commit
390f2c129b
|
@ -22,11 +22,23 @@ use bellman::{
|
|||
|
||||
use jubjub::{
|
||||
JubjubEngine,
|
||||
Unknown,
|
||||
FixedGenerators,
|
||||
edwards
|
||||
FixedGenerators
|
||||
};
|
||||
|
||||
use constants;
|
||||
|
||||
use primitives::{
|
||||
ValueCommitment,
|
||||
ProofGenerationKey,
|
||||
PaymentAddress
|
||||
};
|
||||
|
||||
// TODO: This should probably be removed and we
|
||||
// should use existing helper methods on `Option`
|
||||
// for mapping with an error.
|
||||
/// This basically is just an extension to `Option`
|
||||
/// which allows for a convenient mapping to an
|
||||
/// error on `None`.
|
||||
trait Assignment<T> {
|
||||
fn get(&self) -> Result<&T, SynthesisError>;
|
||||
}
|
||||
|
@ -40,75 +52,113 @@ impl<T> Assignment<T> for Option<T> {
|
|||
}
|
||||
}
|
||||
|
||||
/// This is an instance of the `Spend` circuit.
|
||||
pub struct Spend<'a, E: JubjubEngine> {
|
||||
pub params: &'a E::Params,
|
||||
/// Value of the note being spent
|
||||
pub value: Option<u64>,
|
||||
/// Randomness that will hide the value
|
||||
pub value_randomness: Option<E::Fs>,
|
||||
/// Key which allows the proof to be constructed
|
||||
/// as defense-in-depth against a flaw in the
|
||||
/// protocol that would otherwise be exploitable
|
||||
/// by a holder of a viewing key.
|
||||
pub rsk: Option<E::Fs>,
|
||||
/// The public key that will be re-randomized for
|
||||
/// use as a nullifier and signing key for the
|
||||
/// transaction.
|
||||
pub ak: Option<edwards::Point<E, Unknown>>,
|
||||
/// The diversified base used to compute pk_d.
|
||||
pub g_d: Option<edwards::Point<E, Unknown>>,
|
||||
/// The randomness used to hide the note commitment data
|
||||
|
||||
/// Pedersen commitment to the value being spent
|
||||
pub value_commitment: Option<ValueCommitment<E>>,
|
||||
|
||||
/// Key required to construct proofs for spending notes
|
||||
/// for a particular spending key
|
||||
pub proof_generation_key: Option<ProofGenerationKey<E>>,
|
||||
|
||||
/// The payment address associated with the note
|
||||
pub payment_address: Option<PaymentAddress<E>>,
|
||||
|
||||
/// The randomness of the note commitment
|
||||
pub commitment_randomness: Option<E::Fs>,
|
||||
|
||||
/// The authentication path of the commitment in the tree
|
||||
pub auth_path: Vec<Option<(E::Fr, bool)>>
|
||||
}
|
||||
|
||||
/// This is an output circuit instance.
|
||||
pub struct Output<'a, E: JubjubEngine> {
|
||||
pub params: &'a E::Params,
|
||||
|
||||
/// Pedersen commitment to the value being spent
|
||||
pub value_commitment: Option<ValueCommitment<E>>,
|
||||
|
||||
/// The payment address of the recipient
|
||||
pub payment_address: Option<PaymentAddress<E>>,
|
||||
|
||||
/// The randomness used to hide the note commitment data
|
||||
pub commitment_randomness: Option<E::Fs>,
|
||||
|
||||
/// The ephemeral secret key for DH with recipient
|
||||
pub esk: Option<E::Fs>
|
||||
}
|
||||
|
||||
/// Exposes a Pedersen commitment to the value as an
|
||||
/// input to the circuit
|
||||
fn expose_value_commitment<E, CS>(
|
||||
mut cs: CS,
|
||||
value_commitment: Option<ValueCommitment<E>>,
|
||||
params: &E::Params
|
||||
) -> Result<Vec<boolean::Boolean>, SynthesisError>
|
||||
where E: JubjubEngine,
|
||||
CS: ConstraintSystem<E>
|
||||
{
|
||||
// Booleanize the value into little-endian bit order
|
||||
let value_bits = boolean::u64_into_boolean_vec_le(
|
||||
cs.namespace(|| "value"),
|
||||
value_commitment.as_ref().map(|c| c.value)
|
||||
)?;
|
||||
|
||||
// Compute the note value in the exponent
|
||||
let gv = ecc::fixed_base_multiplication(
|
||||
cs.namespace(|| "compute the value in the exponent"),
|
||||
FixedGenerators::ValueCommitmentValue,
|
||||
&value_bits,
|
||||
params
|
||||
)?;
|
||||
|
||||
// Booleanize the randomness. This does not ensure
|
||||
// the bit representation is "in the field" because
|
||||
// it doesn't matter for security.
|
||||
let hr = boolean::field_into_boolean_vec_le(
|
||||
cs.namespace(|| "hr"),
|
||||
value_commitment.as_ref().map(|c| c.randomness)
|
||||
)?;
|
||||
|
||||
// Compute the randomness in the exponent
|
||||
let hr = ecc::fixed_base_multiplication(
|
||||
cs.namespace(|| "computation of randomization for value commitment"),
|
||||
FixedGenerators::ValueCommitmentRandomness,
|
||||
&hr,
|
||||
params
|
||||
)?;
|
||||
|
||||
// Compute the Pedersen commitment to the value
|
||||
let gvhr = gv.add(
|
||||
cs.namespace(|| "computation of value commitment"),
|
||||
&hr,
|
||||
params
|
||||
)?;
|
||||
|
||||
// Expose the commitment as an input to the circuit
|
||||
gvhr.inputize(cs.namespace(|| "commitment point"))?;
|
||||
|
||||
Ok(value_bits)
|
||||
}
|
||||
|
||||
impl<'a, E: JubjubEngine> Circuit<E> for Spend<'a, E> {
|
||||
fn synthesize<CS: ConstraintSystem<E>>(self, cs: &mut CS) -> Result<(), SynthesisError>
|
||||
{
|
||||
// Booleanize the value into little-endian bit order
|
||||
let value_bits = boolean::u64_into_boolean_vec_le(
|
||||
cs.namespace(|| "value"),
|
||||
self.value
|
||||
)?;
|
||||
|
||||
{
|
||||
let gv = ecc::fixed_base_multiplication(
|
||||
cs.namespace(|| "compute the value in the exponent"),
|
||||
FixedGenerators::ValueCommitmentValue,
|
||||
&value_bits,
|
||||
let value_bits = expose_value_commitment(
|
||||
cs.namespace(|| "value commitment"),
|
||||
self.value_commitment,
|
||||
self.params
|
||||
)?;
|
||||
|
||||
// Booleanize the randomness
|
||||
let hr = boolean::field_into_boolean_vec_le(
|
||||
cs.namespace(|| "hr"),
|
||||
self.value_randomness
|
||||
)?;
|
||||
|
||||
let hr = ecc::fixed_base_multiplication(
|
||||
cs.namespace(|| "computation of randomization for value commitment"),
|
||||
FixedGenerators::ValueCommitmentRandomness,
|
||||
&hr,
|
||||
self.params
|
||||
)?;
|
||||
|
||||
let gvhr = gv.add(
|
||||
cs.namespace(|| "computation of value commitment"),
|
||||
&hr,
|
||||
self.params
|
||||
)?;
|
||||
|
||||
gvhr.inputize(cs.namespace(|| "value commitment"))?;
|
||||
}
|
||||
|
||||
// Compute rk = [rsk] ProvingPublicKey
|
||||
let rk;
|
||||
{
|
||||
// Witness rsk as bits
|
||||
let rsk = boolean::field_into_boolean_vec_le(
|
||||
cs.namespace(|| "rsk"),
|
||||
self.rsk
|
||||
self.proof_generation_key.as_ref().map(|k| k.rsk.clone())
|
||||
)?;
|
||||
|
||||
// NB: We don't ensure that the bit representation of rsk
|
||||
|
@ -116,6 +166,7 @@ impl<'a, E: JubjubEngine> Circuit<E> for Spend<'a, E> {
|
|||
// demonstrate the prover knows it. If they know a
|
||||
// congruency then that's equivalent.
|
||||
|
||||
// Compute rk = [rsk] ProvingPublicKey
|
||||
rk = ecc::fixed_base_multiplication(
|
||||
cs.namespace(|| "computation of rk"),
|
||||
FixedGenerators::ProofGenerationKey,
|
||||
|
@ -127,51 +178,79 @@ impl<'a, E: JubjubEngine> Circuit<E> for Spend<'a, E> {
|
|||
// Prover witnesses ak (ensures that it's on the curve)
|
||||
let ak = ecc::EdwardsPoint::witness(
|
||||
cs.namespace(|| "ak"),
|
||||
self.ak,
|
||||
self.proof_generation_key.as_ref().map(|k| k.ak.clone()),
|
||||
self.params
|
||||
)?;
|
||||
|
||||
// There are no sensible attacks on small order points
|
||||
// of ak (that we're aware of!) but it's a cheap check,
|
||||
// so we do it.
|
||||
ak.assert_not_small_order(
|
||||
cs.namespace(|| "ak not small order"),
|
||||
self.params
|
||||
)?;
|
||||
|
||||
// Unpack ak and rk for input to BLAKE2s
|
||||
|
||||
// This is the "viewing key" preimage for CRH^ivk
|
||||
let mut vk = vec![];
|
||||
let mut rho_preimage = vec![];
|
||||
vk.extend(
|
||||
ak.repr(cs.namespace(|| "representation of ak"))?
|
||||
);
|
||||
|
||||
// This is the nullifier randomness preimage for PRF^nr
|
||||
let mut nr_preimage = vec![];
|
||||
|
||||
// Extend vk and nr preimages with the representation of
|
||||
// rk.
|
||||
{
|
||||
let repr_rk = rk.repr(
|
||||
cs.namespace(|| "representation of rk")
|
||||
)?;
|
||||
|
||||
vk.extend(repr_rk.iter().cloned());
|
||||
rho_preimage.extend(repr_rk);
|
||||
nr_preimage.extend(repr_rk);
|
||||
}
|
||||
|
||||
assert_eq!(vk.len(), 512);
|
||||
assert_eq!(nr_preimage.len(), 256);
|
||||
|
||||
// Compute the incoming viewing key
|
||||
// Compute the incoming viewing key ivk
|
||||
let mut ivk = blake2s::blake2s(
|
||||
cs.namespace(|| "computation of ivk"),
|
||||
&vk,
|
||||
::CRH_IVK_PERSONALIZATION
|
||||
constants::CRH_IVK_PERSONALIZATION
|
||||
)?;
|
||||
|
||||
// Little endian bit order
|
||||
ivk.reverse();
|
||||
ivk.truncate(E::Fs::CAPACITY as usize); // drop_5
|
||||
|
||||
// Witness g_d
|
||||
let g_d = ecc::EdwardsPoint::witness(
|
||||
// drop_5 to ensure it's in the field
|
||||
ivk.truncate(E::Fs::CAPACITY as usize);
|
||||
|
||||
// Witness g_d. Ensures the point is on the
|
||||
// curve, but not its order. If the prover
|
||||
// manages to witness a commitment in the
|
||||
// tree, then the Output circuit would have
|
||||
// already guaranteed this.
|
||||
// TODO: We might as well just perform the
|
||||
// check again here, since it's not expensive.
|
||||
let g_d = {
|
||||
// This binding is to avoid a weird edge case in Rust's
|
||||
// ownership/borrowing rules. self is partially moved
|
||||
// above, but the closure for and_then will have to
|
||||
// move self (or a reference to self) to reference
|
||||
// self.params, so we have to copy self.params here.
|
||||
let params = self.params;
|
||||
|
||||
ecc::EdwardsPoint::witness(
|
||||
cs.namespace(|| "witness g_d"),
|
||||
self.g_d,
|
||||
self.payment_address.as_ref().and_then(|a| a.g_d(params)),
|
||||
self.params
|
||||
)?;
|
||||
)?
|
||||
};
|
||||
|
||||
// Compute pk_d
|
||||
// Compute pk_d = g_d^ivk
|
||||
let pk_d = g_d.mul(
|
||||
cs.namespace(|| "compute pk_d"),
|
||||
&ivk,
|
||||
|
@ -179,6 +258,7 @@ impl<'a, E: JubjubEngine> Circuit<E> for Spend<'a, E> {
|
|||
)?;
|
||||
|
||||
// Compute note contents
|
||||
// value (in big endian) followed by g_d and pk_d
|
||||
let mut note_contents = vec![];
|
||||
note_contents.extend(value_bits.into_iter().rev());
|
||||
note_contents.extend(
|
||||
|
@ -204,12 +284,13 @@ impl<'a, E: JubjubEngine> Circuit<E> for Spend<'a, E> {
|
|||
)?;
|
||||
|
||||
{
|
||||
// Booleanize the randomness
|
||||
// Booleanize the randomness for the note commitment
|
||||
let cmr = boolean::field_into_boolean_vec_le(
|
||||
cs.namespace(|| "cmr"),
|
||||
self.commitment_randomness
|
||||
)?;
|
||||
|
||||
// Compute the note commitment randomness in the exponent
|
||||
let cmr = ecc::fixed_base_multiplication(
|
||||
cs.namespace(|| "computation of commitment randomness"),
|
||||
FixedGenerators::NoteCommitmentRandomness,
|
||||
|
@ -217,6 +298,8 @@ impl<'a, E: JubjubEngine> Circuit<E> for Spend<'a, E> {
|
|||
self.params
|
||||
)?;
|
||||
|
||||
// Randomize the note commitment. Pedersen hashes are not
|
||||
// themselves hiding commitments.
|
||||
cm = cm.add(
|
||||
cs.namespace(|| "randomization of note commitment"),
|
||||
&cmr,
|
||||
|
@ -226,21 +309,30 @@ impl<'a, E: JubjubEngine> Circuit<E> for Spend<'a, E> {
|
|||
|
||||
let tree_depth = self.auth_path.len();
|
||||
|
||||
// This will store (least significant bit first)
|
||||
// the position of the note in the tree, for use
|
||||
// in nullifier computation.
|
||||
let mut position_bits = vec![];
|
||||
|
||||
// Injective encoding.
|
||||
// This is an injective encoding, as cur is a
|
||||
// point in the prime order subgroup.
|
||||
let mut cur = cm.get_x().clone();
|
||||
|
||||
for (i, e) in self.auth_path.into_iter().enumerate() {
|
||||
let cs = &mut cs.namespace(|| format!("merkle tree hash {}", i));
|
||||
|
||||
// Determines if the current subtree is the "right" leaf at this
|
||||
// depth of the tree.
|
||||
let cur_is_right = boolean::Boolean::from(boolean::AllocatedBit::alloc(
|
||||
cs.namespace(|| "position bit"),
|
||||
e.map(|e| e.1)
|
||||
)?);
|
||||
|
||||
// Push this boolean for nullifier computation later
|
||||
position_bits.push(cur_is_right.clone());
|
||||
|
||||
// Witness the authentication path element adjacent
|
||||
// at this depth.
|
||||
let path_element = num::AllocatedNum::alloc(
|
||||
cs.namespace(|| "path element"),
|
||||
|| {
|
||||
|
@ -248,6 +340,7 @@ impl<'a, E: JubjubEngine> Circuit<E> for Spend<'a, E> {
|
|||
}
|
||||
)?;
|
||||
|
||||
// Swap the two if the current subtree is on the right
|
||||
let (xl, xr) = num::AllocatedNum::conditionally_reverse(
|
||||
cs.namespace(|| "conditional reversal of preimage"),
|
||||
&cur,
|
||||
|
@ -263,6 +356,7 @@ impl<'a, E: JubjubEngine> Circuit<E> for Spend<'a, E> {
|
|||
preimage.extend(xl.into_bits_le(cs.namespace(|| "xl into bits"))?);
|
||||
preimage.extend(xr.into_bits_le(cs.namespace(|| "xr into bits"))?);
|
||||
|
||||
// Compute the new subtree value
|
||||
cur = pedersen_hash::pedersen_hash(
|
||||
cs.namespace(|| "computation of pedersen hash"),
|
||||
pedersen_hash::Personalization::MerkleTree(i),
|
||||
|
@ -276,7 +370,10 @@ impl<'a, E: JubjubEngine> Circuit<E> for Spend<'a, E> {
|
|||
// Expose the anchor
|
||||
cur.inputize(cs.namespace(|| "anchor"))?;
|
||||
|
||||
// Compute the cm + g^position for preventing
|
||||
// faerie gold attacks
|
||||
{
|
||||
// Compute the position in the exponent
|
||||
let position = ecc::fixed_base_multiplication(
|
||||
cs.namespace(|| "g^position"),
|
||||
FixedGenerators::NullifierPosition,
|
||||
|
@ -284,6 +381,7 @@ impl<'a, E: JubjubEngine> Circuit<E> for Spend<'a, E> {
|
|||
self.params
|
||||
)?;
|
||||
|
||||
// Add the position to the commitment
|
||||
cm = cm.add(
|
||||
cs.namespace(|| "faerie gold prevention"),
|
||||
&position,
|
||||
|
@ -291,144 +389,126 @@ impl<'a, E: JubjubEngine> Circuit<E> for Spend<'a, E> {
|
|||
)?;
|
||||
}
|
||||
|
||||
// Let's compute rho = BLAKE2s(rk || cm + position)
|
||||
rho_preimage.extend(
|
||||
// Let's compute nr = BLAKE2s(rk || cm + position)
|
||||
nr_preimage.extend(
|
||||
cm.repr(cs.namespace(|| "representation of cm"))?
|
||||
);
|
||||
|
||||
assert_eq!(rho_preimage.len(), 512);
|
||||
assert_eq!(nr_preimage.len(), 512);
|
||||
|
||||
let mut rho = blake2s::blake2s(
|
||||
cs.namespace(|| "rho computation"),
|
||||
&rho_preimage,
|
||||
::PRF_NR_PERSONALIZATION
|
||||
// Compute nr
|
||||
let mut nr = blake2s::blake2s(
|
||||
cs.namespace(|| "nr computation"),
|
||||
&nr_preimage,
|
||||
constants::PRF_NR_PERSONALIZATION
|
||||
)?;
|
||||
|
||||
// Little endian bit order
|
||||
rho.reverse();
|
||||
rho.truncate(E::Fs::CAPACITY as usize); // drop_5
|
||||
nr.reverse();
|
||||
|
||||
// We want the randomization in the field to
|
||||
// simplify outside code.
|
||||
// TODO: This isn't uniformly random.
|
||||
nr.truncate(E::Fs::CAPACITY as usize);
|
||||
|
||||
// Compute nullifier
|
||||
let nf = ak.mul(
|
||||
cs.namespace(|| "computation of nf"),
|
||||
&rho,
|
||||
&nr,
|
||||
self.params
|
||||
)?;
|
||||
|
||||
// Expose the nullifier publicly
|
||||
nf.inputize(cs.namespace(|| "nullifier"))?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
/// This is an output circuit instance.
|
||||
pub struct Output<'a, E: JubjubEngine> {
|
||||
pub params: &'a E::Params,
|
||||
/// Value of the note being created
|
||||
pub value: Option<u64>,
|
||||
/// Randomness that will hide the value
|
||||
pub value_randomness: Option<E::Fs>,
|
||||
/// The diversified base, computed by GH(d)
|
||||
pub g_d: Option<edwards::Point<E, Unknown>>,
|
||||
/// The diversified address point, computed by GH(d)^ivk
|
||||
pub p_d: Option<edwards::Point<E, Unknown>>,
|
||||
/// The randomness used to hide the note commitment data
|
||||
pub commitment_randomness: Option<E::Fs>,
|
||||
/// The ephemeral secret key for DH with recipient
|
||||
pub esk: Option<E::Fs>
|
||||
}
|
||||
|
||||
impl<'a, E: JubjubEngine> Circuit<E> for Output<'a, E> {
|
||||
fn synthesize<CS: ConstraintSystem<E>>(self, cs: &mut CS) -> Result<(), SynthesisError>
|
||||
{
|
||||
// Booleanize the value into little-endian bit order
|
||||
let value_bits = boolean::u64_into_boolean_vec_le(
|
||||
cs.namespace(|| "value"),
|
||||
self.value
|
||||
)?;
|
||||
|
||||
{
|
||||
let gv = ecc::fixed_base_multiplication(
|
||||
cs.namespace(|| "compute the value in the exponent"),
|
||||
FixedGenerators::ValueCommitmentValue,
|
||||
&value_bits,
|
||||
let value_bits = expose_value_commitment(
|
||||
cs.namespace(|| "value commitment"),
|
||||
self.value_commitment,
|
||||
self.params
|
||||
)?;
|
||||
|
||||
// Booleanize the randomness
|
||||
let hr = boolean::field_into_boolean_vec_le(
|
||||
cs.namespace(|| "hr"),
|
||||
self.value_randomness
|
||||
)?;
|
||||
|
||||
let hr = ecc::fixed_base_multiplication(
|
||||
cs.namespace(|| "computation of randomization for value commitment"),
|
||||
FixedGenerators::ValueCommitmentRandomness,
|
||||
&hr,
|
||||
self.params
|
||||
)?;
|
||||
|
||||
let gvhr = gv.add(
|
||||
cs.namespace(|| "computation of value commitment"),
|
||||
&hr,
|
||||
self.params
|
||||
)?;
|
||||
|
||||
gvhr.inputize(cs.namespace(|| "value commitment"))?;
|
||||
}
|
||||
|
||||
// Let's start to construct our note
|
||||
// Let's start to construct our note, which contains
|
||||
// value (big endian)
|
||||
let mut note_contents = vec![];
|
||||
note_contents.extend(value_bits.into_iter().rev());
|
||||
|
||||
// Let's deal with g_d
|
||||
{
|
||||
let params = self.params;
|
||||
|
||||
// Prover witnesses g_d, ensuring it's on the
|
||||
// curve.
|
||||
let g_d = ecc::EdwardsPoint::witness(
|
||||
cs.namespace(|| "witness g_d"),
|
||||
self.g_d,
|
||||
self.payment_address.as_ref().and_then(|a| a.g_d(params)),
|
||||
self.params
|
||||
)?;
|
||||
|
||||
// g_d is ensured to be large order. The relationship
|
||||
// between g_d and pk_d ultimately binds ivk to the
|
||||
// note. If this were a small order point, it would
|
||||
// not do this correctly, and the prover could
|
||||
// double-spend by finding random ivk's that satisfy
|
||||
// the relationship.
|
||||
//
|
||||
// Further, if it were small order, epk would be
|
||||
// small order too!
|
||||
g_d.assert_not_small_order(
|
||||
cs.namespace(|| "g_d not small order"),
|
||||
self.params
|
||||
)?;
|
||||
|
||||
// Extend our note contents with the representation of
|
||||
// g_d.
|
||||
note_contents.extend(
|
||||
g_d.repr(cs.namespace(|| "representation of g_d"))?
|
||||
);
|
||||
|
||||
// Compute epk from esk
|
||||
// Booleanize our ephemeral secret key
|
||||
let esk = boolean::field_into_boolean_vec_le(
|
||||
cs.namespace(|| "esk"),
|
||||
self.esk
|
||||
)?;
|
||||
|
||||
// Create the ephemeral public key from g_d.
|
||||
let epk = g_d.mul(
|
||||
cs.namespace(|| "epk computation"),
|
||||
&esk,
|
||||
self.params
|
||||
)?;
|
||||
|
||||
// Expose epk publicly.
|
||||
epk.inputize(cs.namespace(|| "epk"))?;
|
||||
}
|
||||
|
||||
// Now let's deal with p_d. We don't do any checks and
|
||||
// Now let's deal with pk_d. We don't do any checks and
|
||||
// essentially allow the prover to witness any 256 bits
|
||||
// they would like.
|
||||
{
|
||||
let p_d = self.p_d.map(|e| e.into_xy());
|
||||
// Just grab pk_d from the witness
|
||||
let pk_d = self.payment_address.as_ref().map(|e| e.pk_d.into_xy());
|
||||
|
||||
// Witness the y-coordinate, encoded as little
|
||||
// endian bits (to match the representation)
|
||||
let y_contents = boolean::field_into_boolean_vec_le(
|
||||
cs.namespace(|| "p_d bits of y"),
|
||||
p_d.map(|e| e.1)
|
||||
cs.namespace(|| "pk_d bits of y"),
|
||||
pk_d.map(|e| e.1)
|
||||
)?;
|
||||
|
||||
// Witness the sign bit
|
||||
let sign_bit = boolean::Boolean::from(boolean::AllocatedBit::alloc(
|
||||
cs.namespace(|| "p_d bit of x"),
|
||||
p_d.map(|e| e.0.into_repr().is_odd())
|
||||
cs.namespace(|| "pk_d bit of x"),
|
||||
pk_d.map(|e| e.0.into_repr().is_odd())
|
||||
)?);
|
||||
|
||||
// Extend the note with pk_d representation
|
||||
note_contents.extend(y_contents);
|
||||
note_contents.push(sign_bit);
|
||||
}
|
||||
|
@ -455,6 +535,7 @@ impl<'a, E: JubjubEngine> Circuit<E> for Output<'a, E> {
|
|||
self.commitment_randomness
|
||||
)?;
|
||||
|
||||
// Compute the note commitment randomness in the exponent
|
||||
let cmr = ecc::fixed_base_multiplication(
|
||||
cs.namespace(|| "computation of commitment randomness"),
|
||||
FixedGenerators::NoteCommitmentRandomness,
|
||||
|
@ -462,6 +543,7 @@ impl<'a, E: JubjubEngine> Circuit<E> for Output<'a, E> {
|
|||
self.params
|
||||
)?;
|
||||
|
||||
// Randomize our note commitment
|
||||
cm = cm.add(
|
||||
cs.namespace(|| "randomization of note commitment"),
|
||||
&cmr,
|
||||
|
@ -481,22 +563,49 @@ impl<'a, E: JubjubEngine> Circuit<E> for Output<'a, E> {
|
|||
|
||||
#[test]
|
||||
fn test_input_circuit_with_bls12_381() {
|
||||
use pairing::{Field, BitIterator};
|
||||
use pairing::bls12_381::*;
|
||||
use rand::{SeedableRng, Rng, XorShiftRng};
|
||||
use ::circuit::test::*;
|
||||
use jubjub::{JubjubBls12, fs};
|
||||
use jubjub::{JubjubBls12, fs, edwards};
|
||||
|
||||
let params = &JubjubBls12::new();
|
||||
let rng = &mut XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let tree_depth = 32;
|
||||
|
||||
let value: u64 = 1;
|
||||
let value_randomness: fs::Fs = rng.gen();
|
||||
let ak: edwards::Point<Bls12, Unknown> = edwards::Point::rand(rng, params);
|
||||
let g_d: edwards::Point<Bls12, Unknown> = edwards::Point::rand(rng, params);
|
||||
let commitment_randomness: fs::Fs = rng.gen();
|
||||
let value_commitment = ValueCommitment {
|
||||
value: rng.gen(),
|
||||
randomness: rng.gen()
|
||||
};
|
||||
|
||||
let rsk: fs::Fs = rng.gen();
|
||||
let ak = edwards::Point::rand(rng, params).mul_by_cofactor(params);
|
||||
|
||||
let proof_generation_key = ::primitives::ProofGenerationKey {
|
||||
ak: ak.clone(),
|
||||
rsk: rsk.clone()
|
||||
};
|
||||
|
||||
let viewing_key = proof_generation_key.into_viewing_key(params);
|
||||
|
||||
let payment_address;
|
||||
|
||||
loop {
|
||||
let diversifier = ::primitives::Diversifier(rng.gen());
|
||||
|
||||
if let Some(p) = viewing_key.into_payment_address(
|
||||
diversifier,
|
||||
params
|
||||
)
|
||||
{
|
||||
payment_address = p;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
let g_d = payment_address.diversifier.g_d(params).unwrap();
|
||||
let commitment_randomness: fs::Fs = rng.gen();
|
||||
let auth_path = vec![Some((rng.gen(), rng.gen())); tree_depth];
|
||||
|
||||
{
|
||||
|
@ -504,13 +613,11 @@ fn test_input_circuit_with_bls12_381() {
|
|||
|
||||
let instance = Spend {
|
||||
params: params,
|
||||
value: Some(value),
|
||||
value_randomness: Some(value_randomness),
|
||||
rsk: Some(rsk),
|
||||
ak: Some(ak),
|
||||
g_d: Some(g_d),
|
||||
value_commitment: Some(value_commitment.clone()),
|
||||
proof_generation_key: Some(proof_generation_key.clone()),
|
||||
payment_address: Some(payment_address.clone()),
|
||||
commitment_randomness: Some(commitment_randomness),
|
||||
auth_path: auth_path
|
||||
auth_path: auth_path.clone()
|
||||
};
|
||||
|
||||
instance.synthesize(&mut cs).unwrap();
|
||||
|
@ -518,23 +625,106 @@ fn test_input_circuit_with_bls12_381() {
|
|||
assert!(cs.is_satisfied());
|
||||
assert_eq!(cs.num_constraints(), 101550);
|
||||
assert_eq!(cs.hash(), "3cc6d9383ca882ae3666267618e826e9d51a3177fc89ef6d42d9f63b84179f77");
|
||||
|
||||
let expected_value_cm = value_commitment.cm(params).into_xy();
|
||||
|
||||
assert_eq!(cs.num_inputs(), 6);
|
||||
assert_eq!(cs.get_input(0, "ONE"), Fr::one());
|
||||
assert_eq!(cs.get_input(1, "value commitment/commitment point/x/input variable"), expected_value_cm.0);
|
||||
assert_eq!(cs.get_input(2, "value commitment/commitment point/y/input variable"), expected_value_cm.1);
|
||||
|
||||
let note = ::primitives::Note {
|
||||
value: value_commitment.value,
|
||||
g_d: g_d.clone(),
|
||||
pk_d: payment_address.pk_d.clone(),
|
||||
r: commitment_randomness.clone()
|
||||
};
|
||||
|
||||
let mut position = 0u64;
|
||||
let mut cur = note.cm(params);
|
||||
|
||||
assert_eq!(cs.get("randomization of note commitment/x3/num"), cur);
|
||||
|
||||
for (i, val) in auth_path.into_iter().enumerate()
|
||||
{
|
||||
let (uncle, b) = val.unwrap();
|
||||
|
||||
let mut lhs = cur;
|
||||
let mut rhs = uncle;
|
||||
|
||||
if b {
|
||||
::std::mem::swap(&mut lhs, &mut rhs);
|
||||
}
|
||||
|
||||
let mut lhs: Vec<bool> = BitIterator::new(lhs.into_repr()).collect();
|
||||
let mut rhs: Vec<bool> = BitIterator::new(rhs.into_repr()).collect();
|
||||
|
||||
lhs.reverse();
|
||||
rhs.reverse();
|
||||
|
||||
cur = ::pedersen_hash::pedersen_hash::<Bls12, _>(
|
||||
::pedersen_hash::Personalization::MerkleTree(i),
|
||||
lhs.into_iter()
|
||||
.take(Fr::NUM_BITS as usize)
|
||||
.chain(rhs.into_iter().take(Fr::NUM_BITS as usize)),
|
||||
params
|
||||
).into_xy().0;
|
||||
|
||||
if b {
|
||||
position |= 1 << i;
|
||||
}
|
||||
}
|
||||
|
||||
let expected_nf = note.nf(&viewing_key, position, params);
|
||||
let expected_nf_xy = expected_nf.into_xy();
|
||||
|
||||
assert_eq!(cs.get_input(3, "anchor/input variable"), cur);
|
||||
assert_eq!(cs.get_input(4, "nullifier/x/input variable"), expected_nf_xy.0);
|
||||
assert_eq!(cs.get_input(5, "nullifier/y/input variable"), expected_nf_xy.1);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_output_circuit_with_bls12_381() {
|
||||
use pairing::{Field};
|
||||
use pairing::bls12_381::*;
|
||||
use rand::{SeedableRng, Rng, XorShiftRng};
|
||||
use ::circuit::test::*;
|
||||
use jubjub::{JubjubBls12, fs};
|
||||
use jubjub::{JubjubBls12, fs, edwards};
|
||||
|
||||
let params = &JubjubBls12::new();
|
||||
let rng = &mut XorShiftRng::from_seed([0x3dbe6258, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let value: u64 = 1;
|
||||
let value_randomness: fs::Fs = rng.gen();
|
||||
let g_d: edwards::Point<Bls12, Unknown> = edwards::Point::rand(rng, params);
|
||||
let p_d: edwards::Point<Bls12, Unknown> = edwards::Point::rand(rng, params);
|
||||
let value_commitment = ValueCommitment {
|
||||
value: rng.gen(),
|
||||
randomness: rng.gen()
|
||||
};
|
||||
|
||||
let rsk: fs::Fs = rng.gen();
|
||||
let ak = edwards::Point::rand(rng, params).mul_by_cofactor(params);
|
||||
|
||||
let proof_generation_key = ::primitives::ProofGenerationKey {
|
||||
ak: ak.clone(),
|
||||
rsk: rsk.clone()
|
||||
};
|
||||
|
||||
let viewing_key = proof_generation_key.into_viewing_key(params);
|
||||
|
||||
let payment_address;
|
||||
|
||||
loop {
|
||||
let diversifier = ::primitives::Diversifier(rng.gen());
|
||||
|
||||
if let Some(p) = viewing_key.into_payment_address(
|
||||
diversifier,
|
||||
params
|
||||
)
|
||||
{
|
||||
payment_address = p;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
let commitment_randomness: fs::Fs = rng.gen();
|
||||
let esk: fs::Fs = rng.gen();
|
||||
|
||||
|
@ -543,10 +733,8 @@ fn test_output_circuit_with_bls12_381() {
|
|||
|
||||
let instance = Output {
|
||||
params: params,
|
||||
value: Some(value),
|
||||
value_randomness: Some(value_randomness),
|
||||
g_d: Some(g_d.clone()),
|
||||
p_d: Some(p_d.clone()),
|
||||
value_commitment: Some(value_commitment.clone()),
|
||||
payment_address: Some(payment_address.clone()),
|
||||
commitment_randomness: Some(commitment_randomness),
|
||||
esk: Some(esk.clone())
|
||||
};
|
||||
|
@ -556,5 +744,24 @@ fn test_output_circuit_with_bls12_381() {
|
|||
assert!(cs.is_satisfied());
|
||||
assert_eq!(cs.num_constraints(), 7827);
|
||||
assert_eq!(cs.hash(), "2896f259ad7a50c83604976ee9362358396d547b70f2feaf91d82d287e4ffc1d");
|
||||
|
||||
let expected_cm = payment_address.create_note(
|
||||
value_commitment.value,
|
||||
commitment_randomness,
|
||||
params
|
||||
).expect("should be valid").cm(params);
|
||||
|
||||
let expected_value_cm = value_commitment.cm(params).into_xy();
|
||||
|
||||
let expected_epk = payment_address.g_d(params).expect("should be valid").mul(esk, params);
|
||||
let expected_epk_xy = expected_epk.into_xy();
|
||||
|
||||
assert_eq!(cs.num_inputs(), 6);
|
||||
assert_eq!(cs.get_input(0, "ONE"), Fr::one());
|
||||
assert_eq!(cs.get_input(1, "value commitment/commitment point/x/input variable"), expected_value_cm.0);
|
||||
assert_eq!(cs.get_input(2, "value commitment/commitment point/y/input variable"), expected_value_cm.1);
|
||||
assert_eq!(cs.get_input(3, "epk/x/input variable"), expected_epk_xy.0);
|
||||
assert_eq!(cs.get_input(4, "epk/y/input variable"), expected_epk_xy.1);
|
||||
assert_eq!(cs.get_input(5, "commitment/input variable"), expected_cm);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -294,6 +294,19 @@ impl<E: Engine> TestConstraintSystem<E> {
|
|||
}
|
||||
}
|
||||
|
||||
pub fn num_inputs(&self) -> usize {
|
||||
self.inputs.len()
|
||||
}
|
||||
|
||||
pub fn get_input(&mut self, index: usize, path: &str) -> E::Fr
|
||||
{
|
||||
let (assignment, name) = self.inputs[index].clone();
|
||||
|
||||
assert_eq!(path, name);
|
||||
|
||||
assignment
|
||||
}
|
||||
|
||||
pub fn get(&mut self, path: &str) -> E::Fr
|
||||
{
|
||||
match self.named_objects.get(path) {
|
||||
|
|
|
@ -0,0 +1,29 @@
|
|||
/// First 64 bytes of the BLAKE2s input during group hash.
|
||||
/// This is chosen to be some random string that we couldn't have anticipated when we designed
|
||||
/// the algorithm, for rigidity purposes.
|
||||
/// We deliberately use an ASCII hex string of 32 bytes here.
|
||||
pub const GH_FIRST_BLOCK: &'static [u8; 64] = b"0000000000000000002ffe76b973aabaff1d1557d79acf2c3795809c83caf580";
|
||||
|
||||
// BLAKE2s invocation personalizations
|
||||
/// BLAKE2s Personalization for CRH^ivk = BLAKE2s(ak | rk)
|
||||
pub const CRH_IVK_PERSONALIZATION: &'static [u8; 8] = b"Zcashivk";
|
||||
/// BLAKE2s Personalization for PRF^nr = BLAKE2s(rk | cm + position)
|
||||
pub const PRF_NR_PERSONALIZATION: &'static [u8; 8] = b"WhatTheH";
|
||||
|
||||
// Group hash personalizations
|
||||
/// BLAKE2s Personalization for Pedersen hash generators.
|
||||
pub const PEDERSEN_HASH_GENERATORS_PERSONALIZATION: &'static [u8; 8] = b"PEDERSEN";
|
||||
/// BLAKE2s Personalization for the group hash for key diversification
|
||||
pub const KEY_DIVERSIFICATION_PERSONALIZATION: &'static [u8; 8] = b"Zcash_gh";
|
||||
/// BLAKE2s Personalization for the proof generation key base point
|
||||
pub const PROOF_GENERATION_KEY_BASE_GENERATOR_PERSONALIZATION: &'static [u8; 8] = b"12345678";
|
||||
/// BLAKE2s Personalization for the note commitment randomness generator
|
||||
pub const NOTE_COMMITMENT_RANDOMNESS_GENERATOR_PERSONALIZATION: &'static [u8; 8] = b"abcdefgh";
|
||||
/// BLAKE2s Personalization for the nullifier position generator (for PRF^nr)
|
||||
pub const NULLIFIER_POSITION_IN_TREE_GENERATOR_PERSONALIZATION: &'static [u8; 8] = b"nfnfnfnf";
|
||||
/// BLAKE2s Personalization for the value commitment generator for the value
|
||||
pub const VALUE_COMMITMENT_VALUE_GENERATOR_PERSONALIZATION: &'static [u8; 8] = b"45u8gh45";
|
||||
/// BLAKE2s Personalization for the value commitment randomness generator
|
||||
pub const VALUE_COMMITMENT_RANDOMNESS_GENERATOR_PERSONALIZATION: &'static [u8; 8] = b"11111111";
|
||||
/// BLAKE2s Personalization for the spending key base point
|
||||
pub const SPENDING_KEY_GENERATOR_PERSONALIZATION: &'static [u8; 8] = b"sksksksk";
|
|
@ -1,15 +1,20 @@
|
|||
use jubjub::*;
|
||||
use pairing::*;
|
||||
use jubjub::{
|
||||
JubjubEngine,
|
||||
PrimeOrder,
|
||||
edwards
|
||||
};
|
||||
|
||||
use pairing::{
|
||||
PrimeField,
|
||||
PrimeFieldRepr
|
||||
};
|
||||
|
||||
use blake2_rfc::blake2s::Blake2s;
|
||||
use constants;
|
||||
|
||||
/// This is chosen to be some random string that we couldn't have anticipated when we designed
|
||||
/// the algorithm, for rigidity purposes.
|
||||
pub const FIRST_BLOCK: &'static [u8; 64] = b"0000000000000000002ffe76b973aabaff1d1557d79acf2c3795809c83caf580";
|
||||
|
||||
/// Produces an (x, y) pair (Montgomery) for a
|
||||
/// random point in the Jubjub curve. The point
|
||||
/// is guaranteed to be prime order and not the
|
||||
/// identity.
|
||||
/// Produces a random point in the Jubjub curve.
|
||||
/// The point is guaranteed to be prime order
|
||||
/// and not the identity.
|
||||
pub fn group_hash<E: JubjubEngine>(
|
||||
tag: &[u8],
|
||||
personalization: &[u8],
|
||||
|
@ -22,7 +27,7 @@ pub fn group_hash<E: JubjubEngine>(
|
|||
assert!(E::Fr::NUM_BITS == 255);
|
||||
|
||||
let mut h = Blake2s::with_params(32, &[], &[], personalization);
|
||||
h.update(FIRST_BLOCK);
|
||||
h.update(constants::GH_FIRST_BLOCK);
|
||||
h.update(tag);
|
||||
let mut h = h.finalize().as_ref().to_vec();
|
||||
assert!(h.len() == 32);
|
||||
|
|
|
@ -28,6 +28,9 @@ use std::io::{
|
|||
|
||||
// Represents the affine point (X/Z, Y/Z) via the extended
|
||||
// twisted Edwards coordinates.
|
||||
//
|
||||
// See "Twisted Edwards Curves Revisited"
|
||||
// Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson
|
||||
pub struct Point<E: JubjubEngine, Subgroup> {
|
||||
x: E::Fr,
|
||||
y: E::Fr,
|
||||
|
@ -120,7 +123,14 @@ impl<E: JubjubEngine> Point<E, Unknown> {
|
|||
params: &E::Params
|
||||
) -> io::Result<Self>
|
||||
{
|
||||
// Jubjub points are encoded least significant bit first.
|
||||
// The most significant bit (bit 254) encodes the parity
|
||||
// of the x-coordinate.
|
||||
|
||||
let mut y_repr = <E::Fr as PrimeField>::Repr::default();
|
||||
|
||||
// This reads in big-endian, so we perform a swap of the
|
||||
// limbs in the representation and swap the bit order.
|
||||
y_repr.read_be(reader)?;
|
||||
|
||||
y_repr.as_mut().reverse();
|
||||
|
@ -393,11 +403,19 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
|
|||
}
|
||||
|
||||
pub fn double(&self, params: &E::Params) -> Self {
|
||||
// Point addition is unified and complete.
|
||||
// There are dedicated formulae, but we do
|
||||
// not implement these now.
|
||||
|
||||
self.add(self, params)
|
||||
}
|
||||
|
||||
pub fn add(&self, other: &Self, params: &E::Params) -> Self
|
||||
{
|
||||
// See "Twisted Edwards Curves Revisited"
|
||||
// Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson
|
||||
// 3.1 Unified Addition in E^e
|
||||
|
||||
// A = x1 * x2
|
||||
let mut a = self.x;
|
||||
a.mul_assign(&other.x);
|
||||
|
@ -470,6 +488,8 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
|
|||
params: &E::Params
|
||||
) -> Self
|
||||
{
|
||||
// Standard double-and-add scalar multiplication
|
||||
|
||||
let mut res = Self::zero();
|
||||
|
||||
for b in BitIterator::new(scalar.into()) {
|
||||
|
|
|
@ -1,18 +1,21 @@
|
|||
//! Jubjub is an elliptic curve defined over the BLS12-381 scalar field, Fr.
|
||||
//! It is a Montgomery curve that takes the form `y^2 = x^3 + Ax^2 + x` where
|
||||
//! `A = 40962`. This is the smallest integer choice of A such that:
|
||||
//! Jubjub is a twisted Edwards curve defined over the BLS12-381 scalar
|
||||
//! field, Fr. It takes the form `-x^2 + y^2 = 1 + dx^2y^2` with
|
||||
//! `d = -(10240/10241)`. It is birationally equivalent to a Montgomery
|
||||
//! curve of the form `y^2 = x^3 + Ax^2 + x` with `A = 40962`. This
|
||||
//! value `A` is the smallest integer choice such that:
|
||||
//!
|
||||
//! * `(A - 2) / 4` is a small integer (`10240`).
|
||||
//! * `A^2 - 4` is quadratic residue.
|
||||
//! * The group order of the curve and its quadratic twist has a large prime factor.
|
||||
//! * `A^2 - 4` is quadratic nonresidue.
|
||||
//! * The group order of the curve and its quadratic twist has a large
|
||||
//! prime factor.
|
||||
//!
|
||||
//! Jubjub has `s = 0x0e7db4ea6533afa906673b0101343b00a6682093ccc81082d0970e5ed6f72cb7`
|
||||
//! as the prime subgroup order, with cofactor 8. (The twist has cofactor 4.)
|
||||
//! as the prime subgroup order, with cofactor 8. (The twist has
|
||||
//! cofactor 4.)
|
||||
//!
|
||||
//! This curve is birationally equivalent to a twisted Edwards curve of the
|
||||
//! form `-x^2 + y^2 = 1 + dx^2y^2` with `d = -(10240/10241)`. In fact, this equivalence
|
||||
//! forms a group isomorphism, so points can be freely converted between the Montgomery
|
||||
//! and twisted Edwards forms.
|
||||
//! It is a complete twisted Edwards curve, so the equivalence with
|
||||
//! the Montgomery curve forms a group isomorphism, allowing points
|
||||
//! to be freely converted between the two forms.
|
||||
|
||||
use pairing::{
|
||||
Engine,
|
||||
|
@ -21,19 +24,34 @@ use pairing::{
|
|||
SqrtField
|
||||
};
|
||||
|
||||
use super::group_hash::group_hash;
|
||||
use group_hash::group_hash;
|
||||
|
||||
use constants;
|
||||
|
||||
use pairing::bls12_381::{
|
||||
Bls12,
|
||||
Fr
|
||||
};
|
||||
|
||||
/// This is an implementation of the twisted Edwards Jubjub curve.
|
||||
pub mod edwards;
|
||||
|
||||
/// This is an implementation of the birationally equivalent
|
||||
/// Montgomery curve.
|
||||
pub mod montgomery;
|
||||
|
||||
/// This is an implementation of the scalar field for Jubjub.
|
||||
pub mod fs;
|
||||
|
||||
#[cfg(test)]
|
||||
pub mod tests;
|
||||
|
||||
/// Point of unknown order.
|
||||
pub enum Unknown { }
|
||||
|
||||
/// Point of prime order.
|
||||
pub enum PrimeOrder { }
|
||||
|
||||
/// Fixed generators of the Jubjub curve of unknown
|
||||
/// exponent.
|
||||
#[derive(Copy, Clone)]
|
||||
|
@ -71,7 +89,9 @@ pub enum FixedGenerators {
|
|||
/// offers a scalar field for the embedded curve (Jubjub)
|
||||
/// and some pre-computed parameters.
|
||||
pub trait JubjubEngine: Engine {
|
||||
/// The scalar field of the Jubjub curve
|
||||
type Fs: PrimeField + SqrtField;
|
||||
/// The parameters of Jubjub and the Sapling protocol
|
||||
type Params: JubjubParams<Self>;
|
||||
}
|
||||
|
||||
|
@ -104,14 +124,6 @@ pub trait JubjubParams<E: JubjubEngine>: Sized {
|
|||
fn circuit_generators(&self, FixedGenerators) -> &[Vec<(E::Fr, E::Fr)>];
|
||||
}
|
||||
|
||||
/// Point of unknown order.
|
||||
pub enum Unknown { }
|
||||
|
||||
/// Point of prime order.
|
||||
pub enum PrimeOrder { }
|
||||
|
||||
pub mod fs;
|
||||
|
||||
impl JubjubEngine for Bls12 {
|
||||
type Fs = self::fs::Fs;
|
||||
type Params = JubjubBls12;
|
||||
|
@ -163,7 +175,7 @@ impl JubjubBls12 {
|
|||
let mut montgomery_2a = montgomery_a;
|
||||
montgomery_2a.double();
|
||||
|
||||
let mut tmp = JubjubBls12 {
|
||||
let mut tmp_params = JubjubBls12 {
|
||||
// d = -(10240/10241)
|
||||
edwards_d: Fr::from_str("19257038036680949359750312669786877991949435402254120286184196891950884077233").unwrap(),
|
||||
// A = 40962
|
||||
|
@ -173,20 +185,24 @@ impl JubjubBls12 {
|
|||
// scaling factor = sqrt(4 / (a - d))
|
||||
scale: Fr::from_str("17814886934372412843466061268024708274627479829237077604635722030778476050649").unwrap(),
|
||||
|
||||
// We'll initialize these below
|
||||
pedersen_hash_generators: vec![],
|
||||
pedersen_circuit_generators: vec![],
|
||||
|
||||
fixed_base_generators: vec![],
|
||||
fixed_base_circuit_generators: vec![],
|
||||
};
|
||||
|
||||
// Create the bases for the Pedersen hashes
|
||||
{
|
||||
// TODO: This currently does not match the specification
|
||||
let mut cur = 0;
|
||||
let mut pedersen_hash_generators = vec![];
|
||||
|
||||
// TODO: This generates more bases for the Pedersen hashes
|
||||
// than necessary, which is just a performance issue in
|
||||
// practice.
|
||||
while pedersen_hash_generators.len() < 5 {
|
||||
let gh = group_hash(&[cur], ::PEDERSEN_HASH_GENERATORS_PERSONALIZATION, &tmp);
|
||||
let gh = group_hash(&[cur], constants::PEDERSEN_HASH_GENERATORS_PERSONALIZATION, &tmp_params);
|
||||
// We don't want to overflow and start reusing generators
|
||||
assert!(cur != u8::max_value());
|
||||
cur += 1;
|
||||
|
@ -196,7 +212,20 @@ impl JubjubBls12 {
|
|||
}
|
||||
}
|
||||
|
||||
tmp.pedersen_hash_generators = pedersen_hash_generators;
|
||||
// Check for duplicates, far worse than spec inconsistencies!
|
||||
for (i, p1) in pedersen_hash_generators.iter().enumerate() {
|
||||
if p1 == &edwards::Point::zero() {
|
||||
panic!("Neutral element!");
|
||||
}
|
||||
|
||||
for p2 in pedersen_hash_generators.iter().skip(i+1) {
|
||||
if p1 == p2 {
|
||||
panic!("Duplicate generator!");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
tmp_params.pedersen_hash_generators = pedersen_hash_generators;
|
||||
}
|
||||
|
||||
// Create the bases for other parts of the protocol
|
||||
|
@ -207,10 +236,10 @@ impl JubjubBls12 {
|
|||
// Each generator is found by invoking the group hash
|
||||
// on tag 0x00, 0x01, ... until we find a valid result.
|
||||
let find_first_gh = |personalization| {
|
||||
let mut cur = 0;
|
||||
let mut cur = 0u8;
|
||||
|
||||
loop {
|
||||
let gh = group_hash::<Bls12>(&[cur], personalization, &tmp);
|
||||
let gh = group_hash::<Bls12>(&[cur], personalization, &tmp_params);
|
||||
// We don't want to overflow.
|
||||
assert!(cur != u8::max_value());
|
||||
cur += 1;
|
||||
|
@ -226,22 +255,22 @@ impl JubjubBls12 {
|
|||
for c in 0..(FixedGenerators::Max as usize) {
|
||||
let p = match c {
|
||||
c if c == (FixedGenerators::ProofGenerationKey as usize) => {
|
||||
::PROOF_GENERATION_KEY_BASE_GENERATOR_PERSONALIZATION
|
||||
constants::PROOF_GENERATION_KEY_BASE_GENERATOR_PERSONALIZATION
|
||||
},
|
||||
c if c == (FixedGenerators::NoteCommitmentRandomness as usize) => {
|
||||
::NOTE_COMMITMENT_RANDOMNESS_GENERATOR_PERSONALIZATION
|
||||
constants::NOTE_COMMITMENT_RANDOMNESS_GENERATOR_PERSONALIZATION
|
||||
},
|
||||
c if c == (FixedGenerators::NullifierPosition as usize) => {
|
||||
::NULLIFIER_POSITION_IN_TREE_GENERATOR_PERSONALIZATION
|
||||
constants::NULLIFIER_POSITION_IN_TREE_GENERATOR_PERSONALIZATION
|
||||
},
|
||||
c if c == (FixedGenerators::ValueCommitmentValue as usize) => {
|
||||
::VALUE_COMMITMENT_VALUE_GENERATOR_PERSONALIZATION
|
||||
constants::VALUE_COMMITMENT_VALUE_GENERATOR_PERSONALIZATION
|
||||
},
|
||||
c if c == (FixedGenerators::ValueCommitmentRandomness as usize) => {
|
||||
::VALUE_COMMITMENT_RANDOMNESS_GENERATOR_PERSONALIZATION
|
||||
constants::VALUE_COMMITMENT_RANDOMNESS_GENERATOR_PERSONALIZATION
|
||||
},
|
||||
c if c == (FixedGenerators::SpendingKeyGenerator as usize) => {
|
||||
::SPENDING_KEY_GENERATOR_PERSONALIZATION
|
||||
constants::SPENDING_KEY_GENERATOR_PERSONALIZATION
|
||||
},
|
||||
_ => unreachable!()
|
||||
};
|
||||
|
@ -263,7 +292,7 @@ impl JubjubBls12 {
|
|||
}
|
||||
}
|
||||
|
||||
tmp.fixed_base_generators = fixed_base_generators;
|
||||
tmp_params.fixed_base_generators = fixed_base_generators;
|
||||
}
|
||||
|
||||
// Create the 2-bit window table lookups for each 4-bit
|
||||
|
@ -272,10 +301,10 @@ impl JubjubBls12 {
|
|||
let mut pedersen_circuit_generators = vec![];
|
||||
|
||||
// Process each segment
|
||||
for mut gen in tmp.pedersen_hash_generators.iter().cloned() {
|
||||
let mut gen = montgomery::Point::from_edwards(&gen, &tmp);
|
||||
for mut gen in tmp_params.pedersen_hash_generators.iter().cloned() {
|
||||
let mut gen = montgomery::Point::from_edwards(&gen, &tmp_params);
|
||||
let mut windows = vec![];
|
||||
for _ in 0..tmp.pedersen_hash_chunks_per_generator() {
|
||||
for _ in 0..tmp_params.pedersen_hash_chunks_per_generator() {
|
||||
// Create (x, y) coeffs for this chunk
|
||||
let mut coeffs = vec![];
|
||||
let mut g = gen.clone();
|
||||
|
@ -283,19 +312,19 @@ impl JubjubBls12 {
|
|||
// coeffs = g, g*2, g*3, g*4
|
||||
for _ in 0..4 {
|
||||
coeffs.push(g.into_xy().expect("cannot produce O"));
|
||||
g = g.add(&gen, &tmp);
|
||||
g = g.add(&gen, &tmp_params);
|
||||
}
|
||||
windows.push(coeffs);
|
||||
|
||||
// Our chunks are separated by 2 bits to prevent overlap.
|
||||
for _ in 0..4 {
|
||||
gen = gen.double(&tmp);
|
||||
gen = gen.double(&tmp_params);
|
||||
}
|
||||
}
|
||||
pedersen_circuit_generators.push(windows);
|
||||
}
|
||||
|
||||
tmp.pedersen_circuit_generators = pedersen_circuit_generators;
|
||||
tmp_params.pedersen_circuit_generators = pedersen_circuit_generators;
|
||||
}
|
||||
|
||||
// Create the 3-bit window table lookups for fixed-base
|
||||
|
@ -303,14 +332,14 @@ impl JubjubBls12 {
|
|||
{
|
||||
let mut fixed_base_circuit_generators = vec![];
|
||||
|
||||
for mut gen in tmp.fixed_base_generators.iter().cloned() {
|
||||
for mut gen in tmp_params.fixed_base_generators.iter().cloned() {
|
||||
let mut windows = vec![];
|
||||
for _ in 0..tmp.fixed_base_chunks_per_generator() {
|
||||
for _ in 0..tmp_params.fixed_base_chunks_per_generator() {
|
||||
let mut coeffs = vec![(Fr::zero(), Fr::one())];
|
||||
let mut g = gen.clone();
|
||||
for _ in 0..7 {
|
||||
coeffs.push(g.into_xy());
|
||||
g = g.add(&gen, &tmp);
|
||||
g = g.add(&gen, &tmp_params);
|
||||
}
|
||||
windows.push(coeffs);
|
||||
|
||||
|
@ -320,10 +349,10 @@ impl JubjubBls12 {
|
|||
fixed_base_circuit_generators.push(windows);
|
||||
}
|
||||
|
||||
tmp.fixed_base_circuit_generators = fixed_base_circuit_generators;
|
||||
tmp_params.fixed_base_circuit_generators = fixed_base_circuit_generators;
|
||||
}
|
||||
|
||||
tmp
|
||||
tmp_params
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -20,8 +20,7 @@ use rand::{
|
|||
|
||||
use std::marker::PhantomData;
|
||||
|
||||
// Represents the affine point (X/Z, Y/Z) via the extended
|
||||
// twisted Edwards coordinates.
|
||||
// Represents the affine point (X, Y)
|
||||
pub struct Point<E: JubjubEngine, Subgroup> {
|
||||
x: E::Fr,
|
||||
y: E::Fr,
|
||||
|
@ -69,7 +68,7 @@ impl<E: JubjubEngine, Subgroup> PartialEq for Point<E, Subgroup> {
|
|||
impl<E: JubjubEngine> Point<E, Unknown> {
|
||||
pub fn get_for_x(x: E::Fr, sign: bool, params: &E::Params) -> Option<Self>
|
||||
{
|
||||
// given an x on the curve, y^2 = x^3 + A*x^2 + x
|
||||
// Given an x on the curve, y = sqrt(x^3 + A*x^2 + x)
|
||||
|
||||
let mut x2 = x;
|
||||
x2.square();
|
||||
|
@ -230,10 +229,17 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
|
|||
return Point::zero();
|
||||
}
|
||||
|
||||
// (0, 0) is the point of order 2. Doubling
|
||||
// produces the point at infinity.
|
||||
if self.y == E::Fr::zero() {
|
||||
return Point::zero();
|
||||
}
|
||||
|
||||
// This is a standard affine point doubling formula
|
||||
// See 4.3.2 The group law for Weierstrass curves
|
||||
// Montgomery curves and the Montgomery Ladder
|
||||
// Daniel J. Bernstein and Tanja Lange
|
||||
|
||||
let mut delta = E::Fr::one();
|
||||
{
|
||||
let mut tmp = params.montgomery_a().clone();
|
||||
|
@ -276,6 +282,11 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
|
|||
|
||||
pub fn add(&self, other: &Self, params: &E::Params) -> Self
|
||||
{
|
||||
// This is a standard affine point addition formula
|
||||
// See 4.3.2 The group law for Weierstrass curves
|
||||
// Montgomery curves and the Montgomery Ladder
|
||||
// Daniel J. Bernstein and Tanja Lange
|
||||
|
||||
match (self.infinity, other.infinity) {
|
||||
(true, true) => Point::zero(),
|
||||
(true, false) => other.clone(),
|
||||
|
@ -325,6 +336,8 @@ impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
|
|||
params: &E::Params
|
||||
) -> Self
|
||||
{
|
||||
// Standard double-and-add scalar multiplication
|
||||
|
||||
let mut res = Self::zero();
|
||||
|
||||
for b in BitIterator::new(scalar.into()) {
|
||||
|
|
26
src/lib.rs
26
src/lib.rs
|
@ -3,7 +3,6 @@ extern crate bellman;
|
|||
extern crate blake2_rfc;
|
||||
extern crate digest;
|
||||
extern crate rand;
|
||||
|
||||
extern crate byteorder;
|
||||
|
||||
#[cfg(test)]
|
||||
|
@ -11,29 +10,8 @@ extern crate byteorder;
|
|||
extern crate hex_literal;
|
||||
|
||||
pub mod jubjub;
|
||||
pub mod circuit;
|
||||
pub mod group_hash;
|
||||
pub mod circuit;
|
||||
pub mod pedersen_hash;
|
||||
pub mod primitives;
|
||||
|
||||
// BLAKE2s invocation personalizations
|
||||
/// BLAKE2s Personalization for CRH^ivk = BLAKE2s(ak | rk)
|
||||
const CRH_IVK_PERSONALIZATION: &'static [u8; 8] = b"Zcashivk";
|
||||
/// BLAKE2s Personalization for PRF^nr = BLAKE2s(rk | cm + position)
|
||||
const PRF_NR_PERSONALIZATION: &'static [u8; 8] = b"WhatTheH";
|
||||
|
||||
// Group hash personalizations
|
||||
/// BLAKE2s Personalization for Pedersen hash generators.
|
||||
const PEDERSEN_HASH_GENERATORS_PERSONALIZATION: &'static [u8; 8] = b"PEDERSEN";
|
||||
/// BLAKE2s Personalization for the proof generation key base point
|
||||
const PROOF_GENERATION_KEY_BASE_GENERATOR_PERSONALIZATION: &'static [u8; 8] = b"12345678";
|
||||
/// BLAKE2s Personalization for the note commitment randomness generator
|
||||
const NOTE_COMMITMENT_RANDOMNESS_GENERATOR_PERSONALIZATION: &'static [u8; 8] = b"abcdefgh";
|
||||
/// BLAKE2s Personalization for the nullifier position generator (for PRF^nr)
|
||||
const NULLIFIER_POSITION_IN_TREE_GENERATOR_PERSONALIZATION: &'static [u8; 8] = b"nfnfnfnf";
|
||||
/// BLAKE2s Personalization for the value commitment generator for the value
|
||||
const VALUE_COMMITMENT_VALUE_GENERATOR_PERSONALIZATION: &'static [u8; 8] = b"45u8gh45";
|
||||
/// BLAKE2s Personalization for the value commitment randomness generator
|
||||
const VALUE_COMMITMENT_RANDOMNESS_GENERATOR_PERSONALIZATION: &'static [u8; 8] = b"11111111";
|
||||
/// BLAKE2s Personalization for the spending key base point
|
||||
const SPENDING_KEY_GENERATOR_PERSONALIZATION: &'static [u8; 8] = b"sksksksk";
|
||||
pub mod constants;
|
||||
|
|
|
@ -1,3 +1,12 @@
|
|||
use pairing::{
|
||||
PrimeField,
|
||||
PrimeFieldRepr
|
||||
};
|
||||
|
||||
use constants;
|
||||
|
||||
use group_hash::group_hash;
|
||||
|
||||
use pedersen_hash::{
|
||||
pedersen_hash,
|
||||
Personalization
|
||||
|
@ -5,7 +14,7 @@ use pedersen_hash::{
|
|||
|
||||
use byteorder::{
|
||||
BigEndian,
|
||||
ByteOrder
|
||||
WriteBytesExt
|
||||
};
|
||||
|
||||
use jubjub::{
|
||||
|
@ -16,6 +25,134 @@ use jubjub::{
|
|||
FixedGenerators
|
||||
};
|
||||
|
||||
use blake2_rfc::blake2s::Blake2s;
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct ValueCommitment<E: JubjubEngine> {
|
||||
pub value: u64,
|
||||
pub randomness: E::Fs
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine> ValueCommitment<E> {
|
||||
pub fn cm(
|
||||
&self,
|
||||
params: &E::Params
|
||||
) -> edwards::Point<E, PrimeOrder>
|
||||
{
|
||||
params.generator(FixedGenerators::ValueCommitmentValue)
|
||||
.mul(self.value, params)
|
||||
.add(
|
||||
¶ms.generator(FixedGenerators::ValueCommitmentRandomness)
|
||||
.mul(self.randomness, params),
|
||||
params
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct ProofGenerationKey<E: JubjubEngine> {
|
||||
pub ak: edwards::Point<E, PrimeOrder>,
|
||||
pub rsk: E::Fs
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine> ProofGenerationKey<E> {
|
||||
pub fn into_viewing_key(&self, params: &E::Params) -> ViewingKey<E> {
|
||||
ViewingKey {
|
||||
ak: self.ak.clone(),
|
||||
rk: params.generator(FixedGenerators::ProofGenerationKey)
|
||||
.mul(self.rsk, params)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub struct ViewingKey<E: JubjubEngine> {
|
||||
pub ak: edwards::Point<E, PrimeOrder>,
|
||||
pub rk: edwards::Point<E, PrimeOrder>
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine> ViewingKey<E> {
|
||||
fn ivk(&self) -> E::Fs {
|
||||
let mut preimage = [0; 64];
|
||||
|
||||
self.ak.write(&mut preimage[0..32]).unwrap();
|
||||
self.rk.write(&mut preimage[32..64]).unwrap();
|
||||
|
||||
let mut h = Blake2s::with_params(32, &[], &[], constants::CRH_IVK_PERSONALIZATION);
|
||||
h.update(&preimage);
|
||||
let mut h = h.finalize().as_ref().to_vec();
|
||||
|
||||
// Drop the first five bits, so it can be interpreted as a scalar.
|
||||
h[0] &= 0b0000_0111;
|
||||
|
||||
let mut e = <E::Fs as PrimeField>::Repr::default();
|
||||
e.read_be(&h[..]).unwrap();
|
||||
|
||||
E::Fs::from_repr(e).expect("should be a valid scalar")
|
||||
}
|
||||
|
||||
pub fn into_payment_address(
|
||||
&self,
|
||||
diversifier: Diversifier,
|
||||
params: &E::Params
|
||||
) -> Option<PaymentAddress<E>>
|
||||
{
|
||||
diversifier.g_d(params).map(|g_d| {
|
||||
let pk_d = g_d.mul(self.ivk(), params);
|
||||
|
||||
PaymentAddress {
|
||||
pk_d: pk_d,
|
||||
diversifier: diversifier
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct Diversifier(pub [u8; 11]);
|
||||
|
||||
impl Diversifier {
|
||||
pub fn g_d<E: JubjubEngine>(
|
||||
&self,
|
||||
params: &E::Params
|
||||
) -> Option<edwards::Point<E, PrimeOrder>>
|
||||
{
|
||||
group_hash::<E>(&self.0, constants::KEY_DIVERSIFICATION_PERSONALIZATION, params)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct PaymentAddress<E: JubjubEngine> {
|
||||
pub pk_d: edwards::Point<E, PrimeOrder>,
|
||||
pub diversifier: Diversifier
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine> PaymentAddress<E> {
|
||||
pub fn g_d(
|
||||
&self,
|
||||
params: &E::Params
|
||||
) -> Option<edwards::Point<E, PrimeOrder>>
|
||||
{
|
||||
self.diversifier.g_d(params)
|
||||
}
|
||||
|
||||
pub fn create_note(
|
||||
&self,
|
||||
value: u64,
|
||||
randomness: E::Fs,
|
||||
params: &E::Params
|
||||
) -> Option<Note<E>>
|
||||
{
|
||||
self.g_d(params).map(|g_d| {
|
||||
Note {
|
||||
value: value,
|
||||
r: randomness,
|
||||
g_d: g_d,
|
||||
pk_d: self.pk_d.clone()
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Note<E: JubjubEngine> {
|
||||
/// The value of the note
|
||||
pub value: u64,
|
||||
|
@ -28,14 +165,14 @@ pub struct Note<E: JubjubEngine> {
|
|||
}
|
||||
|
||||
impl<E: JubjubEngine> Note<E> {
|
||||
/// Computes the note commitment
|
||||
pub fn cm(&self, params: &E::Params) -> E::Fr
|
||||
/// Computes the note commitment, returning the full point.
|
||||
fn cm_full_point(&self, params: &E::Params) -> edwards::Point<E, PrimeOrder>
|
||||
{
|
||||
// Calculate the note contents, as bytes
|
||||
let mut note_contents = vec![];
|
||||
|
||||
// Write the value in big endian
|
||||
BigEndian::write_u64(&mut note_contents, self.value);
|
||||
(&mut note_contents).write_u64::<BigEndian>(self.value).unwrap();
|
||||
|
||||
// Write g_d
|
||||
self.g_d.write(&mut note_contents).unwrap();
|
||||
|
@ -43,6 +180,8 @@ impl<E: JubjubEngine> Note<E> {
|
|||
// Write pk_d
|
||||
self.pk_d.write(&mut note_contents).unwrap();
|
||||
|
||||
assert_eq!(note_contents.len(), 32 + 32 + 8);
|
||||
|
||||
// Compute the Pedersen hash of the note contents
|
||||
let hash_of_contents = pedersen_hash(
|
||||
Personalization::NoteCommitment,
|
||||
|
@ -54,12 +193,53 @@ impl<E: JubjubEngine> Note<E> {
|
|||
);
|
||||
|
||||
// Compute final commitment
|
||||
let cm = params.generator(FixedGenerators::NoteCommitmentRandomness)
|
||||
params.generator(FixedGenerators::NoteCommitmentRandomness)
|
||||
.mul(self.r, params)
|
||||
.add(&hash_of_contents, params);
|
||||
.add(&hash_of_contents, params)
|
||||
}
|
||||
|
||||
/// Computes the nullifier given the viewing key and
|
||||
/// note position
|
||||
pub fn nf(
|
||||
&self,
|
||||
viewing_key: &ViewingKey<E>,
|
||||
position: u64,
|
||||
params: &E::Params
|
||||
) -> edwards::Point<E, PrimeOrder>
|
||||
{
|
||||
// Compute cm + position
|
||||
let cm_plus_position = self
|
||||
.cm_full_point(params)
|
||||
.add(
|
||||
¶ms.generator(FixedGenerators::NullifierPosition)
|
||||
.mul(position, params),
|
||||
params
|
||||
);
|
||||
|
||||
// Compute nr = drop_5(BLAKE2s(rk | cm_plus_position))
|
||||
let mut nr_preimage = [0u8; 64];
|
||||
viewing_key.rk.write(&mut nr_preimage[0..32]).unwrap();
|
||||
cm_plus_position.write(&mut nr_preimage[32..64]).unwrap();
|
||||
let mut h = Blake2s::with_params(32, &[], &[], constants::PRF_NR_PERSONALIZATION);
|
||||
h.update(&nr_preimage);
|
||||
let mut h = h.finalize().as_ref().to_vec();
|
||||
|
||||
// Drop the first five bits, so it can be interpreted as a scalar.
|
||||
h[0] &= 0b0000_0111;
|
||||
|
||||
let mut e = <E::Fs as PrimeField>::Repr::default();
|
||||
e.read_be(&h[..]).unwrap();
|
||||
|
||||
let nr = E::Fs::from_repr(e).expect("should be a valid scalar");
|
||||
|
||||
viewing_key.ak.mul(nr, params)
|
||||
}
|
||||
|
||||
/// Computes the note commitment
|
||||
pub fn cm(&self, params: &E::Params) -> E::Fr
|
||||
{
|
||||
// The commitment is in the prime order subgroup, so mapping the
|
||||
// commitment to the x-coordinate is an injective encoding.
|
||||
cm.into_xy().0
|
||||
self.cm_full_point(params).into_xy().0
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue