Add `get_for_x` to Montgomery implementation.

This commit is contained in:
Sean Bowe 2017-12-12 10:31:13 -07:00
parent e9d3923829
commit 3a6e8d448f
No known key found for this signature in database
GPG Key ID: 95684257D8F8B031
1 changed files with 33 additions and 22 deletions

View File

@ -67,6 +67,36 @@ impl<E: JubjubEngine, Subgroup> PartialEq for Point<E, Subgroup> {
}
impl<E: JubjubEngine> Point<E, Unknown> {
pub fn get_for_x(x: E::Fr, sign: bool, params: &E::Params) -> Option<Self>
{
// given an x on the curve, y^2 = x^3 + A*x^2 + x
let mut x2 = x;
x2.square();
let mut rhs = x2;
rhs.mul_assign(params.montgomery_a());
rhs.add_assign(&x);
x2.mul_assign(&x);
rhs.add_assign(&x2);
match rhs.sqrt() {
Some(mut y) => {
if y.into_repr().is_odd() != sign {
y.negate();
}
return Some(Point {
x: x,
y: y,
infinity: false,
_marker: PhantomData
})
},
None => None
}
}
/// This guarantees the point is in the prime order subgroup
pub fn mul_by_cofactor(&self, params: &E::Params) -> Point<E, PrimeOrder>
{
@ -80,30 +110,11 @@ impl<E: JubjubEngine> Point<E, Unknown> {
pub fn rand<R: Rng>(rng: &mut R, params: &E::Params) -> Self
{
loop {
// given an x on the curve, y^2 = x^3 + A*x^2 + x
let x: E::Fr = rng.gen();
let mut x2 = x;
x2.square();
let mut rhs = x2;
rhs.mul_assign(params.montgomery_a());
rhs.add_assign(&x);
x2.mul_assign(&x);
rhs.add_assign(&x2);
match rhs.sqrt() {
Some(mut y) => {
if y.into_repr().is_odd() != rng.gen() {
y.negate();
}
return Point {
x: x,
y: y,
infinity: false,
_marker: PhantomData
}
match Self::get_for_x(x, rng.gen(), params) {
Some(p) => {
return p
},
None => {}
}