Offer `read_be` and `write_be` utilities to simplify code, and for testing.

This commit is contained in:
Sean Bowe 2017-07-17 13:35:12 -06:00
parent d67109d5d3
commit 2bfce59d8e
No known key found for this signature in database
GPG Key ID: 95684257D8F8B031
4 changed files with 58 additions and 80 deletions

View File

@ -617,8 +617,6 @@ pub mod g1 {
}
}
fn into_affine_unchecked(&self) -> Result<G1Affine, GroupDecodingError> {
use byteorder::{ReadBytesExt, BigEndian};
// Create a copy of this representation.
let mut copy = self.0;
@ -654,13 +652,8 @@ pub mod g1 {
{
let mut reader = &copy[..];
for b in x.0.iter_mut().rev() {
*b = reader.read_u64::<BigEndian>().unwrap();
}
for b in y.0.iter_mut().rev() {
*b = reader.read_u64::<BigEndian>().unwrap();
}
x.read_be(&mut reader).unwrap();
y.read_be(&mut reader).unwrap();
}
Ok(G1Affine {
@ -671,8 +664,6 @@ pub mod g1 {
}
}
fn from_affine(affine: G1Affine) -> Self {
use byteorder::{WriteBytesExt, BigEndian};
let mut res = Self::empty();
if affine.is_zero() {
@ -682,13 +673,8 @@ pub mod g1 {
} else {
let mut writer = &mut res.0[..];
for digit in affine.x.into_repr().as_ref().iter().rev() {
writer.write_u64::<BigEndian>(*digit).unwrap();
}
for digit in affine.y.into_repr().as_ref().iter().rev() {
writer.write_u64::<BigEndian>(*digit).unwrap();
}
affine.x.into_repr().write_be(&mut writer).unwrap();
affine.y.into_repr().write_be(&mut writer).unwrap();
}
res
@ -733,8 +719,6 @@ pub mod g1 {
}
}
fn into_affine_unchecked(&self) -> Result<G1Affine, GroupDecodingError> {
use byteorder::{ReadBytesExt, BigEndian};
// Create a copy of this representation.
let mut copy = self.0;
@ -767,9 +751,7 @@ pub mod g1 {
{
let mut reader = &copy[..];
for b in x.0.iter_mut().rev() {
*b = reader.read_u64::<BigEndian>().unwrap();
}
x.read_be(&mut reader).unwrap();
}
// Interpret as Fq element.
@ -804,8 +786,6 @@ pub mod g1 {
}
}
fn from_affine(affine: G1Affine) -> Self {
use byteorder::{WriteBytesExt, BigEndian};
let mut res = Self::empty();
if affine.is_zero() {
@ -816,9 +796,7 @@ pub mod g1 {
{
let mut writer = &mut res.0[..];
for digit in affine.x.into_repr().as_ref().iter().rev() {
writer.write_u64::<BigEndian>(*digit).unwrap();
}
affine.x.into_repr().write_be(&mut writer).unwrap();
}
let mut negy = affine.y;
@ -1187,8 +1165,6 @@ pub mod g2 {
}
}
fn into_affine_unchecked(&self) -> Result<G2Affine, GroupDecodingError> {
use byteorder::{ReadBytesExt, BigEndian};
// Create a copy of this representation.
let mut copy = self.0;
@ -1226,21 +1202,10 @@ pub mod g2 {
{
let mut reader = &copy[..];
for b in x_c1.0.iter_mut().rev() {
*b = reader.read_u64::<BigEndian>().unwrap();
}
for b in x_c0.0.iter_mut().rev() {
*b = reader.read_u64::<BigEndian>().unwrap();
}
for b in y_c1.0.iter_mut().rev() {
*b = reader.read_u64::<BigEndian>().unwrap();
}
for b in y_c0.0.iter_mut().rev() {
*b = reader.read_u64::<BigEndian>().unwrap();
}
x_c1.read_be(&mut reader).unwrap();
x_c0.read_be(&mut reader).unwrap();
y_c1.read_be(&mut reader).unwrap();
y_c0.read_be(&mut reader).unwrap();
}
Ok(G2Affine {
@ -1257,8 +1222,6 @@ pub mod g2 {
}
}
fn from_affine(affine: G2Affine) -> Self {
use byteorder::{WriteBytesExt, BigEndian};
let mut res = Self::empty();
if affine.is_zero() {
@ -1268,21 +1231,10 @@ pub mod g2 {
} else {
let mut writer = &mut res.0[..];
for digit in affine.x.c1.into_repr().as_ref().iter().rev() {
writer.write_u64::<BigEndian>(*digit).unwrap();
}
for digit in affine.x.c0.into_repr().as_ref().iter().rev() {
writer.write_u64::<BigEndian>(*digit).unwrap();
}
for digit in affine.y.c1.into_repr().as_ref().iter().rev() {
writer.write_u64::<BigEndian>(*digit).unwrap();
}
for digit in affine.y.c0.into_repr().as_ref().iter().rev() {
writer.write_u64::<BigEndian>(*digit).unwrap();
}
affine.x.c1.into_repr().write_be(&mut writer).unwrap();
affine.x.c0.into_repr().write_be(&mut writer).unwrap();
affine.y.c1.into_repr().write_be(&mut writer).unwrap();
affine.y.c0.into_repr().write_be(&mut writer).unwrap();
}
res
@ -1327,8 +1279,6 @@ pub mod g2 {
}
}
fn into_affine_unchecked(&self) -> Result<G2Affine, GroupDecodingError> {
use byteorder::{ReadBytesExt, BigEndian};
// Create a copy of this representation.
let mut copy = self.0;
@ -1362,13 +1312,8 @@ pub mod g2 {
{
let mut reader = &copy[..];
for b in x_c1.0.iter_mut().rev() {
*b = reader.read_u64::<BigEndian>().unwrap();
}
for b in x_c0.0.iter_mut().rev() {
*b = reader.read_u64::<BigEndian>().unwrap();
}
x_c1.read_be(&mut reader).unwrap();
x_c0.read_be(&mut reader).unwrap();
}
// Interpret as Fq element.
@ -1406,8 +1351,6 @@ pub mod g2 {
}
}
fn from_affine(affine: G2Affine) -> Self {
use byteorder::{WriteBytesExt, BigEndian};
let mut res = Self::empty();
if affine.is_zero() {
@ -1418,13 +1361,8 @@ pub mod g2 {
{
let mut writer = &mut res.0[..];
for digit in affine.x.c1.into_repr().as_ref().iter().rev() {
writer.write_u64::<BigEndian>(*digit).unwrap();
}
for digit in affine.x.c0.into_repr().as_ref().iter().rev() {
writer.write_u64::<BigEndian>(*digit).unwrap();
}
affine.x.c1.into_repr().write_be(&mut writer).unwrap();
affine.x.c0.into_repr().write_be(&mut writer).unwrap();
}
let mut negy = affine.y;

View File

@ -221,6 +221,13 @@ impl AsRef<[u64]> for FqRepr {
}
}
impl AsMut<[u64]> for FqRepr {
#[inline(always)]
fn as_mut(&mut self) -> &mut [u64] {
&mut self.0
}
}
impl From<u64> for FqRepr {
#[inline(always)]
fn from(val: u64) -> FqRepr {

View File

@ -57,6 +57,13 @@ impl AsRef<[u64]> for FrRepr {
}
}
impl AsMut<[u64]> for FrRepr {
#[inline(always)]
fn as_mut(&mut self) -> &mut [u64] {
&mut self.0
}
}
impl From<u64> for FrRepr {
#[inline(always)]
fn from(val: u64) -> FrRepr {

View File

@ -29,6 +29,7 @@ pub mod wnaf;
use std::fmt;
use std::error::Error;
use std::io::{self, Read, Write};
/// An "engine" is a collection of types (fields, elliptic curve groups, etc.)
/// with well-defined relationships. In particular, the G1/G2 curve groups are
@ -336,6 +337,7 @@ pub trait PrimeFieldRepr: Sized +
'static +
rand::Rand +
AsRef<[u64]> +
AsMut<[u64]> +
From<u64>
{
/// Subtract another reprensetation from this one, returning the borrow bit.
@ -366,6 +368,30 @@ pub trait PrimeFieldRepr: Sized +
/// Performs a leftwise bitshift of this number, effectively multiplying
/// it by 2. Overflow is ignored.
fn mul2(&mut self);
/// Writes this `PrimeFieldRepr` as a big endian integer. Always writes
/// `(num_bits` / 8) bytes.
fn write_be<W: Write>(&self, mut writer: W) -> io::Result<()> {
use byteorder::{WriteBytesExt, BigEndian};
for digit in self.as_ref().iter().rev() {
writer.write_u64::<BigEndian>(*digit)?;
}
Ok(())
}
/// Reads a big endian integer occupying (`num_bits` / 8) bytes into this
/// representation.
fn read_be<R: Read>(&mut self, mut reader: R) -> io::Result<()> {
use byteorder::{ReadBytesExt, BigEndian};
for digit in self.as_mut().iter_mut().rev() {
*digit = reader.read_u64::<BigEndian>()?;
}
Ok(())
}
}
/// An error that may occur when trying to interpret a `PrimeFieldRepr` as a