Auto merge of #62 - mmaker:feature/scale_by_cofactor, r=ebfull
Add "scale_by_cofactor". Add a function for Affine types that multiplies point by the cofactor of the group. If the points are in the group, they'll thus end up in the correct subgroup. note: this patch is already being tested with previous unittests. note: this patch raises warning for unused functions and consts.
This commit is contained in:
commit
044256c2f7
|
@ -85,6 +85,17 @@ macro_rules! curve_impl {
|
|||
}
|
||||
|
||||
impl $affine {
|
||||
|
||||
fn mul_bits<S: AsRef<[u64]>>(&self, bits: BitIterator<S>) -> $projective {
|
||||
let mut res = $projective::zero();
|
||||
for i in bits {
|
||||
res.double();
|
||||
if i { res.add_assign_mixed(self) }
|
||||
}
|
||||
res
|
||||
}
|
||||
|
||||
|
||||
/// Attempts to construct an affine point given an x-coordinate. The
|
||||
/// point is not guaranteed to be in the prime order subgroup.
|
||||
///
|
||||
|
@ -163,18 +174,8 @@ macro_rules! curve_impl {
|
|||
}
|
||||
|
||||
fn mul<S: Into<<Self::Scalar as PrimeField>::Repr>>(&self, by: S) -> $projective {
|
||||
let mut res = $projective::zero();
|
||||
|
||||
for i in BitIterator::new(by.into())
|
||||
{
|
||||
res.double();
|
||||
|
||||
if i {
|
||||
res.add_assign_mixed(self);
|
||||
}
|
||||
}
|
||||
|
||||
res
|
||||
let bits = BitIterator::new(by.into());
|
||||
self.mul_bits(bits)
|
||||
}
|
||||
|
||||
fn negate(&mut self) {
|
||||
|
@ -844,6 +845,13 @@ pub mod g1 {
|
|||
}
|
||||
|
||||
impl G1Affine {
|
||||
#[allow(dead_code)]
|
||||
fn scale_by_cofactor(&self) -> G1 {
|
||||
// G1 cofactor = (x - 1)^2 / 3 = 76329603384216526031706109802092473003
|
||||
let cofactor = BitIterator::new([0x8c00aaab0000aaab, 0x396c8c005555e156]);
|
||||
self.mul_bits(cofactor)
|
||||
}
|
||||
|
||||
fn get_generator() -> Self {
|
||||
G1Affine {
|
||||
x: super::super::fq::G1_GENERATOR_X,
|
||||
|
@ -929,25 +937,9 @@ pub mod g1 {
|
|||
y: if yrepr < negyrepr { y } else { negy },
|
||||
infinity: false
|
||||
};
|
||||
|
||||
assert!(!p.is_in_correct_subgroup_assuming_on_curve());
|
||||
|
||||
let mut g1 = G1::zero();
|
||||
|
||||
// Cofactor of G1 is 76329603384216526031706109802092473003.
|
||||
// Calculated by: ((x-1)**2) // 3
|
||||
// where x is the BLS parameter.
|
||||
for b in "111001011011001000110000000000010101010101010111100001010101101000110000000000101010101010101100000000000000001010101010101011"
|
||||
.chars()
|
||||
.map(|c| c == '1')
|
||||
{
|
||||
g1.double();
|
||||
|
||||
if b {
|
||||
g1.add_assign_mixed(&p);
|
||||
}
|
||||
}
|
||||
|
||||
let g1 = p.scale_by_cofactor();
|
||||
if !g1.is_zero() {
|
||||
assert_eq!(i, 4);
|
||||
let g1 = G1Affine::from(g1);
|
||||
|
@ -1367,6 +1359,16 @@ pub mod g2 {
|
|||
}
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
fn scale_by_cofactor(&self) -> G2 {
|
||||
// G2 cofactor = (x^8 - 4 x^7 + 5 x^6) - (4 x^4 + 6 x^3 - 4 x^2 - 4 x + 13) // 9
|
||||
// 0x5d543a95414e7f1091d50792876a202cd91de4547085abaa68a205b2e5a7ddfa628f1cb4d9e82ef21537e293a6691ae1616ec6e786f0c70cf1c38e31c7238e5
|
||||
let cofactor = BitIterator::new([0xcf1c38e31c7238e5, 0x1616ec6e786f0c70, 0x21537e293a6691ae,
|
||||
0xa628f1cb4d9e82ef, 0xa68a205b2e5a7ddf, 0xcd91de4547085aba,
|
||||
0x91d50792876a202, 0x5d543a95414e7f1]);
|
||||
self.mul_bits(cofactor)
|
||||
}
|
||||
|
||||
fn perform_pairing(&self, other: &G1Affine) -> Fq12 {
|
||||
super::super::Bls12::pairing(*other, *self)
|
||||
}
|
||||
|
@ -1434,28 +1436,12 @@ pub mod g2 {
|
|||
|
||||
assert!(!p.is_in_correct_subgroup_assuming_on_curve());
|
||||
|
||||
let mut g2 = G2::zero();
|
||||
|
||||
// Cofactor of G2 is 305502333931268344200999753193121504214466019254188142667664032982267604182971884026507427359259977847832272839041616661285803823378372096355777062779109.
|
||||
// Calculated by: ((x**8) - (4 * (x**7)) + (5 * (x**6)) - (4 * (x**4)) + (6 * (x**3)) - (4 * (x**2)) - (4*x) + 13) // 9
|
||||
// where x is the BLS parameter.
|
||||
for b in "101110101010100001110101001010101000001010011100111111100010000100100011101010100000111100100101000011101101010001000000010110011011001000111011110010001010100011100001000010110101011101010100110100010100010000001011011001011100101101001111101110111111010011000101000111100011100101101001101100111101000001011101111001000010101001101111110001010010011101001100110100100011010111000010110000101101110110001101110011110000110111100001100011100001100111100011100001110001110001100011100011100100011100011100101"
|
||||
.chars()
|
||||
.map(|c| c == '1')
|
||||
{
|
||||
g2.double();
|
||||
|
||||
if b {
|
||||
g2.add_assign_mixed(&p);
|
||||
}
|
||||
}
|
||||
|
||||
let g2 = p.scale_by_cofactor();
|
||||
if !g2.is_zero() {
|
||||
assert_eq!(i, 2);
|
||||
let g2 = G2Affine::from(g2);
|
||||
|
||||
assert!(g2.is_in_correct_subgroup_assuming_on_curve());
|
||||
|
||||
assert_eq!(g2, G2Affine::one());
|
||||
break;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue