ff: Remove SqrtField trait
The sqrt() function is now part of the Field trait. ff_derive returns an error on fields for which it does not support generating a square root function. Note that Fq6 and Fq12 in pairing::bls12_381 leave the function unimplemented. They will be dropped once the migration to the bls12_381 crate is complete. The equivalent structs in that crate are not exposed.
This commit is contained in:
parent
b02cf3b467
commit
1761ebfb35
|
@ -1,4 +1,4 @@
|
|||
use ff::{Field, PowVartime, PrimeField, ScalarEngine, SqrtField};
|
||||
use ff::{Field, PowVartime, PrimeField, ScalarEngine};
|
||||
use group::{CurveAffine, CurveProjective, EncodedPoint, GroupDecodingError};
|
||||
use pairing::{Engine, PairingCurveAffine};
|
||||
|
||||
|
@ -217,9 +217,7 @@ impl Field for Fr {
|
|||
fn frobenius_map(&mut self, _: usize) {
|
||||
// identity
|
||||
}
|
||||
}
|
||||
|
||||
impl SqrtField for Fr {
|
||||
fn sqrt(&self) -> CtOption<Self> {
|
||||
// Tonelli-Shank's algorithm for q mod 16 = 1
|
||||
// https://eprint.iacr.org/2012/685.pdf (page 12, algorithm 5)
|
||||
|
|
|
@ -163,8 +163,8 @@ pub fn prime_field(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
|
|||
&modulus,
|
||||
&endianness,
|
||||
limbs,
|
||||
sqrt_impl,
|
||||
));
|
||||
gen.extend(sqrt_impl);
|
||||
|
||||
// Return the generated impl
|
||||
gen.into()
|
||||
|
@ -486,89 +486,84 @@ fn prime_field_constants_and_sqrt(
|
|||
biguint_to_u64_vec((exp(generator.clone(), &t, &modulus) * &r) % modulus, limbs);
|
||||
let generator = biguint_to_u64_vec((generator.clone() * &r) % modulus, limbs);
|
||||
|
||||
let sqrt_impl = if (modulus % BigUint::from_str("4").unwrap())
|
||||
== BigUint::from_str("3").unwrap()
|
||||
{
|
||||
// Addition chain for (r + 1) // 4
|
||||
let mod_plus_1_over_4 = pow_fixed::generate(
|
||||
"e! {self},
|
||||
(modulus + BigUint::from_str("1").unwrap()) >> 2,
|
||||
);
|
||||
let sqrt_impl =
|
||||
if (modulus % BigUint::from_str("4").unwrap()) == BigUint::from_str("3").unwrap() {
|
||||
// Addition chain for (r + 1) // 4
|
||||
let mod_plus_1_over_4 = pow_fixed::generate(
|
||||
"e! {self},
|
||||
(modulus + BigUint::from_str("1").unwrap()) >> 2,
|
||||
);
|
||||
|
||||
quote! {
|
||||
impl ::ff::SqrtField for #name {
|
||||
fn sqrt(&self) -> ::subtle::CtOption<Self> {
|
||||
use ::subtle::ConstantTimeEq;
|
||||
quote! {
|
||||
use ::subtle::ConstantTimeEq;
|
||||
|
||||
// Because r = 3 (mod 4)
|
||||
// sqrt can be done with only one exponentiation,
|
||||
// via the computation of self^((r + 1) // 4) (mod r)
|
||||
let sqrt = {
|
||||
#mod_plus_1_over_4
|
||||
};
|
||||
// Because r = 3 (mod 4)
|
||||
// sqrt can be done with only one exponentiation,
|
||||
// via the computation of self^((r + 1) // 4) (mod r)
|
||||
let sqrt = {
|
||||
#mod_plus_1_over_4
|
||||
};
|
||||
|
||||
::subtle::CtOption::new(
|
||||
sqrt,
|
||||
(sqrt * &sqrt).ct_eq(self), // Only return Some if it's the square root.
|
||||
)
|
||||
}
|
||||
::subtle::CtOption::new(
|
||||
sqrt,
|
||||
(sqrt * &sqrt).ct_eq(self), // Only return Some if it's the square root.
|
||||
)
|
||||
}
|
||||
}
|
||||
} else if (modulus % BigUint::from_str("16").unwrap()) == BigUint::from_str("1").unwrap() {
|
||||
// Addition chain for (t - 1) // 2
|
||||
let t_minus_1_over_2 = pow_fixed::generate("e! {self}, (&t - BigUint::one()) >> 1);
|
||||
} else if (modulus % BigUint::from_str("16").unwrap()) == BigUint::from_str("1").unwrap() {
|
||||
// Addition chain for (t - 1) // 2
|
||||
let t_minus_1_over_2 = pow_fixed::generate("e! {self}, (&t - BigUint::one()) >> 1);
|
||||
|
||||
quote! {
|
||||
impl ::ff::SqrtField for #name {
|
||||
fn sqrt(&self) -> ::subtle::CtOption<Self> {
|
||||
// Tonelli-Shank's algorithm for q mod 16 = 1
|
||||
// https://eprint.iacr.org/2012/685.pdf (page 12, algorithm 5)
|
||||
use ::subtle::{ConditionallySelectable, ConstantTimeEq};
|
||||
quote! {
|
||||
// Tonelli-Shank's algorithm for q mod 16 = 1
|
||||
// https://eprint.iacr.org/2012/685.pdf (page 12, algorithm 5)
|
||||
use ::subtle::{ConditionallySelectable, ConstantTimeEq};
|
||||
|
||||
// w = self^((t - 1) // 2)
|
||||
let w = {
|
||||
#t_minus_1_over_2
|
||||
};
|
||||
// w = self^((t - 1) // 2)
|
||||
let w = {
|
||||
#t_minus_1_over_2
|
||||
};
|
||||
|
||||
let mut v = S;
|
||||
let mut x = *self * &w;
|
||||
let mut b = x * &w;
|
||||
let mut v = S;
|
||||
let mut x = *self * &w;
|
||||
let mut b = x * &w;
|
||||
|
||||
// Initialize z as the 2^S root of unity.
|
||||
let mut z = ROOT_OF_UNITY;
|
||||
// Initialize z as the 2^S root of unity.
|
||||
let mut z = ROOT_OF_UNITY;
|
||||
|
||||
for max_v in (1..=S).rev() {
|
||||
let mut k = 1;
|
||||
let mut tmp = b.square();
|
||||
let mut j_less_than_v: ::subtle::Choice = 1.into();
|
||||
for max_v in (1..=S).rev() {
|
||||
let mut k = 1;
|
||||
let mut tmp = b.square();
|
||||
let mut j_less_than_v: ::subtle::Choice = 1.into();
|
||||
|
||||
for j in 2..max_v {
|
||||
let tmp_is_one = tmp.ct_eq(&#name::one());
|
||||
let squared = #name::conditional_select(&tmp, &z, tmp_is_one).square();
|
||||
tmp = #name::conditional_select(&squared, &tmp, tmp_is_one);
|
||||
let new_z = #name::conditional_select(&z, &squared, tmp_is_one);
|
||||
j_less_than_v &= !j.ct_eq(&v);
|
||||
k = u32::conditional_select(&j, &k, tmp_is_one);
|
||||
z = #name::conditional_select(&z, &new_z, j_less_than_v);
|
||||
}
|
||||
|
||||
let result = x * &z;
|
||||
x = #name::conditional_select(&result, &x, b.ct_eq(&#name::one()));
|
||||
z = z.square();
|
||||
b *= &z;
|
||||
v = k;
|
||||
for j in 2..max_v {
|
||||
let tmp_is_one = tmp.ct_eq(&#name::one());
|
||||
let squared = #name::conditional_select(&tmp, &z, tmp_is_one).square();
|
||||
tmp = #name::conditional_select(&squared, &tmp, tmp_is_one);
|
||||
let new_z = #name::conditional_select(&z, &squared, tmp_is_one);
|
||||
j_less_than_v &= !j.ct_eq(&v);
|
||||
k = u32::conditional_select(&j, &k, tmp_is_one);
|
||||
z = #name::conditional_select(&z, &new_z, j_less_than_v);
|
||||
}
|
||||
|
||||
::subtle::CtOption::new(
|
||||
x,
|
||||
(x * &x).ct_eq(self), // Only return Some if it's the square root.
|
||||
)
|
||||
let result = x * &z;
|
||||
x = #name::conditional_select(&result, &x, b.ct_eq(&#name::one()));
|
||||
z = z.square();
|
||||
b *= &z;
|
||||
v = k;
|
||||
}
|
||||
|
||||
::subtle::CtOption::new(
|
||||
x,
|
||||
(x * &x).ct_eq(self), // Only return Some if it's the square root.
|
||||
)
|
||||
}
|
||||
}
|
||||
} else {
|
||||
quote! {}
|
||||
};
|
||||
} else {
|
||||
syn::Error::new_spanned(
|
||||
&name,
|
||||
"ff_derive can't generate a square root function for this field.",
|
||||
)
|
||||
.to_compile_error()
|
||||
};
|
||||
|
||||
// Compute R^2 mod m
|
||||
let r2 = biguint_to_u64_vec((&r * &r) % modulus, limbs);
|
||||
|
@ -634,6 +629,7 @@ fn prime_field_impl(
|
|||
modulus: &BigUint,
|
||||
endianness: &ReprEndianness,
|
||||
limbs: usize,
|
||||
sqrt_impl: proc_macro2::TokenStream,
|
||||
) -> proc_macro2::TokenStream {
|
||||
// Returns r{n} as an ident.
|
||||
fn get_temp(n: usize) -> syn::Ident {
|
||||
|
@ -1280,6 +1276,10 @@ fn prime_field_impl(
|
|||
{
|
||||
#squaring_impl
|
||||
}
|
||||
|
||||
fn sqrt(&self) -> ::subtle::CtOption<Self> {
|
||||
#sqrt_impl
|
||||
}
|
||||
}
|
||||
|
||||
impl #name {
|
||||
|
|
|
@ -75,6 +75,10 @@ pub trait Field:
|
|||
/// Exponentiates this element by a power of the base prime modulus via
|
||||
/// the Frobenius automorphism.
|
||||
fn frobenius_map(&mut self, power: usize);
|
||||
|
||||
/// Returns the square root of the field element, if it is
|
||||
/// quadratic residue.
|
||||
fn sqrt(&self) -> CtOption<Self>;
|
||||
}
|
||||
|
||||
pub trait PowVartime<L>: Field
|
||||
|
@ -124,13 +128,6 @@ impl<T: Field> PowVartime<u64> for T {
|
|||
const LIMB_SIZE: u64 = 64;
|
||||
}
|
||||
|
||||
/// This trait represents an element of a field that has a square root operation described for it.
|
||||
pub trait SqrtField: Field {
|
||||
/// Returns the square root of the field element, if it is
|
||||
/// quadratic residue.
|
||||
fn sqrt(&self) -> CtOption<Self>;
|
||||
}
|
||||
|
||||
/// This represents an element of a prime field.
|
||||
pub trait PrimeField:
|
||||
Field + Ord + From<u64> + BitAnd<u64, Output = u64> + Shr<u32, Output = Self>
|
||||
|
@ -230,7 +227,7 @@ pub trait PrimeField:
|
|||
/// pairing-friendly curve) can be defined in a subtrait.
|
||||
pub trait ScalarEngine: Sized + 'static + Clone {
|
||||
/// This is the scalar field of the engine's groups.
|
||||
type Fr: PrimeField + SqrtField;
|
||||
type Fr: PrimeField;
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
// Catch documentation errors caused by code changes.
|
||||
#![deny(intra_doc_link_resolution_failure)]
|
||||
|
||||
use ff::{PrimeField, ScalarEngine, SqrtField};
|
||||
use ff::{Field, PrimeField, ScalarEngine};
|
||||
use rand::RngCore;
|
||||
use std::error::Error;
|
||||
use std::fmt;
|
||||
|
@ -47,8 +47,8 @@ pub trait CurveProjective:
|
|||
+ CurveOpsOwned<<Self as CurveProjective>::Affine>
|
||||
{
|
||||
type Engine: ScalarEngine<Fr = Self::Scalar>;
|
||||
type Scalar: PrimeField + SqrtField;
|
||||
type Base: SqrtField;
|
||||
type Scalar: PrimeField;
|
||||
type Base: Field;
|
||||
type Affine: CurveAffine<Projective = Self, Scalar = Self::Scalar>;
|
||||
|
||||
/// Returns an element chosen uniformly at random using a user-provided RNG.
|
||||
|
@ -105,8 +105,8 @@ pub trait CurveAffine:
|
|||
+ Neg<Output = Self>
|
||||
{
|
||||
type Engine: ScalarEngine<Fr = Self::Scalar>;
|
||||
type Scalar: PrimeField + SqrtField;
|
||||
type Base: SqrtField;
|
||||
type Scalar: PrimeField;
|
||||
type Base: Field;
|
||||
type Projective: CurveProjective<Affine = Self, Scalar = Self::Scalar>;
|
||||
type Uncompressed: EncodedPoint<Affine = Self>;
|
||||
type Compressed: EncodedPoint<Affine = Self>;
|
||||
|
|
|
@ -3,7 +3,7 @@ use rand_core::SeedableRng;
|
|||
use rand_xorshift::XorShiftRng;
|
||||
use std::ops::{AddAssign, MulAssign, Neg, SubAssign};
|
||||
|
||||
use ff::{Field, PrimeField, SqrtField};
|
||||
use ff::{Field, PrimeField};
|
||||
use pairing::bls12_381::*;
|
||||
|
||||
fn bench_fq_add_assign(c: &mut Criterion) {
|
||||
|
|
|
@ -3,7 +3,7 @@ use rand_core::SeedableRng;
|
|||
use rand_xorshift::XorShiftRng;
|
||||
use std::ops::{AddAssign, MulAssign, SubAssign};
|
||||
|
||||
use ff::{Field, SqrtField};
|
||||
use ff::Field;
|
||||
use pairing::bls12_381::*;
|
||||
|
||||
fn bench_fq2_add_assign(c: &mut Criterion) {
|
||||
|
|
|
@ -3,7 +3,7 @@ use rand_core::SeedableRng;
|
|||
use rand_xorshift::XorShiftRng;
|
||||
use std::ops::{AddAssign, MulAssign, Neg, SubAssign};
|
||||
|
||||
use ff::{Field, PrimeField, SqrtField};
|
||||
use ff::{Field, PrimeField};
|
||||
use pairing::bls12_381::*;
|
||||
|
||||
fn bench_fr_add_assign(c: &mut Criterion) {
|
||||
|
|
|
@ -754,7 +754,7 @@ pub mod g1 {
|
|||
use super::super::{Bls12, Fq, Fq12, FqRepr, Fr};
|
||||
use super::g2::G2Affine;
|
||||
use crate::{Engine, PairingCurveAffine};
|
||||
use ff::{BitIterator, Field, PrimeField, SqrtField};
|
||||
use ff::{BitIterator, Field, PrimeField};
|
||||
use group::{CurveAffine, CurveProjective, EncodedPoint, GroupDecodingError};
|
||||
use rand_core::RngCore;
|
||||
use std::fmt;
|
||||
|
@ -1054,8 +1054,6 @@ pub mod g1 {
|
|||
|
||||
#[test]
|
||||
fn g1_generator() {
|
||||
use crate::SqrtField;
|
||||
|
||||
let mut x = Fq::zero();
|
||||
let mut i = 0;
|
||||
loop {
|
||||
|
@ -1366,7 +1364,7 @@ pub mod g2 {
|
|||
use super::super::{Bls12, Fq, Fq12, Fq2, FqRepr, Fr};
|
||||
use super::g1::G1Affine;
|
||||
use crate::{Engine, PairingCurveAffine};
|
||||
use ff::{BitIterator, Field, PrimeField, SqrtField};
|
||||
use ff::{BitIterator, Field, PrimeField};
|
||||
use group::{CurveAffine, CurveProjective, EncodedPoint, GroupDecodingError};
|
||||
use rand_core::RngCore;
|
||||
use std::fmt;
|
||||
|
@ -1708,8 +1706,6 @@ pub mod g2 {
|
|||
|
||||
#[test]
|
||||
fn g2_generator() {
|
||||
use crate::SqrtField;
|
||||
|
||||
let mut x = Fq2::zero();
|
||||
let mut i = 0;
|
||||
loop {
|
||||
|
|
|
@ -1715,8 +1715,6 @@ fn test_fq_pow() {
|
|||
|
||||
#[test]
|
||||
fn test_fq_sqrt() {
|
||||
use ff::SqrtField;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([
|
||||
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
|
||||
0xe5,
|
||||
|
@ -1846,8 +1844,6 @@ fn test_fq_num_bits() {
|
|||
|
||||
#[test]
|
||||
fn test_fq_root_of_unity() {
|
||||
use ff::SqrtField;
|
||||
|
||||
assert_eq!(Fq::S, 1);
|
||||
assert_eq!(Fq::multiplicative_generator(), Fq::from(2));
|
||||
assert_eq!(
|
||||
|
|
|
@ -237,6 +237,10 @@ impl Field for Fq12 {
|
|||
c1: t.mul(&self.c1).neg(),
|
||||
})
|
||||
}
|
||||
|
||||
fn sqrt(&self) -> CtOption<Self> {
|
||||
unimplemented!()
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
use super::fq::{Fq, FROBENIUS_COEFF_FQ2_C1, NEGATIVE_ONE};
|
||||
use ff::{Field, PowVartime, SqrtField};
|
||||
use ff::{Field, PowVartime};
|
||||
use rand_core::RngCore;
|
||||
use std::cmp::Ordering;
|
||||
use std::ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign};
|
||||
|
@ -241,9 +241,7 @@ impl Field for Fq2 {
|
|||
fn frobenius_map(&mut self, power: usize) {
|
||||
self.c1.mul_assign(&FROBENIUS_COEFF_FQ2_C1[power % 2]);
|
||||
}
|
||||
}
|
||||
|
||||
impl SqrtField for Fq2 {
|
||||
/// WARNING: THIS IS NOT ACTUALLY CONSTANT TIME YET!
|
||||
/// THIS WILL BE REPLACED BY THE bls12_381 CRATE, WHICH IS CONSTANT TIME!
|
||||
fn sqrt(&self) -> CtOption<Self> {
|
||||
|
|
|
@ -391,6 +391,10 @@ impl Field for Fq6 {
|
|||
tmp
|
||||
})
|
||||
}
|
||||
|
||||
fn sqrt(&self) -> CtOption<Self> {
|
||||
unimplemented!()
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
|
|
|
@ -495,8 +495,6 @@ fn test_fr_pow() {
|
|||
|
||||
#[test]
|
||||
fn test_fr_sqrt() {
|
||||
use ff::SqrtField;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([
|
||||
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
|
||||
0xe5,
|
||||
|
@ -628,8 +626,6 @@ fn test_fr_num_bits() {
|
|||
|
||||
#[test]
|
||||
fn test_fr_root_of_unity() {
|
||||
use ff::SqrtField;
|
||||
|
||||
assert_eq!(Fr::S, 32);
|
||||
assert_eq!(Fr::multiplicative_generator(), Fr::from(7));
|
||||
assert_eq!(
|
||||
|
|
|
@ -20,7 +20,7 @@ pub mod tests;
|
|||
|
||||
pub mod bls12_381;
|
||||
|
||||
use ff::{Field, PrimeField, ScalarEngine, SqrtField};
|
||||
use ff::{Field, PrimeField, ScalarEngine};
|
||||
use group::{CurveAffine, CurveOps, CurveOpsOwned, CurveProjective};
|
||||
use subtle::CtOption;
|
||||
|
||||
|
@ -61,10 +61,10 @@ pub trait Engine: ScalarEngine {
|
|||
> + From<Self::G2>;
|
||||
|
||||
/// The base field that hosts G1.
|
||||
type Fq: PrimeField + SqrtField;
|
||||
type Fq: PrimeField;
|
||||
|
||||
/// The extension field that hosts G2.
|
||||
type Fqe: SqrtField;
|
||||
type Fqe: Field;
|
||||
|
||||
/// The extension field that hosts the target group of the pairing.
|
||||
type Fqk: Field;
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
use ff::{Field, PowVartime, PrimeField, SqrtField};
|
||||
use ff::{Field, PowVartime, PrimeField};
|
||||
use rand_core::{RngCore, SeedableRng};
|
||||
use rand_xorshift::XorShiftRng;
|
||||
|
||||
|
@ -23,7 +23,7 @@ pub fn random_frobenius_tests<F: Field, C: AsRef<[u8]>>(characteristic: C, maxpo
|
|||
}
|
||||
}
|
||||
|
||||
pub fn random_sqrt_tests<F: SqrtField>() {
|
||||
pub fn random_sqrt_tests<F: Field>() {
|
||||
let mut rng = XorShiftRng::from_seed([
|
||||
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
|
||||
0xe5,
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
use ff::{BitIterator, Field, PrimeField, SqrtField};
|
||||
use ff::{BitIterator, Field, PrimeField};
|
||||
use std::ops::{AddAssign, MulAssign, Neg, SubAssign};
|
||||
use subtle::CtOption;
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
use byteorder::{ByteOrder, LittleEndian};
|
||||
use ff::{adc, mac_with_carry, sbb, BitIterator, Field, PowVartime, PrimeField, SqrtField};
|
||||
use ff::{adc, mac_with_carry, sbb, BitIterator, Field, PowVartime, PrimeField};
|
||||
use rand_core::RngCore;
|
||||
use std::mem;
|
||||
use std::ops::{Add, AddAssign, BitAnd, Mul, MulAssign, Neg, Shr, Sub, SubAssign};
|
||||
|
@ -541,6 +541,24 @@ impl Field for Fs {
|
|||
ret.mont_reduce(r0, r1, r2, r3, r4, r5, r6, r7);
|
||||
ret
|
||||
}
|
||||
|
||||
fn sqrt(&self) -> CtOption<Self> {
|
||||
// Shank's algorithm for s mod 4 = 3
|
||||
// https://eprint.iacr.org/2012/685.pdf (page 9, algorithm 2)
|
||||
|
||||
// a1 = self^((s - 3) // 4)
|
||||
let mut a1 = self.pow_vartime([
|
||||
0xb425c397b5bdcb2du64,
|
||||
0x299a0824f3320420,
|
||||
0x4199cec0404d0ec0,
|
||||
0x39f6d3a994cebea,
|
||||
]);
|
||||
let mut a0 = a1.square();
|
||||
a0.mul_assign(self);
|
||||
a1.mul_assign(self);
|
||||
|
||||
CtOption::new(a1, !a0.ct_eq(&NEGATIVE_ONE))
|
||||
}
|
||||
}
|
||||
|
||||
impl Fs {
|
||||
|
@ -673,26 +691,6 @@ impl ToUniform for Fs {
|
|||
}
|
||||
}
|
||||
|
||||
impl SqrtField for Fs {
|
||||
fn sqrt(&self) -> CtOption<Self> {
|
||||
// Shank's algorithm for s mod 4 = 3
|
||||
// https://eprint.iacr.org/2012/685.pdf (page 9, algorithm 2)
|
||||
|
||||
// a1 = self^((s - 3) // 4)
|
||||
let mut a1 = self.pow_vartime([
|
||||
0xb425c397b5bdcb2du64,
|
||||
0x299a0824f3320420,
|
||||
0x4199cec0404d0ec0,
|
||||
0x39f6d3a994cebea,
|
||||
]);
|
||||
let mut a0 = a1.square();
|
||||
a0.mul_assign(self);
|
||||
a1.mul_assign(self);
|
||||
|
||||
CtOption::new(a1, !a0.ct_eq(&NEGATIVE_ONE))
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_neg_one() {
|
||||
let o = Fs::one().neg();
|
||||
|
|
|
@ -23,7 +23,7 @@
|
|||
//! [Jubjub]: https://zips.z.cash/protocol/protocol.pdf#jubjub
|
||||
//! [BLS12-381]: pairing::bls12_381
|
||||
|
||||
use ff::{Field, PrimeField, SqrtField};
|
||||
use ff::{Field, PrimeField};
|
||||
use pairing::Engine;
|
||||
|
||||
use crate::group_hash::group_hash;
|
||||
|
@ -95,7 +95,7 @@ pub trait ToUniform {
|
|||
/// and some pre-computed parameters.
|
||||
pub trait JubjubEngine: Engine {
|
||||
/// The scalar field of the Jubjub curve
|
||||
type Fs: PrimeField + SqrtField + ToUniform;
|
||||
type Fs: PrimeField + ToUniform;
|
||||
/// The parameters of Jubjub and the Sapling protocol
|
||||
type Params: JubjubParams<Self>;
|
||||
}
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
use ff::{BitIterator, Field, PrimeField, SqrtField};
|
||||
use ff::{BitIterator, Field, PrimeField};
|
||||
use std::ops::{AddAssign, MulAssign, Neg, SubAssign};
|
||||
use subtle::CtOption;
|
||||
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
use super::{edwards, montgomery, JubjubEngine, JubjubParams, PrimeOrder};
|
||||
|
||||
use ff::{Field, PrimeField, SqrtField};
|
||||
use ff::{Field, PrimeField};
|
||||
use std::ops::{AddAssign, MulAssign, Neg, SubAssign};
|
||||
|
||||
use rand_core::{RngCore, SeedableRng};
|
||||
|
|
Loading…
Reference in New Issue