to be selected. this MUST be sent in ASCII format

Speeduino response (none)

'Q' Command

Send the code version. The response is a 20 byte long ASCII converted string The Format to send is 'Q'

Speeduino response 'speeduino 202104-dev' Above is an example reply, the actual reply will depend on what firmware is installed.

'r' Command

This command has multiple functions, It requests specific data.This data may be realtime values or from RTC or SD card.

'S' Command

send the code version. The response is a 20 byte long ASCII converted string The Format to send is 'S'

Speeduino response 'Speeduino 2021.04-dev' Above is an example reply, the actual reply will depend on what firmware is installed.

't' Command

receive new Calibration info. Command structure: "t", tble_idx , data array.

'T' Command

Send 256 tooth log entries to Tuner Studios tooth logger 6 bytes required: 2 - Page identifier 2 - offset 2 - Length

'U' Command

User wants to reset the Arduino (probably for FW update)

'V'Command

send VE table and constants in binary

'w' Command

'W'Command

receive new VE or constant 'W' , offset , newbyte

'z' Command

Send the 256 tooth log entries to a terminal emulator

'?' Command

This will send out a human text readable string with details of the command characters and their functions. The Format to send is '?'

Speeduino response

===Command Help=== All commands are single character and are concatenated with their parameters without spaces. Syntax: command , parameter1 , parameter2 , parameterN ===List of Commands=== A - Displays 31 bytes of currentStatus values in binary (live data) B - Burn current map and configPage values to eeprom C - Test COM port. Used by Tunerstudio to see whether an ECU is on a given serial port. Returns a binary number. N - Print new line. P - Set current page. Syntax: P , pageNumber R - Same as A command S - Display signature number Q - Same as S command V - Display map or configPage values in binary W - Set one byte in map or configPage. Expects binary parameters. Syntax: W+<offset , newbyte t - Set calibration values. Expects binary parameters. Table index is either 0, 1, or 2.
Syntax: t+ , tble_idx , newValue1 , newValue2 , newValueN Z - Display calibration values T - Displays 256 tooth log entries in binary r - Displays 256 tooth log entries U - Prepare for firmware update. The next byte received will cause the Arduino to reset. ? - Displays this help page

2. Secondary Serial

The Secondary Serial interface enables an external device to access data from Speeduino or to expand the io of the Speeduino ECU. A full explanation of the features and operation of secondary serial can be found here. Secondary_Serial_IO_interface

3. CanBus

Canbus is only available directly on Teensy and STM32 MCU based Speeduino. Mega2560 based units need additional hardware such as DxControl GPIO .
A full explanation of the features and operation of secondary serial can be found here. Canbus_Support