Add Montgomery point interpretation.

This commit is contained in:
Sean Bowe 2017-12-17 10:07:00 -07:00
parent eb8803f9eb
commit 7d6a57661b
No known key found for this signature in database
GPG Key ID: 95684257D8F8B031
2 changed files with 132 additions and 0 deletions

View File

@ -28,6 +28,34 @@ pub struct MontgomeryPoint<E: Engine, Var> {
}
impl<E: JubjubEngine, Var: Copy> MontgomeryPoint<E, Var> {
pub fn interpret<CS>(
mut cs: CS,
x: &AllocatedNum<E, Var>,
y: &AllocatedNum<E, Var>,
params: &E::Params
) -> Result<Self, SynthesisError>
where CS: ConstraintSystem<E, Variable=Var>
{
// y^2 = x^3 + A.x^2 + x
let x2 = x.square(cs.namespace(|| "x^2"))?;
let x3 = x2.mul(cs.namespace(|| "x^3"), x)?;
cs.enforce(
|| "on curve check",
LinearCombination::zero() + y.get_variable(),
LinearCombination::zero() + y.get_variable(),
LinearCombination::zero() + x3.get_variable()
+ (*params.montgomery_a(), x2.get_variable())
+ x.get_variable()
);
Ok(MontgomeryPoint {
x: x.clone(),
y: y.clone()
})
}
/// Performs an affine point doubling, not defined for
/// the point of order two (0, 0).
pub fn double<CS>(
@ -146,6 +174,54 @@ mod test {
};
use super::{MontgomeryPoint, AllocatedNum};
#[test]
fn test_interpret() {
let params = &JubjubBls12::new();
let rng = &mut XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
for _ in 0..100 {
let p = montgomery::Point::<Bls12, _>::rand(rng, &params);
let (mut x, mut y) = p.into_xy().unwrap();
{
let mut cs = TestConstraintSystem::<Bls12>::new();
let numx = AllocatedNum::alloc(cs.namespace(|| "x"), || {
Ok(x)
}).unwrap();
let numy = AllocatedNum::alloc(cs.namespace(|| "y"), || {
Ok(y)
}).unwrap();
let p = MontgomeryPoint::interpret(&mut cs, &numx, &numy, &params).unwrap();
assert!(cs.is_satisfied());
assert_eq!(p.x.get_value().unwrap(), x);
assert_eq!(p.y.get_value().unwrap(), y);
y.negate();
cs.set("y/num", y);
assert!(cs.is_satisfied());
x.negate();
cs.set("x/num", x);
assert!(!cs.is_satisfied());
}
{
let mut cs = TestConstraintSystem::<Bls12>::new();
let numx = AllocatedNum::alloc(cs.namespace(|| "x"), || {
Ok(x)
}).unwrap();
let numy = AllocatedNum::alloc(cs.namespace(|| "y"), || {
Ok(y)
}).unwrap();
MontgomeryPoint::interpret(&mut cs, &numx, &numy, &params).unwrap();
assert_eq!(cs.which_is_unsatisfied().unwrap(), "on curve check");
}
}
}
#[test]
fn test_doubling_order_2() {
let params = &JubjubBls12::new();

View File

@ -25,6 +25,15 @@ pub struct AllocatedNum<E: Engine, Var> {
variable: Var
}
impl<Var: Copy, E: Engine> Clone for AllocatedNum<E, Var> {
fn clone(&self) -> Self {
AllocatedNum {
value: self.value,
variable: self.variable
}
}
}
impl<E: Engine, Var: Copy> AllocatedNum<E, Var> {
pub fn alloc<CS, F>(
mut cs: CS,
@ -190,6 +199,38 @@ impl<E: Engine, Var: Copy> AllocatedNum<E, Var> {
Ok(num)
}
pub fn mul<CS>(
&self,
mut cs: CS,
other: &Self
) -> Result<Self, SynthesisError>
where CS: ConstraintSystem<E, Variable=Var>
{
let mut value = None;
let var = cs.alloc(|| "product num", || {
let mut tmp = *self.value.get()?;
tmp.mul_assign(other.value.get()?);
value = Some(tmp);
Ok(tmp)
})?;
// Constrain: a * b = ab
cs.enforce(
|| "multiplication constraint",
LinearCombination::zero() + self.variable,
LinearCombination::zero() + other.variable,
LinearCombination::zero() + var
);
Ok(AllocatedNum {
value: value,
variable: var
})
}
pub fn square<CS>(
&self,
mut cs: CS
@ -294,6 +335,21 @@ mod test {
assert!(!cs.is_satisfied());
}
#[test]
fn test_num_multiplication() {
let mut cs = TestConstraintSystem::<Bls12>::new();
let n = AllocatedNum::alloc(cs.namespace(|| "a"), || Ok(Fr::from_str("12").unwrap())).unwrap();
let n2 = AllocatedNum::alloc(cs.namespace(|| "b"), || Ok(Fr::from_str("10").unwrap())).unwrap();
let n3 = n.mul(&mut cs, &n2).unwrap();
assert!(cs.is_satisfied());
assert!(cs.get("product num") == Fr::from_str("120").unwrap());
assert!(n3.value.unwrap() == Fr::from_str("120").unwrap());
cs.set("product num", Fr::from_str("121").unwrap());
assert!(!cs.is_satisfied());
}
#[test]
fn test_num_nonzero() {
{