Merge pull request #15 from ebfull/pedersen-hashes

Pedersen hashes inside and outside the circuit
This commit is contained in:
ebfull 2018-01-29 06:06:52 -07:00 committed by GitHub
commit 7d590491bd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 1161 additions and 8 deletions

View File

@ -16,7 +16,7 @@ features = ["expose-arith"]
rand = "0.3" rand = "0.3"
blake2 = "0.7" blake2 = "0.7"
digest = "0.7" digest = "0.7"
bellman = "0.0.6" bellman = "0.0.7"
[features] [features]
default = ["u128-support"] default = ["u128-support"]

View File

@ -270,6 +270,25 @@ impl<Var: Copy> Boolean<Var> {
} }
} }
pub fn lc<E: Engine>(&self, one: Var, coeff: E::Fr) -> LinearCombination<Var, E>
{
match self {
&Boolean::Constant(c) => {
if c {
LinearCombination::<Var, E>::zero() + (coeff, one)
} else {
LinearCombination::<Var, E>::zero()
}
},
&Boolean::Is(ref v) => {
LinearCombination::<Var, E>::zero() + (coeff, v.get_variable())
},
&Boolean::Not(ref v) => {
LinearCombination::<Var, E>::zero() + (coeff, one) - (coeff, v.get_variable())
}
}
}
/// Construct a boolean from a known constant /// Construct a boolean from a known constant
pub fn constant(b: bool) -> Self { pub fn constant(b: bool) -> Self {
Boolean::Constant(b) Boolean::Constant(b)

View File

@ -6,6 +6,7 @@ pub mod uint32;
pub mod blake2s; pub mod blake2s;
pub mod num; pub mod num;
pub mod mont; pub mod mont;
pub mod pedersen_hash;
use bellman::SynthesisError; use bellman::SynthesisError;

View File

@ -26,12 +26,212 @@ use ::jubjub::{
montgomery montgomery
}; };
pub struct EdwardsPoint<E: Engine, Var> {
pub x: AllocatedNum<E, Var>,
pub y: AllocatedNum<E, Var>
}
impl<E: JubjubEngine, Var: Copy> EdwardsPoint<E, Var> {
/// This extracts the x-coordinate, which is an injective
/// encoding for elements of the prime order subgroup.
pub fn into_num(&self) -> AllocatedNum<E, Var> {
self.x.clone()
}
/// Perform addition between any two points
pub fn add<CS>(
&self,
mut cs: CS,
other: &Self,
params: &E::Params
) -> Result<Self, SynthesisError>
where CS: ConstraintSystem<E, Variable=Var>
{
// Compute U = (x1 + y1) * (x2 + y2)
let u = AllocatedNum::alloc(cs.namespace(|| "U"), || {
let mut t0 = *self.x.get_value().get()?;
t0.add_assign(self.y.get_value().get()?);
let mut t1 = *other.x.get_value().get()?;
t1.add_assign(other.y.get_value().get()?);
t0.mul_assign(&t1);
Ok(t0)
})?;
cs.enforce(
|| "U computation",
LinearCombination::<Var, E>::zero() + self.x.get_variable()
+ self.y.get_variable(),
LinearCombination::<Var, E>::zero() + other.x.get_variable()
+ other.y.get_variable(),
LinearCombination::<Var, E>::zero() + u.get_variable()
);
// Compute A = y2 * x1
let a = other.y.mul(cs.namespace(|| "A computation"), &self.x)?;
// Compute B = x2 * y1
let b = other.x.mul(cs.namespace(|| "B computation"), &self.y)?;
// Compute C = d*A*B
let c = AllocatedNum::alloc(cs.namespace(|| "C"), || {
let mut t0 = *a.get_value().get()?;
t0.mul_assign(b.get_value().get()?);
t0.mul_assign(params.edwards_d());
Ok(t0)
})?;
cs.enforce(
|| "C computation",
LinearCombination::<Var, E>::zero() + (*params.edwards_d(), a.get_variable()),
LinearCombination::<Var, E>::zero() + b.get_variable(),
LinearCombination::<Var, E>::zero() + c.get_variable()
);
// Compute x3 = (A + B) / (1 + C)
let x3 = AllocatedNum::alloc(cs.namespace(|| "x3"), || {
let mut t0 = *a.get_value().get()?;
t0.add_assign(b.get_value().get()?);
let mut t1 = E::Fr::one();
t1.add_assign(c.get_value().get()?);
match t1.inverse() {
Some(t1) => {
t0.mul_assign(&t1);
Ok(t0)
},
None => {
Err(SynthesisError::AssignmentMissing)
}
}
})?;
let one = cs.one();
cs.enforce(
|| "x3 computation",
LinearCombination::<Var, E>::zero() + one + c.get_variable(),
LinearCombination::<Var, E>::zero() + x3.get_variable(),
LinearCombination::<Var, E>::zero() + a.get_variable()
+ b.get_variable()
);
// Compute y3 = (U - A - B) / (1 - C)
let y3 = AllocatedNum::alloc(cs.namespace(|| "y3"), || {
let mut t0 = *u.get_value().get()?;
t0.sub_assign(a.get_value().get()?);
t0.sub_assign(b.get_value().get()?);
let mut t1 = E::Fr::one();
t1.sub_assign(c.get_value().get()?);
match t1.inverse() {
Some(t1) => {
t0.mul_assign(&t1);
Ok(t0)
},
None => {
Err(SynthesisError::AssignmentMissing)
}
}
})?;
cs.enforce(
|| "y3 computation",
LinearCombination::<Var, E>::zero() + one - c.get_variable(),
LinearCombination::<Var, E>::zero() + y3.get_variable(),
LinearCombination::<Var, E>::zero() + u.get_variable()
- a.get_variable()
- b.get_variable()
);
Ok(EdwardsPoint {
x: x3,
y: y3
})
}
}
pub struct MontgomeryPoint<E: Engine, Var> { pub struct MontgomeryPoint<E: Engine, Var> {
x: AllocatedNum<E, Var>, x: AllocatedNum<E, Var>,
y: AllocatedNum<E, Var> y: AllocatedNum<E, Var>
} }
impl<E: JubjubEngine, Var: Copy> MontgomeryPoint<E, Var> { impl<E: JubjubEngine, Var: Copy> MontgomeryPoint<E, Var> {
/// Converts an element in the prime order subgroup into
/// a point in the birationally equivalent twisted
/// Edwards curve.
pub fn into_edwards<CS>(
&self,
mut cs: CS,
params: &E::Params
) -> Result<EdwardsPoint<E, Var>, SynthesisError>
where CS: ConstraintSystem<E, Variable=Var>
{
// Compute u = (scale*x) / y
let u = AllocatedNum::alloc(cs.namespace(|| "u"), || {
let mut t0 = *self.x.get_value().get()?;
t0.mul_assign(params.scale());
match self.y.get_value().get()?.inverse() {
Some(invy) => {
t0.mul_assign(&invy);
Ok(t0)
},
None => {
Err(SynthesisError::AssignmentMissing)
}
}
})?;
cs.enforce(
|| "u computation",
LinearCombination::<Var, E>::zero() + self.y.get_variable(),
LinearCombination::<Var, E>::zero() + u.get_variable(),
LinearCombination::<Var, E>::zero() + (*params.scale(), self.x.get_variable())
);
// Compute v = (x - 1) / (x + 1)
let v = AllocatedNum::alloc(cs.namespace(|| "v"), || {
let mut t0 = *self.x.get_value().get()?;
let mut t1 = t0;
t0.sub_assign(&E::Fr::one());
t1.add_assign(&E::Fr::one());
match t1.inverse() {
Some(t1) => {
t0.mul_assign(&t1);
Ok(t0)
},
None => {
Err(SynthesisError::AssignmentMissing)
}
}
})?;
let one = cs.one();
cs.enforce(
|| "v computation",
LinearCombination::<Var, E>::zero() + self.x.get_variable()
+ one,
LinearCombination::<Var, E>::zero() + v.get_variable(),
LinearCombination::<Var, E>::zero() + self.x.get_variable()
- one,
);
Ok(EdwardsPoint {
x: u,
y: v
})
}
pub fn group_hash<CS>( pub fn group_hash<CS>(
mut cs: CS, mut cs: CS,
tag: &[Boolean<Var>], tag: &[Boolean<Var>],
@ -103,6 +303,21 @@ impl<E: JubjubEngine, Var: Copy> MontgomeryPoint<E, Var> {
Ok(p) Ok(p)
} }
/// Interprets an (x, y) pair as a point
/// in Montgomery, does not check that it's
/// on the curve. Useful for constants and
/// window table lookups.
pub fn interpret_unchecked(
x: AllocatedNum<E, Var>,
y: AllocatedNum<E, Var>
) -> Self
{
MontgomeryPoint {
x: x,
y: y
}
}
pub fn interpret<CS>( pub fn interpret<CS>(
mut cs: CS, mut cs: CS,
x: &AllocatedNum<E, Var>, x: &AllocatedNum<E, Var>,
@ -131,6 +346,98 @@ impl<E: JubjubEngine, Var: Copy> MontgomeryPoint<E, Var> {
}) })
} }
/// Performs an affine point addition, not defined for
/// coincident points.
pub fn add<CS>(
&self,
mut cs: CS,
other: &Self,
params: &E::Params
) -> Result<Self, SynthesisError>
where CS: ConstraintSystem<E, Variable=Var>
{
// Compute lambda = (y' - y) / (x' - x)
let lambda = AllocatedNum::alloc(cs.namespace(|| "lambda"), || {
let mut n = *other.y.get_value().get()?;
n.sub_assign(self.y.get_value().get()?);
let mut d = *other.x.get_value().get()?;
d.sub_assign(self.x.get_value().get()?);
match d.inverse() {
Some(d) => {
n.mul_assign(&d);
Ok(n)
},
None => {
Err(SynthesisError::AssignmentMissing)
}
}
})?;
cs.enforce(
|| "evaluate lambda",
LinearCombination::<Var, E>::zero() + other.x.get_variable()
- self.x.get_variable(),
LinearCombination::zero() + lambda.get_variable(),
LinearCombination::<Var, E>::zero() + other.y.get_variable()
- self.y.get_variable()
);
// Compute x'' = lambda^2 - A - x - x'
let xprime = AllocatedNum::alloc(cs.namespace(|| "xprime"), || {
let mut t0 = *lambda.get_value().get()?;
t0.square();
t0.sub_assign(params.montgomery_a());
t0.sub_assign(self.x.get_value().get()?);
t0.sub_assign(other.x.get_value().get()?);
Ok(t0)
})?;
// (lambda) * (lambda) = (A + x + x' + x'')
let one = cs.one();
cs.enforce(
|| "evaluate xprime",
LinearCombination::zero() + lambda.get_variable(),
LinearCombination::zero() + lambda.get_variable(),
LinearCombination::<Var, E>::zero() + (*params.montgomery_a(), one)
+ self.x.get_variable()
+ other.x.get_variable()
+ xprime.get_variable()
);
// Compute y' = -(y + lambda(x' - x))
let yprime = AllocatedNum::alloc(cs.namespace(|| "yprime"), || {
let mut t0 = *xprime.get_value().get()?;
t0.sub_assign(self.x.get_value().get()?);
t0.mul_assign(lambda.get_value().get()?);
t0.add_assign(self.y.get_value().get()?);
t0.negate();
Ok(t0)
})?;
// y' + y = lambda(x - x')
cs.enforce(
|| "evaluate yprime",
LinearCombination::zero() + self.x.get_variable()
- xprime.get_variable(),
LinearCombination::zero() + lambda.get_variable(),
LinearCombination::<Var, E>::zero() + yprime.get_variable()
+ self.y.get_variable()
);
Ok(MontgomeryPoint {
x: xprime,
y: yprime
})
}
/// Performs an affine point doubling, not defined for /// Performs an affine point doubling, not defined for
/// the point of order two (0, 0). /// the point of order two (0, 0).
pub fn double<CS>( pub fn double<CS>(
@ -244,12 +551,57 @@ mod test {
use ::circuit::test::*; use ::circuit::test::*;
use ::jubjub::{ use ::jubjub::{
montgomery, montgomery,
edwards,
JubjubBls12 JubjubBls12
}; };
use super::{MontgomeryPoint, AllocatedNum, Boolean}; use super::{
MontgomeryPoint,
EdwardsPoint,
AllocatedNum,
Boolean
};
use super::super::boolean::AllocatedBit; use super::super::boolean::AllocatedBit;
use ::group_hash::group_hash; use ::group_hash::group_hash;
#[test]
fn test_into_edwards() {
let params = &JubjubBls12::new();
let rng = &mut XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
for _ in 0..100 {
let mut cs = TestConstraintSystem::<Bls12>::new();
let p = montgomery::Point::<Bls12, _>::rand(rng, params);
let (u, v) = edwards::Point::from_montgomery(&p, params).into_xy();
let (x, y) = p.into_xy().unwrap();
let numx = AllocatedNum::alloc(cs.namespace(|| "mont x"), || {
Ok(x)
}).unwrap();
let numy = AllocatedNum::alloc(cs.namespace(|| "mont y"), || {
Ok(y)
}).unwrap();
let p = MontgomeryPoint::interpret_unchecked(numx, numy);
let q = p.into_edwards(&mut cs, params).unwrap();
assert!(cs.is_satisfied());
assert!(q.x.get_value().unwrap() == u);
assert!(q.y.get_value().unwrap() == v);
cs.set("u/num", rng.gen());
assert_eq!(cs.which_is_unsatisfied().unwrap(), "u computation");
cs.set("u/num", u);
assert!(cs.is_satisfied());
cs.set("v/num", rng.gen());
assert_eq!(cs.which_is_unsatisfied().unwrap(), "v computation");
cs.set("v/num", v);
assert!(cs.is_satisfied());
}
}
#[test] #[test]
fn test_group_hash() { fn test_group_hash() {
let params = &JubjubBls12::new(); let params = &JubjubBls12::new();
@ -299,7 +651,7 @@ mod test {
num_unsatisfied += 1; num_unsatisfied += 1;
} else { } else {
let p = p.unwrap(); let p = p.unwrap();
let (x, y) = expected.unwrap(); let (x, y) = expected.unwrap().into_xy().unwrap();
assert_eq!(p.x.get_value().unwrap(), x); assert_eq!(p.x.get_value().unwrap(), x);
assert_eq!(p.y.get_value().unwrap(), y); assert_eq!(p.y.get_value().unwrap(), y);
@ -384,6 +736,152 @@ mod test {
assert!(p.double(&mut cs, params).is_err()); assert!(p.double(&mut cs, params).is_err());
} }
#[test]
fn test_edwards_addition() {
let params = &JubjubBls12::new();
let rng = &mut XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
for _ in 0..100 {
let p1 = edwards::Point::<Bls12, _>::rand(rng, params);
let p2 = edwards::Point::<Bls12, _>::rand(rng, params);
let p3 = p1.add(&p2, params);
let (x0, y0) = p1.into_xy();
let (x1, y1) = p2.into_xy();
let (x2, y2) = p3.into_xy();
let mut cs = TestConstraintSystem::<Bls12>::new();
let num_x0 = AllocatedNum::alloc(cs.namespace(|| "x0"), || {
Ok(x0)
}).unwrap();
let num_y0 = AllocatedNum::alloc(cs.namespace(|| "y0"), || {
Ok(y0)
}).unwrap();
let num_x1 = AllocatedNum::alloc(cs.namespace(|| "x1"), || {
Ok(x1)
}).unwrap();
let num_y1 = AllocatedNum::alloc(cs.namespace(|| "y1"), || {
Ok(y1)
}).unwrap();
let p1 = EdwardsPoint {
x: num_x0,
y: num_y0
};
let p2 = EdwardsPoint {
x: num_x1,
y: num_y1
};
let p3 = p1.add(cs.namespace(|| "addition"), &p2, params).unwrap();
assert!(cs.is_satisfied());
assert!(p3.x.get_value().unwrap() == x2);
assert!(p3.y.get_value().unwrap() == y2);
let u = cs.get("addition/U/num");
cs.set("addition/U/num", rng.gen());
assert_eq!(cs.which_is_unsatisfied(), Some("addition/U computation"));
cs.set("addition/U/num", u);
assert!(cs.is_satisfied());
let x3 = cs.get("addition/x3/num");
cs.set("addition/x3/num", rng.gen());
assert_eq!(cs.which_is_unsatisfied(), Some("addition/x3 computation"));
cs.set("addition/x3/num", x3);
assert!(cs.is_satisfied());
let y3 = cs.get("addition/y3/num");
cs.set("addition/y3/num", rng.gen());
assert_eq!(cs.which_is_unsatisfied(), Some("addition/y3 computation"));
cs.set("addition/y3/num", y3);
assert!(cs.is_satisfied());
}
}
#[test]
fn test_montgomery_addition() {
let params = &JubjubBls12::new();
let rng = &mut XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
for _ in 0..100 {
let p1 = loop {
let x: Fr = rng.gen();
let s: bool = rng.gen();
if let Some(p) = montgomery::Point::<Bls12, _>::get_for_x(x, s, params) {
break p;
}
};
let p2 = loop {
let x: Fr = rng.gen();
let s: bool = rng.gen();
if let Some(p) = montgomery::Point::<Bls12, _>::get_for_x(x, s, params) {
break p;
}
};
let p3 = p1.add(&p2, params);
let (x0, y0) = p1.into_xy().unwrap();
let (x1, y1) = p2.into_xy().unwrap();
let (x2, y2) = p3.into_xy().unwrap();
let mut cs = TestConstraintSystem::<Bls12>::new();
let num_x0 = AllocatedNum::alloc(cs.namespace(|| "x0"), || {
Ok(x0)
}).unwrap();
let num_y0 = AllocatedNum::alloc(cs.namespace(|| "y0"), || {
Ok(y0)
}).unwrap();
let num_x1 = AllocatedNum::alloc(cs.namespace(|| "x1"), || {
Ok(x1)
}).unwrap();
let num_y1 = AllocatedNum::alloc(cs.namespace(|| "y1"), || {
Ok(y1)
}).unwrap();
let p1 = MontgomeryPoint {
x: num_x0,
y: num_y0
};
let p2 = MontgomeryPoint {
x: num_x1,
y: num_y1
};
let p3 = p1.add(cs.namespace(|| "addition"), &p2, params).unwrap();
assert!(cs.is_satisfied());
assert!(p3.x.get_value().unwrap() == x2);
assert!(p3.y.get_value().unwrap() == y2);
cs.set("addition/yprime/num", rng.gen());
assert_eq!(cs.which_is_unsatisfied(), Some("addition/evaluate yprime"));
cs.set("addition/yprime/num", y2);
assert!(cs.is_satisfied());
cs.set("addition/xprime/num", rng.gen());
assert_eq!(cs.which_is_unsatisfied(), Some("addition/evaluate xprime"));
cs.set("addition/xprime/num", x2);
assert!(cs.is_satisfied());
cs.set("addition/lambda/num", rng.gen());
assert_eq!(cs.which_is_unsatisfied(), Some("addition/evaluate lambda"));
}
}
#[test] #[test]
fn test_doubling() { fn test_doubling() {
let params = &JubjubBls12::new(); let params = &JubjubBls12::new();

View File

@ -292,6 +292,39 @@ impl<E: Engine, Var: Copy> AllocatedNum<E, Var> {
Ok(()) Ok(())
} }
pub fn conditionally_negate<CS>(
&self,
mut cs: CS,
condition: &Boolean<Var>
) -> Result<Self, SynthesisError>
where CS: ConstraintSystem<E, Variable=Var>
{
let r = Self::alloc(
cs.namespace(|| "conditional negation result"),
|| {
let mut tmp = *self.value.get()?;
if *condition.get_value().get()? {
tmp.negate();
}
Ok(tmp)
}
)?;
// (1-c)(x) + (c)(-x) = r
// x - 2cx = r
// (2x) * (c) = x - r
let one = cs.one();
cs.enforce(
|| "conditional negation",
LinearCombination::zero() + self.variable + self.variable,
condition.lc(one, E::Fr::one()),
LinearCombination::zero() + self.variable - r.variable
);
Ok(r)
}
pub fn get_value(&self) -> Option<E::Fr> { pub fn get_value(&self) -> Option<E::Fr> {
self.value self.value
} }
@ -349,6 +382,107 @@ mod test {
assert!(!cs.is_satisfied()); assert!(!cs.is_satisfied());
} }
#[test]
fn test_num_conditional_negation() {
{
let mut cs = TestConstraintSystem::<Bls12>::new();
let n = AllocatedNum::alloc(cs.namespace(|| "a"), || Ok(Fr::one())).unwrap();
let b = Boolean::constant(true);
let n2 = n.conditionally_negate(&mut cs, &b).unwrap();
let mut negone = Fr::one();
negone.negate();
assert!(cs.is_satisfied());
assert!(cs.get("conditional negation result/num") == negone);
assert!(n2.value.unwrap() == negone);
cs.set("conditional negation result/num", Fr::from_str("1").unwrap());
assert!(!cs.is_satisfied());
}
{
let mut cs = TestConstraintSystem::<Bls12>::new();
let n = AllocatedNum::alloc(cs.namespace(|| "a"), || Ok(Fr::one())).unwrap();
let b = Boolean::constant(false);
let n2 = n.conditionally_negate(&mut cs, &b).unwrap();
assert!(cs.is_satisfied());
assert!(cs.get("conditional negation result/num") == Fr::one());
assert!(n2.value.unwrap() == Fr::one());
cs.set("conditional negation result/num", Fr::from_str("2").unwrap());
assert!(!cs.is_satisfied());
}
{
let mut cs = TestConstraintSystem::<Bls12>::new();
let n = AllocatedNum::alloc(cs.namespace(|| "a"), || Ok(Fr::one())).unwrap();
let b = Boolean::from(
AllocatedBit::alloc(cs.namespace(|| "condition"), Some(true)).unwrap()
);
let n2 = n.conditionally_negate(&mut cs, &b).unwrap();
let mut negone = Fr::one();
negone.negate();
assert!(cs.is_satisfied());
assert!(cs.get("conditional negation result/num") == negone);
assert!(n2.value.unwrap() == negone);
cs.set("conditional negation result/num", Fr::from_str("1").unwrap());
assert!(!cs.is_satisfied());
}
{
let mut cs = TestConstraintSystem::<Bls12>::new();
let n = AllocatedNum::alloc(cs.namespace(|| "a"), || Ok(Fr::one())).unwrap();
let b = Boolean::from(
AllocatedBit::alloc(cs.namespace(|| "condition"), Some(false)).unwrap()
);
let n2 = n.conditionally_negate(&mut cs, &b).unwrap();
assert!(cs.is_satisfied());
assert!(cs.get("conditional negation result/num") == Fr::one());
assert!(n2.value.unwrap() == Fr::one());
cs.set("conditional negation result/num", Fr::from_str("2").unwrap());
assert!(!cs.is_satisfied());
}
{
let mut cs = TestConstraintSystem::<Bls12>::new();
let n = AllocatedNum::alloc(cs.namespace(|| "a"), || Ok(Fr::one())).unwrap();
let b = Boolean::from(
AllocatedBit::alloc(cs.namespace(|| "condition"), Some(false)).unwrap()
).not();
let n2 = n.conditionally_negate(&mut cs, &b).unwrap();
let mut negone = Fr::one();
negone.negate();
assert!(cs.is_satisfied());
assert!(cs.get("conditional negation result/num") == negone);
assert!(n2.value.unwrap() == negone);
cs.set("conditional negation result/num", Fr::from_str("1").unwrap());
assert!(!cs.is_satisfied());
}
{
let mut cs = TestConstraintSystem::<Bls12>::new();
let n = AllocatedNum::alloc(cs.namespace(|| "a"), || Ok(Fr::one())).unwrap();
let b = Boolean::from(
AllocatedBit::alloc(cs.namespace(|| "condition"), Some(true)).unwrap()
).not();
let n2 = n.conditionally_negate(&mut cs, &b).unwrap();
assert!(cs.is_satisfied());
assert!(cs.get("conditional negation result/num") == Fr::one());
assert!(n2.value.unwrap() == Fr::one());
cs.set("conditional negation result/num", Fr::from_str("2").unwrap());
assert!(!cs.is_satisfied());
}
}
#[test] #[test]
fn test_num_nonzero() { fn test_num_nonzero() {
{ {

View File

@ -0,0 +1,337 @@
use pairing::{Engine, Field};
use super::*;
use super::mont::{
MontgomeryPoint,
EdwardsPoint
};
use super::num::AllocatedNum;
use super::boolean::Boolean;
use ::jubjub::*;
use bellman::{
ConstraintSystem,
LinearCombination
};
// Synthesize the constants for each base pattern.
fn synth<'a, E: Engine, I>(
window_size: usize,
constants: I,
assignment: &mut [E::Fr]
)
where I: IntoIterator<Item=&'a E::Fr>
{
assert_eq!(assignment.len(), 1 << window_size);
for (i, constant) in constants.into_iter().enumerate() {
let mut cur = assignment[i];
cur.negate();
cur.add_assign(constant);
assignment[i] = cur;
for (j, eval) in assignment.iter_mut().enumerate().skip(i + 1) {
if j & i == i {
eval.add_assign(&cur);
}
}
}
}
pub fn pedersen_hash<E: JubjubEngine, CS, Var: Copy>(
mut cs: CS,
bits: &[Boolean<Var>],
params: &E::Params
) -> Result<EdwardsPoint<E, Var>, SynthesisError>
where CS: ConstraintSystem<E, Variable=Var>
{
// Unnecessary if forced personalization is introduced
assert!(bits.len() > 0);
let mut edwards_result = None;
let mut bits = bits.iter();
let mut segment_generators = params.pedersen_circuit_generators().iter();
let boolean_false = Boolean::constant(false);
let mut segment_i = 0;
loop {
let mut segment_result = None;
let mut segment_windows = &segment_generators.next()
.expect("enough segments")[..];
let mut window_i = 0;
while let Some(a) = bits.next() {
let b = bits.next().unwrap_or(&boolean_false);
let c = bits.next().unwrap_or(&boolean_false);
let tmp = lookup3_xy_with_conditional_negation(
cs.namespace(|| format!("segment {}, window {}", segment_i, window_i)),
&[a.clone(), b.clone(), c.clone()],
&segment_windows[0]
)?;
let tmp = MontgomeryPoint::interpret_unchecked(tmp.0, tmp.1);
match segment_result {
None => {
segment_result = Some(tmp);
},
Some(ref mut segment_result) => {
*segment_result = tmp.add(
cs.namespace(|| format!("addition of segment {}, window {}", segment_i, window_i)),
segment_result,
params
)?;
}
}
segment_windows = &segment_windows[1..];
if segment_windows.len() == 0 {
break;
}
window_i += 1;
}
match segment_result {
Some(segment_result) => {
// Convert this segment into twisted Edwards form.
let segment_result = segment_result.into_edwards(
cs.namespace(|| format!("conversion of segment {} into edwards", segment_i)),
params
)?;
match edwards_result {
Some(ref mut edwards_result) => {
*edwards_result = segment_result.add(
cs.namespace(|| format!("addition of segment {} to accumulator", segment_i)),
edwards_result,
params
)?;
},
None => {
edwards_result = Some(segment_result);
}
}
},
None => {
// We didn't process any new bits.
break;
}
}
segment_i += 1;
}
Ok(edwards_result.unwrap())
}
/// Performs a 3-bit window table lookup, where
/// one of the bits is a sign bit.
fn lookup3_xy_with_conditional_negation<E: Engine, CS, Var: Copy>(
mut cs: CS,
bits: &[Boolean<Var>],
coords: &[(E::Fr, E::Fr)]
) -> Result<(AllocatedNum<E, Var>, AllocatedNum<E, Var>), SynthesisError>
where CS: ConstraintSystem<E, Variable=Var>
{
assert_eq!(bits.len(), 3);
assert_eq!(coords.len(), 4);
// Calculate the index into `coords`
let i =
match (bits[0].get_value(), bits[1].get_value()) {
(Some(a_value), Some(b_value)) => {
let mut tmp = 0;
if a_value {
tmp += 1;
}
if b_value {
tmp += 2;
}
Some(tmp)
},
_ => None
};
// Allocate the x-coordinate resulting from the lookup
let res_x = AllocatedNum::alloc(
cs.namespace(|| "x"),
|| {
Ok(coords[*i.get()?].0)
}
)?;
// Allocate the y-coordinate resulting from the lookup
let res_y = AllocatedNum::alloc(
cs.namespace(|| "y"),
|| {
Ok(coords[*i.get()?].1)
}
)?;
let one = cs.one();
// Compute the coefficients for the lookup constraints
let mut x_coeffs = [E::Fr::zero(); 4];
let mut y_coeffs = [E::Fr::zero(); 4];
synth::<E, _>(2, coords.iter().map(|c| &c.0), &mut x_coeffs);
synth::<E, _>(2, coords.iter().map(|c| &c.1), &mut y_coeffs);
cs.enforce(
|| "x-coordinate lookup",
LinearCombination::<Var, E>::zero() + (x_coeffs[0b01], one)
+ &bits[1].lc::<E>(one, x_coeffs[0b11]),
LinearCombination::<Var, E>::zero() + &bits[0].lc::<E>(one, E::Fr::one()),
LinearCombination::<Var, E>::zero() + res_x.get_variable()
- (x_coeffs[0b00], one)
- &bits[1].lc::<E>(one, x_coeffs[0b10])
);
cs.enforce(
|| "y-coordinate lookup",
LinearCombination::<Var, E>::zero() + (y_coeffs[0b01], one)
+ &bits[1].lc::<E>(one, y_coeffs[0b11]),
LinearCombination::<Var, E>::zero() + &bits[0].lc::<E>(one, E::Fr::one()),
LinearCombination::<Var, E>::zero() + res_y.get_variable()
- (y_coeffs[0b00], one)
- &bits[1].lc::<E>(one, y_coeffs[0b10])
);
let final_y = res_y.conditionally_negate(&mut cs, &bits[2])?;
Ok((res_x, final_y))
}
#[cfg(test)]
mod test {
use rand::{SeedableRng, Rand, Rng, XorShiftRng};
use super::*;
use ::circuit::test::*;
use ::circuit::boolean::{Boolean, AllocatedBit};
use pairing::bls12_381::{Bls12, Fr};
use pairing::PrimeField;
#[test]
fn test_pedersen_hash_constraints() {
let mut rng = XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
let params = &JubjubBls12::new();
let mut cs = TestConstraintSystem::<Bls12>::new();
let input: Vec<bool> = (0..(Fr::NUM_BITS * 2)).map(|_| rng.gen()).collect();
let input_bools: Vec<Boolean<_>> = input.iter().enumerate().map(|(i, b)| {
Boolean::from(
AllocatedBit::alloc(cs.namespace(|| format!("input {}", i)), Some(*b)).unwrap()
)
}).collect();
pedersen_hash(
cs.namespace(|| "pedersen hash"),
&input_bools,
params
).unwrap();
assert!(cs.is_satisfied());
assert_eq!(cs.num_constraints(), 1539);
}
#[test]
fn test_pedersen_hash() {
let mut rng = XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
let params = &JubjubBls12::new();
for length in 1..1000 {
for _ in 0..5 {
let mut input: Vec<bool> = (0..length).map(|_| rng.gen()).collect();
let mut cs = TestConstraintSystem::<Bls12>::new();
let input_bools: Vec<Boolean<_>> = input.iter().enumerate().map(|(i, b)| {
Boolean::from(
AllocatedBit::alloc(cs.namespace(|| format!("input {}", i)), Some(*b)).unwrap()
)
}).collect();
let res = pedersen_hash(
cs.namespace(|| "pedersen hash"),
&input_bools,
params
).unwrap();
assert!(cs.is_satisfied());
let expected = ::pedersen_hash::pedersen_hash::<Bls12, _>(
input.into_iter(),
params
).into_xy();
assert_eq!(res.x.get_value().unwrap(), expected.0);
assert_eq!(res.y.get_value().unwrap(), expected.1);
}
}
}
#[test]
fn test_lookup3_xy_with_conditional_negation() {
let mut rng = XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
for _ in 0..100 {
let mut cs = TestConstraintSystem::<Bls12>::new();
let a_val = rng.gen();
let a = Boolean::from(
AllocatedBit::alloc(cs.namespace(|| "a"), Some(a_val)).unwrap()
);
let b_val = rng.gen();
let b = Boolean::from(
AllocatedBit::alloc(cs.namespace(|| "b"), Some(b_val)).unwrap()
);
let c_val = rng.gen();
let c = Boolean::from(
AllocatedBit::alloc(cs.namespace(|| "c"), Some(c_val)).unwrap()
);
let bits = vec![a, b, c];
let points: Vec<(Fr, Fr)> = (0..4).map(|_| (rng.gen(), rng.gen())).collect();
let res = lookup3_xy_with_conditional_negation(&mut cs, &bits, &points).unwrap();
assert!(cs.is_satisfied());
let mut index = 0;
if a_val { index += 1 }
if b_val { index += 2 }
assert_eq!(res.0.get_value().unwrap(), points[index].0);
let mut tmp = points[index].1;
if c_val { tmp.negate() }
assert_eq!(res.1.get_value().unwrap(), tmp);
}
}
#[test]
fn test_synth() {
let mut rng = XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
let window_size = 4;
let mut assignment = vec![Fr::zero(); (1 << window_size)];
let constants: Vec<_> = (0..(1 << window_size)).map(|_| Fr::rand(&mut rng)).collect();
synth::<Bls12, _>(window_size, &constants, &mut assignment);
for b in 0..(1 << window_size) {
let mut acc = Fr::zero();
for j in 0..(1 << window_size) {
if j & b == j {
acc.add_assign(&assignment[j]);
}
}
assert_eq!(acc, constants[b]);
}
}
}

View File

@ -10,7 +10,7 @@ use digest::{FixedOutput, Input};
pub fn group_hash<E: JubjubEngine>( pub fn group_hash<E: JubjubEngine>(
tag: &[u8], tag: &[u8],
params: &E::Params params: &E::Params
) -> Option<(E::Fr, E::Fr)> ) -> Option<montgomery::Point<E, PrimeOrder>>
{ {
// Check to see that scalar field is 255 bits // Check to see that scalar field is 255 bits
assert!(E::Fr::NUM_BITS == 255); assert!(E::Fr::NUM_BITS == 255);
@ -33,7 +33,11 @@ pub fn group_hash<E: JubjubEngine>(
// Enter into the prime order subgroup // Enter into the prime order subgroup
let p = p.mul_by_cofactor(params); let p = p.mul_by_cofactor(params);
p.into_xy() if p != montgomery::Point::zero() {
Some(p)
} else {
None
}
} else { } else {
None None
} }

View File

@ -21,6 +21,8 @@ use pairing::{
SqrtField SqrtField
}; };
use super::group_hash::group_hash;
use pairing::bls12_381::{ use pairing::bls12_381::{
Bls12, Bls12,
Fr Fr
@ -42,6 +44,9 @@ pub trait JubjubParams<E: JubjubEngine>: Sized {
fn montgomery_a(&self) -> &E::Fr; fn montgomery_a(&self) -> &E::Fr;
fn montgomery_2a(&self) -> &E::Fr; fn montgomery_2a(&self) -> &E::Fr;
fn scale(&self) -> &E::Fr; fn scale(&self) -> &E::Fr;
fn pedersen_hash_generators(&self) -> &[edwards::Point<E, PrimeOrder>];
fn pedersen_hash_chunks_per_generator(&self) -> usize;
fn pedersen_circuit_generators(&self) -> &[Vec<Vec<(E::Fr, E::Fr)>>];
} }
pub enum Unknown { } pub enum Unknown { }
@ -58,7 +63,9 @@ pub struct JubjubBls12 {
edwards_d: Fr, edwards_d: Fr,
montgomery_a: Fr, montgomery_a: Fr,
montgomery_2a: Fr, montgomery_2a: Fr,
scale: Fr scale: Fr,
pedersen_hash_generators: Vec<edwards::Point<Bls12, PrimeOrder>>,
pedersen_circuit_generators: Vec<Vec<Vec<(Fr, Fr)>>>
} }
impl JubjubParams<Bls12> for JubjubBls12 { impl JubjubParams<Bls12> for JubjubBls12 {
@ -66,6 +73,15 @@ impl JubjubParams<Bls12> for JubjubBls12 {
fn montgomery_a(&self) -> &Fr { &self.montgomery_a } fn montgomery_a(&self) -> &Fr { &self.montgomery_a }
fn montgomery_2a(&self) -> &Fr { &self.montgomery_2a } fn montgomery_2a(&self) -> &Fr { &self.montgomery_2a }
fn scale(&self) -> &Fr { &self.scale } fn scale(&self) -> &Fr { &self.scale }
fn pedersen_hash_generators(&self) -> &[edwards::Point<Bls12, PrimeOrder>] {
&self.pedersen_hash_generators
}
fn pedersen_hash_chunks_per_generator(&self) -> usize {
62
}
fn pedersen_circuit_generators(&self) -> &[Vec<Vec<(Fr, Fr)>>] {
&self.pedersen_circuit_generators
}
} }
impl JubjubBls12 { impl JubjubBls12 {
@ -74,7 +90,7 @@ impl JubjubBls12 {
let mut montgomery_2a = montgomery_a; let mut montgomery_2a = montgomery_a;
montgomery_2a.double(); montgomery_2a.double();
JubjubBls12 { let mut tmp = JubjubBls12 {
// d = -(10240/10241) // d = -(10240/10241)
edwards_d: Fr::from_str("19257038036680949359750312669786877991949435402254120286184196891950884077233").unwrap(), edwards_d: Fr::from_str("19257038036680949359750312669786877991949435402254120286184196891950884077233").unwrap(),
// A = 40962 // A = 40962
@ -82,8 +98,54 @@ impl JubjubBls12 {
// 2A = 2.A // 2A = 2.A
montgomery_2a: montgomery_2a, montgomery_2a: montgomery_2a,
// scaling factor = sqrt(4 / (a - d)) // scaling factor = sqrt(4 / (a - d))
scale: Fr::from_str("17814886934372412843466061268024708274627479829237077604635722030778476050649").unwrap() scale: Fr::from_str("17814886934372412843466061268024708274627479829237077604635722030778476050649").unwrap(),
pedersen_hash_generators: vec![],
pedersen_circuit_generators: vec![]
};
{
let mut cur = 0;
let mut pedersen_hash_generators = vec![];
while pedersen_hash_generators.len() < 10 {
let gh = group_hash(&[cur], &tmp);
cur += 1;
if let Some(gh) = gh {
pedersen_hash_generators.push(edwards::Point::from_montgomery(&gh, &tmp));
}
}
tmp.pedersen_hash_generators = pedersen_hash_generators;
} }
{
let mut pedersen_circuit_generators = vec![];
for mut gen in tmp.pedersen_hash_generators.iter().cloned() {
let mut gen = montgomery::Point::from_edwards(&gen, &tmp);
let mut windows = vec![];
for _ in 0..tmp.pedersen_hash_chunks_per_generator() {
let mut coeffs = vec![];
let mut g = gen.clone();
for _ in 0..4 {
coeffs.push(g.into_xy().expect("cannot produce O"));
g = g.add(&gen, &tmp);
}
windows.push(coeffs);
for _ in 0..4 {
gen = gen.double(&tmp);
}
}
pedersen_circuit_generators.push(windows);
}
tmp.pedersen_circuit_generators = pedersen_circuit_generators;
}
tmp
} }
} }

View File

@ -9,6 +9,7 @@ use super::{
use pairing::{ use pairing::{
Field, Field,
PrimeField, PrimeField,
PrimeFieldRepr,
SqrtField, SqrtField,
LegendreSymbol LegendreSymbol
}; };
@ -311,4 +312,33 @@ fn test_jubjub_params<E: JubjubEngine>(params: &E::Params) {
tmp = tmp.sqrt().unwrap(); tmp = tmp.sqrt().unwrap();
assert_eq!(&tmp, params.scale()); assert_eq!(&tmp, params.scale());
} }
{
// Check that the number of windows per generator
// in the Pedersen hash does not allow for collisions
let mut cur = E::Fr::one().into_repr();
let mut pacc = E::Fr::zero().into_repr();
let mut nacc = E::Fr::char();
for _ in 0..params.pedersen_hash_chunks_per_generator()
{
// tmp = cur * 4
let mut tmp = cur;
tmp.mul2();
tmp.mul2();
assert_eq!(pacc.add_nocarry(&tmp), false);
assert_eq!(nacc.sub_noborrow(&tmp), false);
assert!(pacc < E::Fr::char());
assert!(pacc < nacc);
// cur = cur * 16
for _ in 0..4 {
cur.mul2();
}
}
}
} }

View File

@ -7,3 +7,4 @@ extern crate rand;
pub mod jubjub; pub mod jubjub;
pub mod circuit; pub mod circuit;
pub mod group_hash; pub mod group_hash;
pub mod pedersen_hash;

67
src/pedersen_hash.rs Normal file
View File

@ -0,0 +1,67 @@
use jubjub::*;
use pairing::*;
pub fn pedersen_hash<E, I>(
bits: I,
params: &E::Params
) -> edwards::Point<E, PrimeOrder>
where I: IntoIterator<Item=bool>,
E: JubjubEngine
{
let mut bits = bits.into_iter();
let mut result = edwards::Point::zero();
let mut generators = params.pedersen_hash_generators().iter();
loop {
let mut acc = E::Fs::zero();
let mut cur = E::Fs::one();
let mut chunks_remaining = params.pedersen_hash_chunks_per_generator();
let mut encountered_bits = false;
// Grab three bits from the input
while let Some(a) = bits.next() {
encountered_bits = true;
let b = bits.next().unwrap_or(false);
let c = bits.next().unwrap_or(false);
// Start computing this portion of the scalar
let mut tmp = cur;
if a {
tmp.add_assign(&cur);
}
cur.double(); // 2^1 * cur
if b {
tmp.add_assign(&cur);
}
// conditionally negate
if c {
tmp.negate();
}
acc.add_assign(&tmp);
chunks_remaining -= 1;
if chunks_remaining == 0 {
break;
} else {
cur.double(); // 2^2 * cur
cur.double(); // 2^3 * cur
cur.double(); // 2^4 * cur
}
}
if !encountered_bits {
break;
}
let mut tmp = generators.next().expect("we don't have enough generators").clone();
tmp = tmp.mul(acc, params);
result = result.add(&tmp, params);
}
result
}