Dynamic base twisted Edwards scalar multiplication in the circuit.
This commit is contained in:
parent
f2c74a4b98
commit
55b8f7a575
|
@ -20,11 +20,22 @@ use ::jubjub::{
|
||||||
JubjubParams
|
JubjubParams
|
||||||
};
|
};
|
||||||
|
|
||||||
|
use super::boolean::Boolean;
|
||||||
|
|
||||||
pub struct EdwardsPoint<E: Engine, Var> {
|
pub struct EdwardsPoint<E: Engine, Var> {
|
||||||
pub x: AllocatedNum<E, Var>,
|
pub x: AllocatedNum<E, Var>,
|
||||||
pub y: AllocatedNum<E, Var>
|
pub y: AllocatedNum<E, Var>
|
||||||
}
|
}
|
||||||
|
|
||||||
|
impl<E: Engine, Var: Copy> Clone for EdwardsPoint<E, Var> {
|
||||||
|
fn clone(&self) -> Self {
|
||||||
|
EdwardsPoint {
|
||||||
|
x: self.x.clone(),
|
||||||
|
y: self.y.clone()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
impl<E: JubjubEngine, Var: Copy> EdwardsPoint<E, Var> {
|
impl<E: JubjubEngine, Var: Copy> EdwardsPoint<E, Var> {
|
||||||
/// This extracts the x-coordinate, which is an injective
|
/// This extracts the x-coordinate, which is an injective
|
||||||
/// encoding for elements of the prime order subgroup.
|
/// encoding for elements of the prime order subgroup.
|
||||||
|
@ -32,6 +43,116 @@ impl<E: JubjubEngine, Var: Copy> EdwardsPoint<E, Var> {
|
||||||
self.x.clone()
|
self.x.clone()
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Returns `self` if condition is true, and the neutral
|
||||||
|
/// element (0, 1) otherwise.
|
||||||
|
pub fn conditionally_select<CS>(
|
||||||
|
&self,
|
||||||
|
mut cs: CS,
|
||||||
|
condition: &Boolean<Var>
|
||||||
|
) -> Result<Self, SynthesisError>
|
||||||
|
where CS: ConstraintSystem<E, Variable=Var>
|
||||||
|
{
|
||||||
|
// Compute x' = self.x if condition, and 0 otherwise
|
||||||
|
let x_prime = AllocatedNum::alloc(cs.namespace(|| "x'"), || {
|
||||||
|
if *condition.get_value().get()? {
|
||||||
|
Ok(*self.x.get_value().get()?)
|
||||||
|
} else {
|
||||||
|
Ok(E::Fr::zero())
|
||||||
|
}
|
||||||
|
})?;
|
||||||
|
|
||||||
|
// condition * x = x'
|
||||||
|
// if condition is 0, x' must be 0
|
||||||
|
// if condition is 1, x' must be x
|
||||||
|
let one = cs.one();
|
||||||
|
cs.enforce(
|
||||||
|
|| "x' computation",
|
||||||
|
LinearCombination::<Var, E>::zero() + self.x.get_variable(),
|
||||||
|
condition.lc(one, E::Fr::one()),
|
||||||
|
LinearCombination::<Var, E>::zero() + x_prime.get_variable()
|
||||||
|
);
|
||||||
|
|
||||||
|
// Compute y' = self.y if condition, and 1 otherwise
|
||||||
|
let y_prime = AllocatedNum::alloc(cs.namespace(|| "y'"), || {
|
||||||
|
if *condition.get_value().get()? {
|
||||||
|
Ok(*self.y.get_value().get()?)
|
||||||
|
} else {
|
||||||
|
Ok(E::Fr::one())
|
||||||
|
}
|
||||||
|
})?;
|
||||||
|
|
||||||
|
// condition * y = y' - (1 - condition)
|
||||||
|
// if condition is 0, y' must be 1
|
||||||
|
// if condition is 1, y' must be y
|
||||||
|
cs.enforce(
|
||||||
|
|| "y' computation",
|
||||||
|
LinearCombination::<Var, E>::zero() + self.y.get_variable(),
|
||||||
|
condition.lc(one, E::Fr::one()),
|
||||||
|
LinearCombination::<Var, E>::zero() + y_prime.get_variable()
|
||||||
|
- &condition.not().lc(one, E::Fr::one())
|
||||||
|
);
|
||||||
|
|
||||||
|
Ok(EdwardsPoint {
|
||||||
|
x: x_prime,
|
||||||
|
y: y_prime
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Performs a scalar multiplication of this twisted Edwards
|
||||||
|
/// point by a scalar represented as a sequence of booleans
|
||||||
|
/// in little-endian bit order.
|
||||||
|
pub fn mul<CS>(
|
||||||
|
&self,
|
||||||
|
mut cs: CS,
|
||||||
|
by: &[Boolean<Var>],
|
||||||
|
params: &E::Params
|
||||||
|
) -> Result<Self, SynthesisError>
|
||||||
|
where CS: ConstraintSystem<E, Variable=Var>
|
||||||
|
{
|
||||||
|
// Represents the current "magnitude" of the base
|
||||||
|
// that we're operating over. Starts at self,
|
||||||
|
// then 2*self, then 4*self, ...
|
||||||
|
let mut curbase = None;
|
||||||
|
|
||||||
|
// Represents the result of the multiplication
|
||||||
|
let mut result = None;
|
||||||
|
|
||||||
|
for (i, bit) in by.iter().enumerate() {
|
||||||
|
if curbase.is_none() {
|
||||||
|
curbase = Some(self.clone());
|
||||||
|
} else {
|
||||||
|
// Double the previous value
|
||||||
|
curbase = Some(
|
||||||
|
curbase.unwrap()
|
||||||
|
.double(cs.namespace(|| format!("doubling {}", i)), params)?
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Represents the select base. If the bit for this magnitude
|
||||||
|
// is true, this will return `curbase`. Otherwise it will
|
||||||
|
// return the neutral element, which will have no effect on
|
||||||
|
// the result.
|
||||||
|
let thisbase = curbase.as_ref()
|
||||||
|
.unwrap()
|
||||||
|
.conditionally_select(
|
||||||
|
cs.namespace(|| format!("selection {}", i)),
|
||||||
|
bit
|
||||||
|
)?;
|
||||||
|
|
||||||
|
if result.is_none() {
|
||||||
|
result = Some(thisbase);
|
||||||
|
} else {
|
||||||
|
result = Some(result.unwrap().add(
|
||||||
|
cs.namespace(|| format!("addition {}", i)),
|
||||||
|
&thisbase,
|
||||||
|
params
|
||||||
|
)?);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(result.get()?.clone())
|
||||||
|
}
|
||||||
|
|
||||||
pub fn interpret<CS>(
|
pub fn interpret<CS>(
|
||||||
mut cs: CS,
|
mut cs: CS,
|
||||||
x: &AllocatedNum<E, Var>,
|
x: &AllocatedNum<E, Var>,
|
||||||
|
@ -487,20 +608,25 @@ impl<E: JubjubEngine, Var: Copy> MontgomeryPoint<E, Var> {
|
||||||
#[cfg(test)]
|
#[cfg(test)]
|
||||||
mod test {
|
mod test {
|
||||||
use bellman::{ConstraintSystem};
|
use bellman::{ConstraintSystem};
|
||||||
use rand::{XorShiftRng, SeedableRng, Rng};
|
use rand::{XorShiftRng, SeedableRng, Rand, Rng};
|
||||||
use pairing::bls12_381::{Bls12, Fr};
|
use pairing::bls12_381::{Bls12, Fr};
|
||||||
use pairing::{Field};
|
use pairing::{BitIterator, Field, PrimeField};
|
||||||
use ::circuit::test::*;
|
use ::circuit::test::*;
|
||||||
use ::jubjub::{
|
use ::jubjub::{
|
||||||
montgomery,
|
montgomery,
|
||||||
edwards,
|
edwards,
|
||||||
JubjubBls12
|
JubjubBls12
|
||||||
};
|
};
|
||||||
|
use ::jubjub::fs::Fs;
|
||||||
use super::{
|
use super::{
|
||||||
MontgomeryPoint,
|
MontgomeryPoint,
|
||||||
EdwardsPoint,
|
EdwardsPoint,
|
||||||
AllocatedNum,
|
AllocatedNum,
|
||||||
};
|
};
|
||||||
|
use super::super::boolean::{
|
||||||
|
Boolean,
|
||||||
|
AllocatedBit
|
||||||
|
};
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_into_edwards() {
|
fn test_into_edwards() {
|
||||||
|
@ -605,6 +731,129 @@ mod test {
|
||||||
assert!(p.double(&mut cs, params).is_err());
|
assert!(p.double(&mut cs, params).is_err());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_edwards_multiplication() {
|
||||||
|
let params = &JubjubBls12::new();
|
||||||
|
let rng = &mut XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||||
|
|
||||||
|
for _ in 0..100 {
|
||||||
|
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||||
|
|
||||||
|
let p = edwards::Point::<Bls12, _>::rand(rng, params);
|
||||||
|
let s = Fs::rand(rng);
|
||||||
|
let q = p.mul(s, params);
|
||||||
|
|
||||||
|
let (x0, y0) = p.into_xy();
|
||||||
|
let (x1, y1) = q.into_xy();
|
||||||
|
|
||||||
|
let num_x0 = AllocatedNum::alloc(cs.namespace(|| "x0"), || {
|
||||||
|
Ok(x0)
|
||||||
|
}).unwrap();
|
||||||
|
let num_y0 = AllocatedNum::alloc(cs.namespace(|| "y0"), || {
|
||||||
|
Ok(y0)
|
||||||
|
}).unwrap();
|
||||||
|
|
||||||
|
let p = EdwardsPoint {
|
||||||
|
x: num_x0,
|
||||||
|
y: num_y0
|
||||||
|
};
|
||||||
|
|
||||||
|
let mut s_bits = BitIterator::new(s.into_repr()).collect::<Vec<_>>();
|
||||||
|
s_bits.reverse();
|
||||||
|
s_bits.truncate(Fs::NUM_BITS as usize);
|
||||||
|
|
||||||
|
let s_bits = s_bits.into_iter()
|
||||||
|
.enumerate()
|
||||||
|
.map(|(i, b)| AllocatedBit::alloc(cs.namespace(|| format!("scalar bit {}", i)), Some(b)).unwrap())
|
||||||
|
.map(|v| Boolean::from(v))
|
||||||
|
.collect::<Vec<_>>();
|
||||||
|
|
||||||
|
let q = p.mul(
|
||||||
|
cs.namespace(|| "scalar mul"),
|
||||||
|
&s_bits,
|
||||||
|
params
|
||||||
|
).unwrap();
|
||||||
|
|
||||||
|
assert!(cs.is_satisfied());
|
||||||
|
|
||||||
|
assert_eq!(
|
||||||
|
q.x.get_value().unwrap(),
|
||||||
|
x1
|
||||||
|
);
|
||||||
|
|
||||||
|
assert_eq!(
|
||||||
|
q.y.get_value().unwrap(),
|
||||||
|
y1
|
||||||
|
);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_conditionally_select() {
|
||||||
|
let params = &JubjubBls12::new();
|
||||||
|
let rng = &mut XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||||
|
|
||||||
|
for _ in 0..1000 {
|
||||||
|
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||||
|
|
||||||
|
let p = edwards::Point::<Bls12, _>::rand(rng, params);
|
||||||
|
|
||||||
|
let (x0, y0) = p.into_xy();
|
||||||
|
|
||||||
|
let num_x0 = AllocatedNum::alloc(cs.namespace(|| "x0"), || {
|
||||||
|
Ok(x0)
|
||||||
|
}).unwrap();
|
||||||
|
let num_y0 = AllocatedNum::alloc(cs.namespace(|| "y0"), || {
|
||||||
|
Ok(y0)
|
||||||
|
}).unwrap();
|
||||||
|
|
||||||
|
let p = EdwardsPoint {
|
||||||
|
x: num_x0,
|
||||||
|
y: num_y0
|
||||||
|
};
|
||||||
|
|
||||||
|
let mut should_we_select = rng.gen();
|
||||||
|
|
||||||
|
// Conditionally allocate
|
||||||
|
let mut b = if rng.gen() {
|
||||||
|
Boolean::from(AllocatedBit::alloc(
|
||||||
|
cs.namespace(|| "condition"),
|
||||||
|
Some(should_we_select)
|
||||||
|
).unwrap())
|
||||||
|
} else {
|
||||||
|
Boolean::constant(should_we_select)
|
||||||
|
};
|
||||||
|
|
||||||
|
// Conditionally negate
|
||||||
|
if rng.gen() {
|
||||||
|
b = b.not();
|
||||||
|
should_we_select = !should_we_select;
|
||||||
|
}
|
||||||
|
|
||||||
|
let q = p.conditionally_select(cs.namespace(|| "select"), &b).unwrap();
|
||||||
|
|
||||||
|
assert!(cs.is_satisfied());
|
||||||
|
|
||||||
|
if should_we_select {
|
||||||
|
assert_eq!(q.x.get_value().unwrap(), x0);
|
||||||
|
assert_eq!(q.y.get_value().unwrap(), y0);
|
||||||
|
|
||||||
|
cs.set("select/y'/num", Fr::one());
|
||||||
|
assert_eq!(cs.which_is_unsatisfied().unwrap(), "select/y' computation");
|
||||||
|
cs.set("select/x'/num", Fr::zero());
|
||||||
|
assert_eq!(cs.which_is_unsatisfied().unwrap(), "select/x' computation");
|
||||||
|
} else {
|
||||||
|
assert_eq!(q.x.get_value().unwrap(), Fr::zero());
|
||||||
|
assert_eq!(q.y.get_value().unwrap(), Fr::one());
|
||||||
|
|
||||||
|
cs.set("select/y'/num", x0);
|
||||||
|
assert_eq!(cs.which_is_unsatisfied().unwrap(), "select/y' computation");
|
||||||
|
cs.set("select/x'/num", y0);
|
||||||
|
assert_eq!(cs.which_is_unsatisfied().unwrap(), "select/x' computation");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_edwards_addition() {
|
fn test_edwards_addition() {
|
||||||
let params = &JubjubBls12::new();
|
let params = &JubjubBls12::new();
|
||||||
|
|
Loading…
Reference in New Issue