Dynamic base twisted Edwards scalar multiplication in the circuit.

This commit is contained in:
Sean Bowe 2018-02-02 14:24:18 -07:00
parent f2c74a4b98
commit 55b8f7a575
No known key found for this signature in database
GPG Key ID: 95684257D8F8B031
1 changed files with 251 additions and 2 deletions

View File

@ -20,11 +20,22 @@ use ::jubjub::{
JubjubParams JubjubParams
}; };
use super::boolean::Boolean;
pub struct EdwardsPoint<E: Engine, Var> { pub struct EdwardsPoint<E: Engine, Var> {
pub x: AllocatedNum<E, Var>, pub x: AllocatedNum<E, Var>,
pub y: AllocatedNum<E, Var> pub y: AllocatedNum<E, Var>
} }
impl<E: Engine, Var: Copy> Clone for EdwardsPoint<E, Var> {
fn clone(&self) -> Self {
EdwardsPoint {
x: self.x.clone(),
y: self.y.clone()
}
}
}
impl<E: JubjubEngine, Var: Copy> EdwardsPoint<E, Var> { impl<E: JubjubEngine, Var: Copy> EdwardsPoint<E, Var> {
/// This extracts the x-coordinate, which is an injective /// This extracts the x-coordinate, which is an injective
/// encoding for elements of the prime order subgroup. /// encoding for elements of the prime order subgroup.
@ -32,6 +43,116 @@ impl<E: JubjubEngine, Var: Copy> EdwardsPoint<E, Var> {
self.x.clone() self.x.clone()
} }
/// Returns `self` if condition is true, and the neutral
/// element (0, 1) otherwise.
pub fn conditionally_select<CS>(
&self,
mut cs: CS,
condition: &Boolean<Var>
) -> Result<Self, SynthesisError>
where CS: ConstraintSystem<E, Variable=Var>
{
// Compute x' = self.x if condition, and 0 otherwise
let x_prime = AllocatedNum::alloc(cs.namespace(|| "x'"), || {
if *condition.get_value().get()? {
Ok(*self.x.get_value().get()?)
} else {
Ok(E::Fr::zero())
}
})?;
// condition * x = x'
// if condition is 0, x' must be 0
// if condition is 1, x' must be x
let one = cs.one();
cs.enforce(
|| "x' computation",
LinearCombination::<Var, E>::zero() + self.x.get_variable(),
condition.lc(one, E::Fr::one()),
LinearCombination::<Var, E>::zero() + x_prime.get_variable()
);
// Compute y' = self.y if condition, and 1 otherwise
let y_prime = AllocatedNum::alloc(cs.namespace(|| "y'"), || {
if *condition.get_value().get()? {
Ok(*self.y.get_value().get()?)
} else {
Ok(E::Fr::one())
}
})?;
// condition * y = y' - (1 - condition)
// if condition is 0, y' must be 1
// if condition is 1, y' must be y
cs.enforce(
|| "y' computation",
LinearCombination::<Var, E>::zero() + self.y.get_variable(),
condition.lc(one, E::Fr::one()),
LinearCombination::<Var, E>::zero() + y_prime.get_variable()
- &condition.not().lc(one, E::Fr::one())
);
Ok(EdwardsPoint {
x: x_prime,
y: y_prime
})
}
/// Performs a scalar multiplication of this twisted Edwards
/// point by a scalar represented as a sequence of booleans
/// in little-endian bit order.
pub fn mul<CS>(
&self,
mut cs: CS,
by: &[Boolean<Var>],
params: &E::Params
) -> Result<Self, SynthesisError>
where CS: ConstraintSystem<E, Variable=Var>
{
// Represents the current "magnitude" of the base
// that we're operating over. Starts at self,
// then 2*self, then 4*self, ...
let mut curbase = None;
// Represents the result of the multiplication
let mut result = None;
for (i, bit) in by.iter().enumerate() {
if curbase.is_none() {
curbase = Some(self.clone());
} else {
// Double the previous value
curbase = Some(
curbase.unwrap()
.double(cs.namespace(|| format!("doubling {}", i)), params)?
);
}
// Represents the select base. If the bit for this magnitude
// is true, this will return `curbase`. Otherwise it will
// return the neutral element, which will have no effect on
// the result.
let thisbase = curbase.as_ref()
.unwrap()
.conditionally_select(
cs.namespace(|| format!("selection {}", i)),
bit
)?;
if result.is_none() {
result = Some(thisbase);
} else {
result = Some(result.unwrap().add(
cs.namespace(|| format!("addition {}", i)),
&thisbase,
params
)?);
}
}
Ok(result.get()?.clone())
}
pub fn interpret<CS>( pub fn interpret<CS>(
mut cs: CS, mut cs: CS,
x: &AllocatedNum<E, Var>, x: &AllocatedNum<E, Var>,
@ -487,20 +608,25 @@ impl<E: JubjubEngine, Var: Copy> MontgomeryPoint<E, Var> {
#[cfg(test)] #[cfg(test)]
mod test { mod test {
use bellman::{ConstraintSystem}; use bellman::{ConstraintSystem};
use rand::{XorShiftRng, SeedableRng, Rng}; use rand::{XorShiftRng, SeedableRng, Rand, Rng};
use pairing::bls12_381::{Bls12, Fr}; use pairing::bls12_381::{Bls12, Fr};
use pairing::{Field}; use pairing::{BitIterator, Field, PrimeField};
use ::circuit::test::*; use ::circuit::test::*;
use ::jubjub::{ use ::jubjub::{
montgomery, montgomery,
edwards, edwards,
JubjubBls12 JubjubBls12
}; };
use ::jubjub::fs::Fs;
use super::{ use super::{
MontgomeryPoint, MontgomeryPoint,
EdwardsPoint, EdwardsPoint,
AllocatedNum, AllocatedNum,
}; };
use super::super::boolean::{
Boolean,
AllocatedBit
};
#[test] #[test]
fn test_into_edwards() { fn test_into_edwards() {
@ -605,6 +731,129 @@ mod test {
assert!(p.double(&mut cs, params).is_err()); assert!(p.double(&mut cs, params).is_err());
} }
#[test]
fn test_edwards_multiplication() {
let params = &JubjubBls12::new();
let rng = &mut XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
for _ in 0..100 {
let mut cs = TestConstraintSystem::<Bls12>::new();
let p = edwards::Point::<Bls12, _>::rand(rng, params);
let s = Fs::rand(rng);
let q = p.mul(s, params);
let (x0, y0) = p.into_xy();
let (x1, y1) = q.into_xy();
let num_x0 = AllocatedNum::alloc(cs.namespace(|| "x0"), || {
Ok(x0)
}).unwrap();
let num_y0 = AllocatedNum::alloc(cs.namespace(|| "y0"), || {
Ok(y0)
}).unwrap();
let p = EdwardsPoint {
x: num_x0,
y: num_y0
};
let mut s_bits = BitIterator::new(s.into_repr()).collect::<Vec<_>>();
s_bits.reverse();
s_bits.truncate(Fs::NUM_BITS as usize);
let s_bits = s_bits.into_iter()
.enumerate()
.map(|(i, b)| AllocatedBit::alloc(cs.namespace(|| format!("scalar bit {}", i)), Some(b)).unwrap())
.map(|v| Boolean::from(v))
.collect::<Vec<_>>();
let q = p.mul(
cs.namespace(|| "scalar mul"),
&s_bits,
params
).unwrap();
assert!(cs.is_satisfied());
assert_eq!(
q.x.get_value().unwrap(),
x1
);
assert_eq!(
q.y.get_value().unwrap(),
y1
);
}
}
#[test]
fn test_conditionally_select() {
let params = &JubjubBls12::new();
let rng = &mut XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
for _ in 0..1000 {
let mut cs = TestConstraintSystem::<Bls12>::new();
let p = edwards::Point::<Bls12, _>::rand(rng, params);
let (x0, y0) = p.into_xy();
let num_x0 = AllocatedNum::alloc(cs.namespace(|| "x0"), || {
Ok(x0)
}).unwrap();
let num_y0 = AllocatedNum::alloc(cs.namespace(|| "y0"), || {
Ok(y0)
}).unwrap();
let p = EdwardsPoint {
x: num_x0,
y: num_y0
};
let mut should_we_select = rng.gen();
// Conditionally allocate
let mut b = if rng.gen() {
Boolean::from(AllocatedBit::alloc(
cs.namespace(|| "condition"),
Some(should_we_select)
).unwrap())
} else {
Boolean::constant(should_we_select)
};
// Conditionally negate
if rng.gen() {
b = b.not();
should_we_select = !should_we_select;
}
let q = p.conditionally_select(cs.namespace(|| "select"), &b).unwrap();
assert!(cs.is_satisfied());
if should_we_select {
assert_eq!(q.x.get_value().unwrap(), x0);
assert_eq!(q.y.get_value().unwrap(), y0);
cs.set("select/y'/num", Fr::one());
assert_eq!(cs.which_is_unsatisfied().unwrap(), "select/y' computation");
cs.set("select/x'/num", Fr::zero());
assert_eq!(cs.which_is_unsatisfied().unwrap(), "select/x' computation");
} else {
assert_eq!(q.x.get_value().unwrap(), Fr::zero());
assert_eq!(q.y.get_value().unwrap(), Fr::one());
cs.set("select/y'/num", x0);
assert_eq!(cs.which_is_unsatisfied().unwrap(), "select/y' computation");
cs.set("select/x'/num", y0);
assert_eq!(cs.which_is_unsatisfied().unwrap(), "select/x' computation");
}
}
}
#[test] #[test]
fn test_edwards_addition() { fn test_edwards_addition() {
let params = &JubjubBls12::new(); let params = &JubjubBls12::new();