Add 'bellman/' from commit '10c5010fd9c2ca69442dc9775ea271e286e776d8'
git-subtree-dir: bellman git-subtree-mainline:e924247e73
git-subtree-split:10c5010fd9
This commit is contained in:
commit
9f748554d0
|
@ -0,0 +1,2 @@
|
|||
target
|
||||
Cargo.lock
|
|
@ -0,0 +1,14 @@
|
|||
Copyrights in the "bellman" library are retained by their contributors. No
|
||||
copyright assignment is required to contribute to the "bellman" library.
|
||||
|
||||
The "bellman" library is licensed under either of
|
||||
|
||||
* Apache License, Version 2.0, (see ./LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0)
|
||||
* MIT license (see ./LICENSE-MIT or http://opensource.org/licenses/MIT)
|
||||
|
||||
at your option.
|
||||
|
||||
Unless you explicitly state otherwise, any contribution intentionally
|
||||
submitted for inclusion in the work by you, as defined in the Apache-2.0
|
||||
license, shall be dual licensed as above, without any additional terms or
|
||||
conditions.
|
|
@ -0,0 +1,22 @@
|
|||
[package]
|
||||
authors = ["Sean Bowe <ewillbefull@gmail.com>"]
|
||||
description = "zk-SNARK library"
|
||||
documentation = "https://github.com/ebfull/bellman"
|
||||
homepage = "https://github.com/ebfull/bellman"
|
||||
license = "MIT/Apache-2.0"
|
||||
name = "bellman"
|
||||
repository = "https://github.com/ebfull/bellman"
|
||||
version = "0.1.0"
|
||||
|
||||
[dependencies]
|
||||
rand = "0.4"
|
||||
bit-vec = "0.4.4"
|
||||
futures = "0.1"
|
||||
futures-cpupool = "0.1"
|
||||
num_cpus = "1"
|
||||
crossbeam = "0.3"
|
||||
pairing = "0.14"
|
||||
byteorder = "1"
|
||||
|
||||
[features]
|
||||
default = []
|
|
@ -0,0 +1,201 @@
|
|||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [yyyy] [name of copyright owner]
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
|
@ -0,0 +1,23 @@
|
|||
Permission is hereby granted, free of charge, to any
|
||||
person obtaining a copy of this software and associated
|
||||
documentation files (the "Software"), to deal in the
|
||||
Software without restriction, including without
|
||||
limitation the rights to use, copy, modify, merge,
|
||||
publish, distribute, sublicense, and/or sell copies of
|
||||
the Software, and to permit persons to whom the Software
|
||||
is furnished to do so, subject to the following
|
||||
conditions:
|
||||
|
||||
The above copyright notice and this permission notice
|
||||
shall be included in all copies or substantial portions
|
||||
of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
|
||||
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
|
||||
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
|
||||
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
|
||||
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
||||
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
|
||||
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
DEALINGS IN THE SOFTWARE.
|
|
@ -0,0 +1,19 @@
|
|||
# bellman [](https://crates.io/crates/bellman) #
|
||||
|
||||
This is a research project being built for [Zcash](https://z.cash/).
|
||||
|
||||
## License
|
||||
|
||||
Licensed under either of
|
||||
|
||||
* Apache License, Version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or http://www.apache.org/licenses/LICENSE-2.0)
|
||||
* MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT)
|
||||
|
||||
at your option.
|
||||
|
||||
### Contribution
|
||||
|
||||
Unless you explicitly state otherwise, any contribution intentionally
|
||||
submitted for inclusion in the work by you, as defined in the Apache-2.0
|
||||
license, shall be dual licensed as above, without any additional terms or
|
||||
conditions.
|
|
@ -0,0 +1,494 @@
|
|||
//! This module contains an `EvaluationDomain` abstraction for
|
||||
//! performing various kinds of polynomial arithmetic on top of
|
||||
//! the scalar field.
|
||||
//!
|
||||
//! In pairing-based SNARKs like Groth16, we need to calculate
|
||||
//! a quotient polynomial over a target polynomial with roots
|
||||
//! at distinct points associated with each constraint of the
|
||||
//! constraint system. In order to be efficient, we choose these
|
||||
//! roots to be the powers of a 2^n root of unity in the field.
|
||||
//! This allows us to perform polynomial operations in O(n)
|
||||
//! by performing an O(n log n) FFT over such a domain.
|
||||
|
||||
use pairing::{
|
||||
Engine,
|
||||
Field,
|
||||
PrimeField,
|
||||
CurveProjective
|
||||
};
|
||||
|
||||
use super::{
|
||||
SynthesisError
|
||||
};
|
||||
|
||||
use super::multicore::Worker;
|
||||
|
||||
pub struct EvaluationDomain<E: Engine, G: Group<E>> {
|
||||
coeffs: Vec<G>,
|
||||
exp: u32,
|
||||
omega: E::Fr,
|
||||
omegainv: E::Fr,
|
||||
geninv: E::Fr,
|
||||
minv: E::Fr
|
||||
}
|
||||
|
||||
impl<E: Engine, G: Group<E>> EvaluationDomain<E, G> {
|
||||
pub fn as_ref(&self) -> &[G] {
|
||||
&self.coeffs
|
||||
}
|
||||
|
||||
pub fn as_mut(&mut self) -> &mut [G] {
|
||||
&mut self.coeffs
|
||||
}
|
||||
|
||||
pub fn into_coeffs(self) -> Vec<G> {
|
||||
self.coeffs
|
||||
}
|
||||
|
||||
pub fn from_coeffs(mut coeffs: Vec<G>) -> Result<EvaluationDomain<E, G>, SynthesisError>
|
||||
{
|
||||
// Compute the size of our evaluation domain
|
||||
let mut m = 1;
|
||||
let mut exp = 0;
|
||||
while m < coeffs.len() {
|
||||
m *= 2;
|
||||
exp += 1;
|
||||
|
||||
// The pairing-friendly curve may not be able to support
|
||||
// large enough (radix2) evaluation domains.
|
||||
if exp >= E::Fr::S {
|
||||
return Err(SynthesisError::PolynomialDegreeTooLarge)
|
||||
}
|
||||
}
|
||||
|
||||
// Compute omega, the 2^exp primitive root of unity
|
||||
let mut omega = E::Fr::root_of_unity();
|
||||
for _ in exp..E::Fr::S {
|
||||
omega.square();
|
||||
}
|
||||
|
||||
// Extend the coeffs vector with zeroes if necessary
|
||||
coeffs.resize(m, G::group_zero());
|
||||
|
||||
Ok(EvaluationDomain {
|
||||
coeffs: coeffs,
|
||||
exp: exp,
|
||||
omega: omega,
|
||||
omegainv: omega.inverse().unwrap(),
|
||||
geninv: E::Fr::multiplicative_generator().inverse().unwrap(),
|
||||
minv: E::Fr::from_str(&format!("{}", m)).unwrap().inverse().unwrap()
|
||||
})
|
||||
}
|
||||
|
||||
pub fn fft(&mut self, worker: &Worker)
|
||||
{
|
||||
best_fft(&mut self.coeffs, worker, &self.omega, self.exp);
|
||||
}
|
||||
|
||||
pub fn ifft(&mut self, worker: &Worker)
|
||||
{
|
||||
best_fft(&mut self.coeffs, worker, &self.omegainv, self.exp);
|
||||
|
||||
worker.scope(self.coeffs.len(), |scope, chunk| {
|
||||
let minv = self.minv;
|
||||
|
||||
for v in self.coeffs.chunks_mut(chunk) {
|
||||
scope.spawn(move || {
|
||||
for v in v {
|
||||
v.group_mul_assign(&minv);
|
||||
}
|
||||
});
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
pub fn distribute_powers(&mut self, worker: &Worker, g: E::Fr)
|
||||
{
|
||||
worker.scope(self.coeffs.len(), |scope, chunk| {
|
||||
for (i, v) in self.coeffs.chunks_mut(chunk).enumerate() {
|
||||
scope.spawn(move || {
|
||||
let mut u = g.pow(&[(i * chunk) as u64]);
|
||||
for v in v.iter_mut() {
|
||||
v.group_mul_assign(&u);
|
||||
u.mul_assign(&g);
|
||||
}
|
||||
});
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
pub fn coset_fft(&mut self, worker: &Worker)
|
||||
{
|
||||
self.distribute_powers(worker, E::Fr::multiplicative_generator());
|
||||
self.fft(worker);
|
||||
}
|
||||
|
||||
pub fn icoset_fft(&mut self, worker: &Worker)
|
||||
{
|
||||
let geninv = self.geninv;
|
||||
|
||||
self.ifft(worker);
|
||||
self.distribute_powers(worker, geninv);
|
||||
}
|
||||
|
||||
/// This evaluates t(tau) for this domain, which is
|
||||
/// tau^m - 1 for these radix-2 domains.
|
||||
pub fn z(&self, tau: &E::Fr) -> E::Fr {
|
||||
let mut tmp = tau.pow(&[self.coeffs.len() as u64]);
|
||||
tmp.sub_assign(&E::Fr::one());
|
||||
|
||||
tmp
|
||||
}
|
||||
|
||||
/// The target polynomial is the zero polynomial in our
|
||||
/// evaluation domain, so we must perform division over
|
||||
/// a coset.
|
||||
pub fn divide_by_z_on_coset(&mut self, worker: &Worker)
|
||||
{
|
||||
let i = self.z(&E::Fr::multiplicative_generator()).inverse().unwrap();
|
||||
|
||||
worker.scope(self.coeffs.len(), |scope, chunk| {
|
||||
for v in self.coeffs.chunks_mut(chunk) {
|
||||
scope.spawn(move || {
|
||||
for v in v {
|
||||
v.group_mul_assign(&i);
|
||||
}
|
||||
});
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
/// Perform O(n) multiplication of two polynomials in the domain.
|
||||
pub fn mul_assign(&mut self, worker: &Worker, other: &EvaluationDomain<E, Scalar<E>>) {
|
||||
assert_eq!(self.coeffs.len(), other.coeffs.len());
|
||||
|
||||
worker.scope(self.coeffs.len(), |scope, chunk| {
|
||||
for (a, b) in self.coeffs.chunks_mut(chunk).zip(other.coeffs.chunks(chunk)) {
|
||||
scope.spawn(move || {
|
||||
for (a, b) in a.iter_mut().zip(b.iter()) {
|
||||
a.group_mul_assign(&b.0);
|
||||
}
|
||||
});
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
/// Perform O(n) subtraction of one polynomial from another in the domain.
|
||||
pub fn sub_assign(&mut self, worker: &Worker, other: &EvaluationDomain<E, G>) {
|
||||
assert_eq!(self.coeffs.len(), other.coeffs.len());
|
||||
|
||||
worker.scope(self.coeffs.len(), |scope, chunk| {
|
||||
for (a, b) in self.coeffs.chunks_mut(chunk).zip(other.coeffs.chunks(chunk)) {
|
||||
scope.spawn(move || {
|
||||
for (a, b) in a.iter_mut().zip(b.iter()) {
|
||||
a.group_sub_assign(&b);
|
||||
}
|
||||
});
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
pub trait Group<E: Engine>: Sized + Copy + Clone + Send + Sync {
|
||||
fn group_zero() -> Self;
|
||||
fn group_mul_assign(&mut self, by: &E::Fr);
|
||||
fn group_add_assign(&mut self, other: &Self);
|
||||
fn group_sub_assign(&mut self, other: &Self);
|
||||
}
|
||||
|
||||
pub struct Point<G: CurveProjective>(pub G);
|
||||
|
||||
impl<G: CurveProjective> PartialEq for Point<G> {
|
||||
fn eq(&self, other: &Point<G>) -> bool {
|
||||
self.0 == other.0
|
||||
}
|
||||
}
|
||||
|
||||
impl<G: CurveProjective> Copy for Point<G> { }
|
||||
|
||||
impl<G: CurveProjective> Clone for Point<G> {
|
||||
fn clone(&self) -> Point<G> {
|
||||
*self
|
||||
}
|
||||
}
|
||||
|
||||
impl<G: CurveProjective> Group<G::Engine> for Point<G> {
|
||||
fn group_zero() -> Self {
|
||||
Point(G::zero())
|
||||
}
|
||||
fn group_mul_assign(&mut self, by: &G::Scalar) {
|
||||
self.0.mul_assign(by.into_repr());
|
||||
}
|
||||
fn group_add_assign(&mut self, other: &Self) {
|
||||
self.0.add_assign(&other.0);
|
||||
}
|
||||
fn group_sub_assign(&mut self, other: &Self) {
|
||||
self.0.sub_assign(&other.0);
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Scalar<E: Engine>(pub E::Fr);
|
||||
|
||||
impl<E: Engine> PartialEq for Scalar<E> {
|
||||
fn eq(&self, other: &Scalar<E>) -> bool {
|
||||
self.0 == other.0
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: Engine> Copy for Scalar<E> { }
|
||||
|
||||
impl<E: Engine> Clone for Scalar<E> {
|
||||
fn clone(&self) -> Scalar<E> {
|
||||
*self
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: Engine> Group<E> for Scalar<E> {
|
||||
fn group_zero() -> Self {
|
||||
Scalar(E::Fr::zero())
|
||||
}
|
||||
fn group_mul_assign(&mut self, by: &E::Fr) {
|
||||
self.0.mul_assign(by);
|
||||
}
|
||||
fn group_add_assign(&mut self, other: &Self) {
|
||||
self.0.add_assign(&other.0);
|
||||
}
|
||||
fn group_sub_assign(&mut self, other: &Self) {
|
||||
self.0.sub_assign(&other.0);
|
||||
}
|
||||
}
|
||||
|
||||
fn best_fft<E: Engine, T: Group<E>>(a: &mut [T], worker: &Worker, omega: &E::Fr, log_n: u32)
|
||||
{
|
||||
let log_cpus = worker.log_num_cpus();
|
||||
|
||||
if log_n <= log_cpus {
|
||||
serial_fft(a, omega, log_n);
|
||||
} else {
|
||||
parallel_fft(a, worker, omega, log_n, log_cpus);
|
||||
}
|
||||
}
|
||||
|
||||
fn serial_fft<E: Engine, T: Group<E>>(a: &mut [T], omega: &E::Fr, log_n: u32)
|
||||
{
|
||||
fn bitreverse(mut n: u32, l: u32) -> u32 {
|
||||
let mut r = 0;
|
||||
for _ in 0..l {
|
||||
r = (r << 1) | (n & 1);
|
||||
n >>= 1;
|
||||
}
|
||||
r
|
||||
}
|
||||
|
||||
let n = a.len() as u32;
|
||||
assert_eq!(n, 1 << log_n);
|
||||
|
||||
for k in 0..n {
|
||||
let rk = bitreverse(k, log_n);
|
||||
if k < rk {
|
||||
a.swap(rk as usize, k as usize);
|
||||
}
|
||||
}
|
||||
|
||||
let mut m = 1;
|
||||
for _ in 0..log_n {
|
||||
let w_m = omega.pow(&[(n / (2*m)) as u64]);
|
||||
|
||||
let mut k = 0;
|
||||
while k < n {
|
||||
let mut w = E::Fr::one();
|
||||
for j in 0..m {
|
||||
let mut t = a[(k+j+m) as usize];
|
||||
t.group_mul_assign(&w);
|
||||
let mut tmp = a[(k+j) as usize];
|
||||
tmp.group_sub_assign(&t);
|
||||
a[(k+j+m) as usize] = tmp;
|
||||
a[(k+j) as usize].group_add_assign(&t);
|
||||
w.mul_assign(&w_m);
|
||||
}
|
||||
|
||||
k += 2*m;
|
||||
}
|
||||
|
||||
m *= 2;
|
||||
}
|
||||
}
|
||||
|
||||
fn parallel_fft<E: Engine, T: Group<E>>(
|
||||
a: &mut [T],
|
||||
worker: &Worker,
|
||||
omega: &E::Fr,
|
||||
log_n: u32,
|
||||
log_cpus: u32
|
||||
)
|
||||
{
|
||||
assert!(log_n >= log_cpus);
|
||||
|
||||
let num_cpus = 1 << log_cpus;
|
||||
let log_new_n = log_n - log_cpus;
|
||||
let mut tmp = vec![vec![T::group_zero(); 1 << log_new_n]; num_cpus];
|
||||
let new_omega = omega.pow(&[num_cpus as u64]);
|
||||
|
||||
worker.scope(0, |scope, _| {
|
||||
let a = &*a;
|
||||
|
||||
for (j, tmp) in tmp.iter_mut().enumerate() {
|
||||
scope.spawn(move || {
|
||||
// Shuffle into a sub-FFT
|
||||
let omega_j = omega.pow(&[j as u64]);
|
||||
let omega_step = omega.pow(&[(j as u64) << log_new_n]);
|
||||
|
||||
let mut elt = E::Fr::one();
|
||||
for i in 0..(1 << log_new_n) {
|
||||
for s in 0..num_cpus {
|
||||
let idx = (i + (s << log_new_n)) % (1 << log_n);
|
||||
let mut t = a[idx];
|
||||
t.group_mul_assign(&elt);
|
||||
tmp[i].group_add_assign(&t);
|
||||
elt.mul_assign(&omega_step);
|
||||
}
|
||||
elt.mul_assign(&omega_j);
|
||||
}
|
||||
|
||||
// Perform sub-FFT
|
||||
serial_fft(tmp, &new_omega, log_new_n);
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
// TODO: does this hurt or help?
|
||||
worker.scope(a.len(), |scope, chunk| {
|
||||
let tmp = &tmp;
|
||||
|
||||
for (idx, a) in a.chunks_mut(chunk).enumerate() {
|
||||
scope.spawn(move || {
|
||||
let mut idx = idx * chunk;
|
||||
let mask = (1 << log_cpus) - 1;
|
||||
for a in a {
|
||||
*a = tmp[idx & mask][idx >> log_cpus];
|
||||
idx += 1;
|
||||
}
|
||||
});
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// Test multiplying various (low degree) polynomials together and
|
||||
// comparing with naive evaluations.
|
||||
#[test]
|
||||
fn polynomial_arith() {
|
||||
use pairing::bls12_381::Bls12;
|
||||
use rand::{self, Rand};
|
||||
|
||||
fn test_mul<E: Engine, R: rand::Rng>(rng: &mut R)
|
||||
{
|
||||
let worker = Worker::new();
|
||||
|
||||
for coeffs_a in 0..70 {
|
||||
for coeffs_b in 0..70 {
|
||||
let mut a: Vec<_> = (0..coeffs_a).map(|_| Scalar::<E>(E::Fr::rand(rng))).collect();
|
||||
let mut b: Vec<_> = (0..coeffs_b).map(|_| Scalar::<E>(E::Fr::rand(rng))).collect();
|
||||
|
||||
// naive evaluation
|
||||
let mut naive = vec![Scalar(E::Fr::zero()); coeffs_a + coeffs_b];
|
||||
for (i1, a) in a.iter().enumerate() {
|
||||
for (i2, b) in b.iter().enumerate() {
|
||||
let mut prod = *a;
|
||||
prod.group_mul_assign(&b.0);
|
||||
naive[i1 + i2].group_add_assign(&prod);
|
||||
}
|
||||
}
|
||||
|
||||
a.resize(coeffs_a + coeffs_b, Scalar(E::Fr::zero()));
|
||||
b.resize(coeffs_a + coeffs_b, Scalar(E::Fr::zero()));
|
||||
|
||||
let mut a = EvaluationDomain::from_coeffs(a).unwrap();
|
||||
let mut b = EvaluationDomain::from_coeffs(b).unwrap();
|
||||
|
||||
a.fft(&worker);
|
||||
b.fft(&worker);
|
||||
a.mul_assign(&worker, &b);
|
||||
a.ifft(&worker);
|
||||
|
||||
for (naive, fft) in naive.iter().zip(a.coeffs.iter()) {
|
||||
assert!(naive == fft);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let rng = &mut rand::thread_rng();
|
||||
|
||||
test_mul::<Bls12, _>(rng);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn fft_composition() {
|
||||
use pairing::bls12_381::Bls12;
|
||||
use rand;
|
||||
|
||||
fn test_comp<E: Engine, R: rand::Rng>(rng: &mut R)
|
||||
{
|
||||
let worker = Worker::new();
|
||||
|
||||
for coeffs in 0..10 {
|
||||
let coeffs = 1 << coeffs;
|
||||
|
||||
let mut v = vec![];
|
||||
for _ in 0..coeffs {
|
||||
v.push(Scalar::<E>(rng.gen()));
|
||||
}
|
||||
|
||||
let mut domain = EvaluationDomain::from_coeffs(v.clone()).unwrap();
|
||||
domain.ifft(&worker);
|
||||
domain.fft(&worker);
|
||||
assert!(v == domain.coeffs);
|
||||
domain.fft(&worker);
|
||||
domain.ifft(&worker);
|
||||
assert!(v == domain.coeffs);
|
||||
domain.icoset_fft(&worker);
|
||||
domain.coset_fft(&worker);
|
||||
assert!(v == domain.coeffs);
|
||||
domain.coset_fft(&worker);
|
||||
domain.icoset_fft(&worker);
|
||||
assert!(v == domain.coeffs);
|
||||
}
|
||||
}
|
||||
|
||||
let rng = &mut rand::thread_rng();
|
||||
|
||||
test_comp::<Bls12, _>(rng);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn parallel_fft_consistency() {
|
||||
use pairing::bls12_381::Bls12;
|
||||
use rand::{self, Rand};
|
||||
use std::cmp::min;
|
||||
|
||||
fn test_consistency<E: Engine, R: rand::Rng>(rng: &mut R)
|
||||
{
|
||||
let worker = Worker::new();
|
||||
|
||||
for _ in 0..5 {
|
||||
for log_d in 0..10 {
|
||||
let d = 1 << log_d;
|
||||
|
||||
let v1 = (0..d).map(|_| Scalar::<E>(E::Fr::rand(rng))).collect::<Vec<_>>();
|
||||
let mut v1 = EvaluationDomain::from_coeffs(v1).unwrap();
|
||||
let mut v2 = EvaluationDomain::from_coeffs(v1.coeffs.clone()).unwrap();
|
||||
|
||||
for log_cpus in log_d..min(log_d+1, 3) {
|
||||
parallel_fft(&mut v1.coeffs, &worker, &v1.omega, log_d, log_cpus);
|
||||
serial_fft(&mut v2.coeffs, &v2.omega, log_d);
|
||||
|
||||
assert!(v1.coeffs == v2.coeffs);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let rng = &mut rand::thread_rng();
|
||||
|
||||
test_consistency::<Bls12, _>(rng);
|
||||
}
|
|
@ -0,0 +1,482 @@
|
|||
use rand::Rng;
|
||||
|
||||
use std::sync::Arc;
|
||||
|
||||
use pairing::{
|
||||
Engine,
|
||||
PrimeField,
|
||||
Field,
|
||||
Wnaf,
|
||||
CurveProjective,
|
||||
CurveAffine
|
||||
};
|
||||
|
||||
use super::{
|
||||
Parameters,
|
||||
VerifyingKey
|
||||
};
|
||||
|
||||
use ::{
|
||||
SynthesisError,
|
||||
Circuit,
|
||||
ConstraintSystem,
|
||||
LinearCombination,
|
||||
Variable,
|
||||
Index
|
||||
};
|
||||
|
||||
use ::domain::{
|
||||
EvaluationDomain,
|
||||
Scalar
|
||||
};
|
||||
|
||||
use ::multicore::{
|
||||
Worker
|
||||
};
|
||||
|
||||
/// Generates a random common reference string for
|
||||
/// a circuit.
|
||||
pub fn generate_random_parameters<E, C, R>(
|
||||
circuit: C,
|
||||
rng: &mut R
|
||||
) -> Result<Parameters<E>, SynthesisError>
|
||||
where E: Engine, C: Circuit<E>, R: Rng
|
||||
{
|
||||
let g1 = rng.gen();
|
||||
let g2 = rng.gen();
|
||||
let alpha = rng.gen();
|
||||
let beta = rng.gen();
|
||||
let gamma = rng.gen();
|
||||
let delta = rng.gen();
|
||||
let tau = rng.gen();
|
||||
|
||||
generate_parameters::<E, C>(
|
||||
circuit,
|
||||
g1,
|
||||
g2,
|
||||
alpha,
|
||||
beta,
|
||||
gamma,
|
||||
delta,
|
||||
tau
|
||||
)
|
||||
}
|
||||
|
||||
/// This is our assembly structure that we'll use to synthesize the
|
||||
/// circuit into a QAP.
|
||||
struct KeypairAssembly<E: Engine> {
|
||||
num_inputs: usize,
|
||||
num_aux: usize,
|
||||
num_constraints: usize,
|
||||
at_inputs: Vec<Vec<(E::Fr, usize)>>,
|
||||
bt_inputs: Vec<Vec<(E::Fr, usize)>>,
|
||||
ct_inputs: Vec<Vec<(E::Fr, usize)>>,
|
||||
at_aux: Vec<Vec<(E::Fr, usize)>>,
|
||||
bt_aux: Vec<Vec<(E::Fr, usize)>>,
|
||||
ct_aux: Vec<Vec<(E::Fr, usize)>>
|
||||
}
|
||||
|
||||
impl<E: Engine> ConstraintSystem<E> for KeypairAssembly<E> {
|
||||
type Root = Self;
|
||||
|
||||
fn alloc<F, A, AR>(
|
||||
&mut self,
|
||||
_: A,
|
||||
_: F
|
||||
) -> Result<Variable, SynthesisError>
|
||||
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
|
||||
{
|
||||
// There is no assignment, so we don't even invoke the
|
||||
// function for obtaining one.
|
||||
|
||||
let index = self.num_aux;
|
||||
self.num_aux += 1;
|
||||
|
||||
self.at_aux.push(vec![]);
|
||||
self.bt_aux.push(vec![]);
|
||||
self.ct_aux.push(vec![]);
|
||||
|
||||
Ok(Variable(Index::Aux(index)))
|
||||
}
|
||||
|
||||
fn alloc_input<F, A, AR>(
|
||||
&mut self,
|
||||
_: A,
|
||||
_: F
|
||||
) -> Result<Variable, SynthesisError>
|
||||
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
|
||||
{
|
||||
// There is no assignment, so we don't even invoke the
|
||||
// function for obtaining one.
|
||||
|
||||
let index = self.num_inputs;
|
||||
self.num_inputs += 1;
|
||||
|
||||
self.at_inputs.push(vec![]);
|
||||
self.bt_inputs.push(vec![]);
|
||||
self.ct_inputs.push(vec![]);
|
||||
|
||||
Ok(Variable(Index::Input(index)))
|
||||
}
|
||||
|
||||
fn enforce<A, AR, LA, LB, LC>(
|
||||
&mut self,
|
||||
_: A,
|
||||
a: LA,
|
||||
b: LB,
|
||||
c: LC
|
||||
)
|
||||
where A: FnOnce() -> AR, AR: Into<String>,
|
||||
LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
|
||||
LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
|
||||
LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>
|
||||
{
|
||||
fn eval<E: Engine>(
|
||||
l: LinearCombination<E>,
|
||||
inputs: &mut [Vec<(E::Fr, usize)>],
|
||||
aux: &mut [Vec<(E::Fr, usize)>],
|
||||
this_constraint: usize
|
||||
)
|
||||
{
|
||||
for (index, coeff) in l.0 {
|
||||
match index {
|
||||
Variable(Index::Input(id)) => inputs[id].push((coeff, this_constraint)),
|
||||
Variable(Index::Aux(id)) => aux[id].push((coeff, this_constraint))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
eval(a(LinearCombination::zero()), &mut self.at_inputs, &mut self.at_aux, self.num_constraints);
|
||||
eval(b(LinearCombination::zero()), &mut self.bt_inputs, &mut self.bt_aux, self.num_constraints);
|
||||
eval(c(LinearCombination::zero()), &mut self.ct_inputs, &mut self.ct_aux, self.num_constraints);
|
||||
|
||||
self.num_constraints += 1;
|
||||
}
|
||||
|
||||
fn push_namespace<NR, N>(&mut self, _: N)
|
||||
where NR: Into<String>, N: FnOnce() -> NR
|
||||
{
|
||||
// Do nothing; we don't care about namespaces in this context.
|
||||
}
|
||||
|
||||
fn pop_namespace(&mut self)
|
||||
{
|
||||
// Do nothing; we don't care about namespaces in this context.
|
||||
}
|
||||
|
||||
fn get_root(&mut self) -> &mut Self::Root {
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
/// Create parameters for a circuit, given some toxic waste.
|
||||
pub fn generate_parameters<E, C>(
|
||||
circuit: C,
|
||||
g1: E::G1,
|
||||
g2: E::G2,
|
||||
alpha: E::Fr,
|
||||
beta: E::Fr,
|
||||
gamma: E::Fr,
|
||||
delta: E::Fr,
|
||||
tau: E::Fr
|
||||
) -> Result<Parameters<E>, SynthesisError>
|
||||
where E: Engine, C: Circuit<E>
|
||||
{
|
||||
let mut assembly = KeypairAssembly {
|
||||
num_inputs: 0,
|
||||
num_aux: 0,
|
||||
num_constraints: 0,
|
||||
at_inputs: vec![],
|
||||
bt_inputs: vec![],
|
||||
ct_inputs: vec![],
|
||||
at_aux: vec![],
|
||||
bt_aux: vec![],
|
||||
ct_aux: vec![]
|
||||
};
|
||||
|
||||
// Allocate the "one" input variable
|
||||
assembly.alloc_input(|| "", || Ok(E::Fr::one()))?;
|
||||
|
||||
// Synthesize the circuit.
|
||||
circuit.synthesize(&mut assembly)?;
|
||||
|
||||
// Input constraints to ensure full density of IC query
|
||||
// x * 0 = 0
|
||||
for i in 0..assembly.num_inputs {
|
||||
assembly.enforce(|| "",
|
||||
|lc| lc + Variable(Index::Input(i)),
|
||||
|lc| lc,
|
||||
|lc| lc,
|
||||
);
|
||||
}
|
||||
|
||||
// Create bases for blind evaluation of polynomials at tau
|
||||
let powers_of_tau = vec![Scalar::<E>(E::Fr::zero()); assembly.num_constraints];
|
||||
let mut powers_of_tau = EvaluationDomain::from_coeffs(powers_of_tau)?;
|
||||
|
||||
// Compute G1 window table
|
||||
let mut g1_wnaf = Wnaf::new();
|
||||
let g1_wnaf = g1_wnaf.base(g1, {
|
||||
// H query
|
||||
(powers_of_tau.as_ref().len() - 1)
|
||||
// IC/L queries
|
||||
+ assembly.num_inputs + assembly.num_aux
|
||||
// A query
|
||||
+ assembly.num_inputs + assembly.num_aux
|
||||
// B query
|
||||
+ assembly.num_inputs + assembly.num_aux
|
||||
});
|
||||
|
||||
// Compute G2 window table
|
||||
let mut g2_wnaf = Wnaf::new();
|
||||
let g2_wnaf = g2_wnaf.base(g2, {
|
||||
// B query
|
||||
assembly.num_inputs + assembly.num_aux
|
||||
});
|
||||
|
||||
let gamma_inverse = gamma.inverse().ok_or(SynthesisError::UnexpectedIdentity)?;
|
||||
let delta_inverse = delta.inverse().ok_or(SynthesisError::UnexpectedIdentity)?;
|
||||
|
||||
let worker = Worker::new();
|
||||
|
||||
let mut h = vec![E::G1::zero(); powers_of_tau.as_ref().len() - 1];
|
||||
{
|
||||
// Compute powers of tau
|
||||
{
|
||||
let powers_of_tau = powers_of_tau.as_mut();
|
||||
worker.scope(powers_of_tau.len(), |scope, chunk| {
|
||||
for (i, powers_of_tau) in powers_of_tau.chunks_mut(chunk).enumerate()
|
||||
{
|
||||
scope.spawn(move || {
|
||||
let mut current_tau_power = tau.pow(&[(i*chunk) as u64]);
|
||||
|
||||
for p in powers_of_tau {
|
||||
p.0 = current_tau_power;
|
||||
current_tau_power.mul_assign(&tau);
|
||||
}
|
||||
});
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// coeff = t(x) / delta
|
||||
let mut coeff = powers_of_tau.z(&tau);
|
||||
coeff.mul_assign(&delta_inverse);
|
||||
|
||||
// Compute the H query with multiple threads
|
||||
worker.scope(h.len(), |scope, chunk| {
|
||||
for (h, p) in h.chunks_mut(chunk).zip(powers_of_tau.as_ref().chunks(chunk))
|
||||
{
|
||||
let mut g1_wnaf = g1_wnaf.shared();
|
||||
|
||||
scope.spawn(move || {
|
||||
// Set values of the H query to g1^{(tau^i * t(tau)) / delta}
|
||||
for (h, p) in h.iter_mut().zip(p.iter())
|
||||
{
|
||||
// Compute final exponent
|
||||
let mut exp = p.0;
|
||||
exp.mul_assign(&coeff);
|
||||
|
||||
// Exponentiate
|
||||
*h = g1_wnaf.scalar(exp.into_repr());
|
||||
}
|
||||
|
||||
// Batch normalize
|
||||
E::G1::batch_normalization(h);
|
||||
});
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// Use inverse FFT to convert powers of tau to Lagrange coefficients
|
||||
powers_of_tau.ifft(&worker);
|
||||
let powers_of_tau = powers_of_tau.into_coeffs();
|
||||
|
||||
let mut a = vec![E::G1::zero(); assembly.num_inputs + assembly.num_aux];
|
||||
let mut b_g1 = vec![E::G1::zero(); assembly.num_inputs + assembly.num_aux];
|
||||
let mut b_g2 = vec![E::G2::zero(); assembly.num_inputs + assembly.num_aux];
|
||||
let mut ic = vec![E::G1::zero(); assembly.num_inputs];
|
||||
let mut l = vec![E::G1::zero(); assembly.num_aux];
|
||||
|
||||
fn eval<E: Engine>(
|
||||
// wNAF window tables
|
||||
g1_wnaf: &Wnaf<usize, &[E::G1], &mut Vec<i64>>,
|
||||
g2_wnaf: &Wnaf<usize, &[E::G2], &mut Vec<i64>>,
|
||||
|
||||
// Lagrange coefficients for tau
|
||||
powers_of_tau: &[Scalar<E>],
|
||||
|
||||
// QAP polynomials
|
||||
at: &[Vec<(E::Fr, usize)>],
|
||||
bt: &[Vec<(E::Fr, usize)>],
|
||||
ct: &[Vec<(E::Fr, usize)>],
|
||||
|
||||
// Resulting evaluated QAP polynomials
|
||||
a: &mut [E::G1],
|
||||
b_g1: &mut [E::G1],
|
||||
b_g2: &mut [E::G2],
|
||||
ext: &mut [E::G1],
|
||||
|
||||
// Inverse coefficient for ext elements
|
||||
inv: &E::Fr,
|
||||
|
||||
// Trapdoors
|
||||
alpha: &E::Fr,
|
||||
beta: &E::Fr,
|
||||
|
||||
// Worker
|
||||
worker: &Worker
|
||||
)
|
||||
{
|
||||
// Sanity check
|
||||
assert_eq!(a.len(), at.len());
|
||||
assert_eq!(a.len(), bt.len());
|
||||
assert_eq!(a.len(), ct.len());
|
||||
assert_eq!(a.len(), b_g1.len());
|
||||
assert_eq!(a.len(), b_g2.len());
|
||||
assert_eq!(a.len(), ext.len());
|
||||
|
||||
// Evaluate polynomials in multiple threads
|
||||
worker.scope(a.len(), |scope, chunk| {
|
||||
for ((((((a, b_g1), b_g2), ext), at), bt), ct) in a.chunks_mut(chunk)
|
||||
.zip(b_g1.chunks_mut(chunk))
|
||||
.zip(b_g2.chunks_mut(chunk))
|
||||
.zip(ext.chunks_mut(chunk))
|
||||
.zip(at.chunks(chunk))
|
||||
.zip(bt.chunks(chunk))
|
||||
.zip(ct.chunks(chunk))
|
||||
{
|
||||
let mut g1_wnaf = g1_wnaf.shared();
|
||||
let mut g2_wnaf = g2_wnaf.shared();
|
||||
|
||||
scope.spawn(move || {
|
||||
for ((((((a, b_g1), b_g2), ext), at), bt), ct) in a.iter_mut()
|
||||
.zip(b_g1.iter_mut())
|
||||
.zip(b_g2.iter_mut())
|
||||
.zip(ext.iter_mut())
|
||||
.zip(at.iter())
|
||||
.zip(bt.iter())
|
||||
.zip(ct.iter())
|
||||
{
|
||||
fn eval_at_tau<E: Engine>(
|
||||
powers_of_tau: &[Scalar<E>],
|
||||
p: &[(E::Fr, usize)]
|
||||
) -> E::Fr
|
||||
{
|
||||
let mut acc = E::Fr::zero();
|
||||
|
||||
for &(ref coeff, index) in p {
|
||||
let mut n = powers_of_tau[index].0;
|
||||
n.mul_assign(coeff);
|
||||
acc.add_assign(&n);
|
||||
}
|
||||
|
||||
acc
|
||||
}
|
||||
|
||||
// Evaluate QAP polynomials at tau
|
||||
let mut at = eval_at_tau(powers_of_tau, at);
|
||||
let mut bt = eval_at_tau(powers_of_tau, bt);
|
||||
let ct = eval_at_tau(powers_of_tau, ct);
|
||||
|
||||
// Compute A query (in G1)
|
||||
if !at.is_zero() {
|
||||
*a = g1_wnaf.scalar(at.into_repr());
|
||||
}
|
||||
|
||||
// Compute B query (in G1/G2)
|
||||
if !bt.is_zero() {
|
||||
let bt_repr = bt.into_repr();
|
||||
*b_g1 = g1_wnaf.scalar(bt_repr);
|
||||
*b_g2 = g2_wnaf.scalar(bt_repr);
|
||||
}
|
||||
|
||||
at.mul_assign(&beta);
|
||||
bt.mul_assign(&alpha);
|
||||
|
||||
let mut e = at;
|
||||
e.add_assign(&bt);
|
||||
e.add_assign(&ct);
|
||||
e.mul_assign(inv);
|
||||
|
||||
*ext = g1_wnaf.scalar(e.into_repr());
|
||||
}
|
||||
|
||||
// Batch normalize
|
||||
E::G1::batch_normalization(a);
|
||||
E::G1::batch_normalization(b_g1);
|
||||
E::G2::batch_normalization(b_g2);
|
||||
E::G1::batch_normalization(ext);
|
||||
});
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// Evaluate for inputs.
|
||||
eval(
|
||||
&g1_wnaf,
|
||||
&g2_wnaf,
|
||||
&powers_of_tau,
|
||||
&assembly.at_inputs,
|
||||
&assembly.bt_inputs,
|
||||
&assembly.ct_inputs,
|
||||
&mut a[0..assembly.num_inputs],
|
||||
&mut b_g1[0..assembly.num_inputs],
|
||||
&mut b_g2[0..assembly.num_inputs],
|
||||
&mut ic,
|
||||
&gamma_inverse,
|
||||
&alpha,
|
||||
&beta,
|
||||
&worker
|
||||
);
|
||||
|
||||
// Evaluate for auxillary variables.
|
||||
eval(
|
||||
&g1_wnaf,
|
||||
&g2_wnaf,
|
||||
&powers_of_tau,
|
||||
&assembly.at_aux,
|
||||
&assembly.bt_aux,
|
||||
&assembly.ct_aux,
|
||||
&mut a[assembly.num_inputs..],
|
||||
&mut b_g1[assembly.num_inputs..],
|
||||
&mut b_g2[assembly.num_inputs..],
|
||||
&mut l,
|
||||
&delta_inverse,
|
||||
&alpha,
|
||||
&beta,
|
||||
&worker
|
||||
);
|
||||
|
||||
// Don't allow any elements be unconstrained, so that
|
||||
// the L query is always fully dense.
|
||||
for e in l.iter() {
|
||||
if e.is_zero() {
|
||||
return Err(SynthesisError::UnconstrainedVariable);
|
||||
}
|
||||
}
|
||||
|
||||
let g1 = g1.into_affine();
|
||||
let g2 = g2.into_affine();
|
||||
|
||||
let vk = VerifyingKey::<E> {
|
||||
alpha_g1: g1.mul(alpha).into_affine(),
|
||||
beta_g1: g1.mul(beta).into_affine(),
|
||||
beta_g2: g2.mul(beta).into_affine(),
|
||||
gamma_g2: g2.mul(gamma).into_affine(),
|
||||
delta_g1: g1.mul(delta).into_affine(),
|
||||
delta_g2: g2.mul(delta).into_affine(),
|
||||
ic: ic.into_iter().map(|e| e.into_affine()).collect()
|
||||
};
|
||||
|
||||
Ok(Parameters {
|
||||
vk: vk,
|
||||
h: Arc::new(h.into_iter().map(|e| e.into_affine()).collect()),
|
||||
l: Arc::new(l.into_iter().map(|e| e.into_affine()).collect()),
|
||||
|
||||
// Filter points at infinity away from A/B queries
|
||||
a: Arc::new(a.into_iter().filter(|e| !e.is_zero()).map(|e| e.into_affine()).collect()),
|
||||
b_g1: Arc::new(b_g1.into_iter().filter(|e| !e.is_zero()).map(|e| e.into_affine()).collect()),
|
||||
b_g2: Arc::new(b_g2.into_iter().filter(|e| !e.is_zero()).map(|e| e.into_affine()).collect())
|
||||
})
|
||||
}
|
|
@ -0,0 +1,576 @@
|
|||
use pairing::{
|
||||
Engine,
|
||||
CurveAffine,
|
||||
EncodedPoint
|
||||
};
|
||||
|
||||
use ::{
|
||||
SynthesisError
|
||||
};
|
||||
|
||||
use multiexp::SourceBuilder;
|
||||
use std::io::{self, Read, Write};
|
||||
use std::sync::Arc;
|
||||
use byteorder::{BigEndian, WriteBytesExt, ReadBytesExt};
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
|
||||
mod generator;
|
||||
mod prover;
|
||||
mod verifier;
|
||||
|
||||
pub use self::generator::*;
|
||||
pub use self::prover::*;
|
||||
pub use self::verifier::*;
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct Proof<E: Engine> {
|
||||
pub a: E::G1Affine,
|
||||
pub b: E::G2Affine,
|
||||
pub c: E::G1Affine
|
||||
}
|
||||
|
||||
impl<E: Engine> PartialEq for Proof<E> {
|
||||
fn eq(&self, other: &Self) -> bool {
|
||||
self.a == other.a &&
|
||||
self.b == other.b &&
|
||||
self.c == other.c
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: Engine> Proof<E> {
|
||||
pub fn write<W: Write>(
|
||||
&self,
|
||||
mut writer: W
|
||||
) -> io::Result<()>
|
||||
{
|
||||
writer.write_all(self.a.into_compressed().as_ref())?;
|
||||
writer.write_all(self.b.into_compressed().as_ref())?;
|
||||
writer.write_all(self.c.into_compressed().as_ref())?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn read<R: Read>(
|
||||
mut reader: R
|
||||
) -> io::Result<Self>
|
||||
{
|
||||
let mut g1_repr = <E::G1Affine as CurveAffine>::Compressed::empty();
|
||||
let mut g2_repr = <E::G2Affine as CurveAffine>::Compressed::empty();
|
||||
|
||||
reader.read_exact(g1_repr.as_mut())?;
|
||||
let a = g1_repr
|
||||
.into_affine()
|
||||
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))
|
||||
.and_then(|e| if e.is_zero() {
|
||||
Err(io::Error::new(io::ErrorKind::InvalidData, "point at infinity"))
|
||||
} else {
|
||||
Ok(e)
|
||||
})?;
|
||||
|
||||
reader.read_exact(g2_repr.as_mut())?;
|
||||
let b = g2_repr
|
||||
.into_affine()
|
||||
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))
|
||||
.and_then(|e| if e.is_zero() {
|
||||
Err(io::Error::new(io::ErrorKind::InvalidData, "point at infinity"))
|
||||
} else {
|
||||
Ok(e)
|
||||
})?;
|
||||
|
||||
reader.read_exact(g1_repr.as_mut())?;
|
||||
let c = g1_repr
|
||||
.into_affine()
|
||||
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))
|
||||
.and_then(|e| if e.is_zero() {
|
||||
Err(io::Error::new(io::ErrorKind::InvalidData, "point at infinity"))
|
||||
} else {
|
||||
Ok(e)
|
||||
})?;
|
||||
|
||||
Ok(Proof {
|
||||
a: a,
|
||||
b: b,
|
||||
c: c
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct VerifyingKey<E: Engine> {
|
||||
// alpha in g1 for verifying and for creating A/C elements of
|
||||
// proof. Never the point at infinity.
|
||||
pub alpha_g1: E::G1Affine,
|
||||
|
||||
// beta in g1 and g2 for verifying and for creating B/C elements
|
||||
// of proof. Never the point at infinity.
|
||||
pub beta_g1: E::G1Affine,
|
||||
pub beta_g2: E::G2Affine,
|
||||
|
||||
// gamma in g2 for verifying. Never the point at infinity.
|
||||
pub gamma_g2: E::G2Affine,
|
||||
|
||||
// delta in g1/g2 for verifying and proving, essentially the magic
|
||||
// trapdoor that forces the prover to evaluate the C element of the
|
||||
// proof with only components from the CRS. Never the point at
|
||||
// infinity.
|
||||
pub delta_g1: E::G1Affine,
|
||||
pub delta_g2: E::G2Affine,
|
||||
|
||||
// Elements of the form (beta * u_i(tau) + alpha v_i(tau) + w_i(tau)) / gamma
|
||||
// for all public inputs. Because all public inputs have a dummy constraint,
|
||||
// this is the same size as the number of inputs, and never contains points
|
||||
// at infinity.
|
||||
pub ic: Vec<E::G1Affine>
|
||||
}
|
||||
|
||||
impl<E: Engine> PartialEq for VerifyingKey<E> {
|
||||
fn eq(&self, other: &Self) -> bool {
|
||||
self.alpha_g1 == other.alpha_g1 &&
|
||||
self.beta_g1 == other.beta_g1 &&
|
||||
self.beta_g2 == other.beta_g2 &&
|
||||
self.gamma_g2 == other.gamma_g2 &&
|
||||
self.delta_g1 == other.delta_g1 &&
|
||||
self.delta_g2 == other.delta_g2 &&
|
||||
self.ic == other.ic
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: Engine> VerifyingKey<E> {
|
||||
pub fn write<W: Write>(
|
||||
&self,
|
||||
mut writer: W
|
||||
) -> io::Result<()>
|
||||
{
|
||||
writer.write_all(self.alpha_g1.into_uncompressed().as_ref())?;
|
||||
writer.write_all(self.beta_g1.into_uncompressed().as_ref())?;
|
||||
writer.write_all(self.beta_g2.into_uncompressed().as_ref())?;
|
||||
writer.write_all(self.gamma_g2.into_uncompressed().as_ref())?;
|
||||
writer.write_all(self.delta_g1.into_uncompressed().as_ref())?;
|
||||
writer.write_all(self.delta_g2.into_uncompressed().as_ref())?;
|
||||
writer.write_u32::<BigEndian>(self.ic.len() as u32)?;
|
||||
for ic in &self.ic {
|
||||
writer.write_all(ic.into_uncompressed().as_ref())?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn read<R: Read>(
|
||||
mut reader: R
|
||||
) -> io::Result<Self>
|
||||
{
|
||||
let mut g1_repr = <E::G1Affine as CurveAffine>::Uncompressed::empty();
|
||||
let mut g2_repr = <E::G2Affine as CurveAffine>::Uncompressed::empty();
|
||||
|
||||
reader.read_exact(g1_repr.as_mut())?;
|
||||
let alpha_g1 = g1_repr.into_affine().map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?;
|
||||
|
||||
reader.read_exact(g1_repr.as_mut())?;
|
||||
let beta_g1 = g1_repr.into_affine().map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?;
|
||||
|
||||
reader.read_exact(g2_repr.as_mut())?;
|
||||
let beta_g2 = g2_repr.into_affine().map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?;
|
||||
|
||||
reader.read_exact(g2_repr.as_mut())?;
|
||||
let gamma_g2 = g2_repr.into_affine().map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?;
|
||||
|
||||
reader.read_exact(g1_repr.as_mut())?;
|
||||
let delta_g1 = g1_repr.into_affine().map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?;
|
||||
|
||||
reader.read_exact(g2_repr.as_mut())?;
|
||||
let delta_g2 = g2_repr.into_affine().map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?;
|
||||
|
||||
let ic_len = reader.read_u32::<BigEndian>()? as usize;
|
||||
|
||||
let mut ic = vec![];
|
||||
|
||||
for _ in 0..ic_len {
|
||||
reader.read_exact(g1_repr.as_mut())?;
|
||||
let g1 = g1_repr
|
||||
.into_affine()
|
||||
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))
|
||||
.and_then(|e| if e.is_zero() {
|
||||
Err(io::Error::new(io::ErrorKind::InvalidData, "point at infinity"))
|
||||
} else {
|
||||
Ok(e)
|
||||
})?;
|
||||
|
||||
ic.push(g1);
|
||||
}
|
||||
|
||||
Ok(VerifyingKey {
|
||||
alpha_g1: alpha_g1,
|
||||
beta_g1: beta_g1,
|
||||
beta_g2: beta_g2,
|
||||
gamma_g2: gamma_g2,
|
||||
delta_g1: delta_g1,
|
||||
delta_g2: delta_g2,
|
||||
ic: ic
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct Parameters<E: Engine> {
|
||||
pub vk: VerifyingKey<E>,
|
||||
|
||||
// Elements of the form ((tau^i * t(tau)) / delta) for i between 0 and
|
||||
// m-2 inclusive. Never contains points at infinity.
|
||||
pub h: Arc<Vec<E::G1Affine>>,
|
||||
|
||||
// Elements of the form (beta * u_i(tau) + alpha v_i(tau) + w_i(tau)) / delta
|
||||
// for all auxillary inputs. Variables can never be unconstrained, so this
|
||||
// never contains points at infinity.
|
||||
pub l: Arc<Vec<E::G1Affine>>,
|
||||
|
||||
// QAP "A" polynomials evaluated at tau in the Lagrange basis. Never contains
|
||||
// points at infinity: polynomials that evaluate to zero are omitted from
|
||||
// the CRS and the prover can deterministically skip their evaluation.
|
||||
pub a: Arc<Vec<E::G1Affine>>,
|
||||
|
||||
// QAP "B" polynomials evaluated at tau in the Lagrange basis. Needed in
|
||||
// G1 and G2 for C/B queries, respectively. Never contains points at
|
||||
// infinity for the same reason as the "A" polynomials.
|
||||
pub b_g1: Arc<Vec<E::G1Affine>>,
|
||||
pub b_g2: Arc<Vec<E::G2Affine>>
|
||||
}
|
||||
|
||||
impl<E: Engine> PartialEq for Parameters<E> {
|
||||
fn eq(&self, other: &Self) -> bool {
|
||||
self.vk == other.vk &&
|
||||
self.h == other.h &&
|
||||
self.l == other.l &&
|
||||
self.a == other.a &&
|
||||
self.b_g1 == other.b_g1 &&
|
||||
self.b_g2 == other.b_g2
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: Engine> Parameters<E> {
|
||||
pub fn write<W: Write>(
|
||||
&self,
|
||||
mut writer: W
|
||||
) -> io::Result<()>
|
||||
{
|
||||
self.vk.write(&mut writer)?;
|
||||
|
||||
writer.write_u32::<BigEndian>(self.h.len() as u32)?;
|
||||
for g in &self.h[..] {
|
||||
writer.write_all(g.into_uncompressed().as_ref())?;
|
||||
}
|
||||
|
||||
writer.write_u32::<BigEndian>(self.l.len() as u32)?;
|
||||
for g in &self.l[..] {
|
||||
writer.write_all(g.into_uncompressed().as_ref())?;
|
||||
}
|
||||
|
||||
writer.write_u32::<BigEndian>(self.a.len() as u32)?;
|
||||
for g in &self.a[..] {
|
||||
writer.write_all(g.into_uncompressed().as_ref())?;
|
||||
}
|
||||
|
||||
writer.write_u32::<BigEndian>(self.b_g1.len() as u32)?;
|
||||
for g in &self.b_g1[..] {
|
||||
writer.write_all(g.into_uncompressed().as_ref())?;
|
||||
}
|
||||
|
||||
writer.write_u32::<BigEndian>(self.b_g2.len() as u32)?;
|
||||
for g in &self.b_g2[..] {
|
||||
writer.write_all(g.into_uncompressed().as_ref())?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn read<R: Read>(
|
||||
mut reader: R,
|
||||
checked: bool
|
||||
) -> io::Result<Self>
|
||||
{
|
||||
let read_g1 = |reader: &mut R| -> io::Result<E::G1Affine> {
|
||||
let mut repr = <E::G1Affine as CurveAffine>::Uncompressed::empty();
|
||||
reader.read_exact(repr.as_mut())?;
|
||||
|
||||
if checked {
|
||||
repr
|
||||
.into_affine()
|
||||
} else {
|
||||
repr
|
||||
.into_affine_unchecked()
|
||||
}
|
||||
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))
|
||||
.and_then(|e| if e.is_zero() {
|
||||
Err(io::Error::new(io::ErrorKind::InvalidData, "point at infinity"))
|
||||
} else {
|
||||
Ok(e)
|
||||
})
|
||||
};
|
||||
|
||||
let read_g2 = |reader: &mut R| -> io::Result<E::G2Affine> {
|
||||
let mut repr = <E::G2Affine as CurveAffine>::Uncompressed::empty();
|
||||
reader.read_exact(repr.as_mut())?;
|
||||
|
||||
if checked {
|
||||
repr
|
||||
.into_affine()
|
||||
} else {
|
||||
repr
|
||||
.into_affine_unchecked()
|
||||
}
|
||||
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))
|
||||
.and_then(|e| if e.is_zero() {
|
||||
Err(io::Error::new(io::ErrorKind::InvalidData, "point at infinity"))
|
||||
} else {
|
||||
Ok(e)
|
||||
})
|
||||
};
|
||||
|
||||
let vk = VerifyingKey::<E>::read(&mut reader)?;
|
||||
|
||||
let mut h = vec![];
|
||||
let mut l = vec![];
|
||||
let mut a = vec![];
|
||||
let mut b_g1 = vec![];
|
||||
let mut b_g2 = vec![];
|
||||
|
||||
{
|
||||
let len = reader.read_u32::<BigEndian>()? as usize;
|
||||
for _ in 0..len {
|
||||
h.push(read_g1(&mut reader)?);
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
let len = reader.read_u32::<BigEndian>()? as usize;
|
||||
for _ in 0..len {
|
||||
l.push(read_g1(&mut reader)?);
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
let len = reader.read_u32::<BigEndian>()? as usize;
|
||||
for _ in 0..len {
|
||||
a.push(read_g1(&mut reader)?);
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
let len = reader.read_u32::<BigEndian>()? as usize;
|
||||
for _ in 0..len {
|
||||
b_g1.push(read_g1(&mut reader)?);
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
let len = reader.read_u32::<BigEndian>()? as usize;
|
||||
for _ in 0..len {
|
||||
b_g2.push(read_g2(&mut reader)?);
|
||||
}
|
||||
}
|
||||
|
||||
Ok(Parameters {
|
||||
vk: vk,
|
||||
h: Arc::new(h),
|
||||
l: Arc::new(l),
|
||||
a: Arc::new(a),
|
||||
b_g1: Arc::new(b_g1),
|
||||
b_g2: Arc::new(b_g2)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
pub struct PreparedVerifyingKey<E: Engine> {
|
||||
/// Pairing result of alpha*beta
|
||||
alpha_g1_beta_g2: E::Fqk,
|
||||
/// -gamma in G2
|
||||
neg_gamma_g2: <E::G2Affine as CurveAffine>::Prepared,
|
||||
/// -delta in G2
|
||||
neg_delta_g2: <E::G2Affine as CurveAffine>::Prepared,
|
||||
/// Copy of IC from `VerifiyingKey`.
|
||||
ic: Vec<E::G1Affine>
|
||||
}
|
||||
|
||||
pub trait ParameterSource<E: Engine> {
|
||||
type G1Builder: SourceBuilder<E::G1Affine>;
|
||||
type G2Builder: SourceBuilder<E::G2Affine>;
|
||||
|
||||
fn get_vk(
|
||||
&mut self,
|
||||
num_ic: usize
|
||||
) -> Result<VerifyingKey<E>, SynthesisError>;
|
||||
fn get_h(
|
||||
&mut self,
|
||||
num_h: usize
|
||||
) -> Result<Self::G1Builder, SynthesisError>;
|
||||
fn get_l(
|
||||
&mut self,
|
||||
num_l: usize
|
||||
) -> Result<Self::G1Builder, SynthesisError>;
|
||||
fn get_a(
|
||||
&mut self,
|
||||
num_inputs: usize,
|
||||
num_aux: usize
|
||||
) -> Result<(Self::G1Builder, Self::G1Builder), SynthesisError>;
|
||||
fn get_b_g1(
|
||||
&mut self,
|
||||
num_inputs: usize,
|
||||
num_aux: usize
|
||||
) -> Result<(Self::G1Builder, Self::G1Builder), SynthesisError>;
|
||||
fn get_b_g2(
|
||||
&mut self,
|
||||
num_inputs: usize,
|
||||
num_aux: usize
|
||||
) -> Result<(Self::G2Builder, Self::G2Builder), SynthesisError>;
|
||||
}
|
||||
|
||||
impl<'a, E: Engine> ParameterSource<E> for &'a Parameters<E> {
|
||||
type G1Builder = (Arc<Vec<E::G1Affine>>, usize);
|
||||
type G2Builder = (Arc<Vec<E::G2Affine>>, usize);
|
||||
|
||||
fn get_vk(
|
||||
&mut self,
|
||||
_: usize
|
||||
) -> Result<VerifyingKey<E>, SynthesisError>
|
||||
{
|
||||
Ok(self.vk.clone())
|
||||
}
|
||||
|
||||
fn get_h(
|
||||
&mut self,
|
||||
_: usize
|
||||
) -> Result<Self::G1Builder, SynthesisError>
|
||||
{
|
||||
Ok((self.h.clone(), 0))
|
||||
}
|
||||
|
||||
fn get_l(
|
||||
&mut self,
|
||||
_: usize
|
||||
) -> Result<Self::G1Builder, SynthesisError>
|
||||
{
|
||||
Ok((self.l.clone(), 0))
|
||||
}
|
||||
|
||||
fn get_a(
|
||||
&mut self,
|
||||
num_inputs: usize,
|
||||
_: usize
|
||||
) -> Result<(Self::G1Builder, Self::G1Builder), SynthesisError>
|
||||
{
|
||||
Ok(((self.a.clone(), 0), (self.a.clone(), num_inputs)))
|
||||
}
|
||||
|
||||
fn get_b_g1(
|
||||
&mut self,
|
||||
num_inputs: usize,
|
||||
_: usize
|
||||
) -> Result<(Self::G1Builder, Self::G1Builder), SynthesisError>
|
||||
{
|
||||
Ok(((self.b_g1.clone(), 0), (self.b_g1.clone(), num_inputs)))
|
||||
}
|
||||
|
||||
fn get_b_g2(
|
||||
&mut self,
|
||||
num_inputs: usize,
|
||||
_: usize
|
||||
) -> Result<(Self::G2Builder, Self::G2Builder), SynthesisError>
|
||||
{
|
||||
Ok(((self.b_g2.clone(), 0), (self.b_g2.clone(), num_inputs)))
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test_with_bls12_381 {
|
||||
use super::*;
|
||||
use {Circuit, SynthesisError, ConstraintSystem};
|
||||
|
||||
use rand::{Rand, thread_rng};
|
||||
use pairing::{Field};
|
||||
use pairing::bls12_381::{Bls12, Fr};
|
||||
|
||||
#[test]
|
||||
fn serialization() {
|
||||
struct MySillyCircuit<E: Engine> {
|
||||
a: Option<E::Fr>,
|
||||
b: Option<E::Fr>
|
||||
}
|
||||
|
||||
impl<E: Engine> Circuit<E> for MySillyCircuit<E> {
|
||||
fn synthesize<CS: ConstraintSystem<E>>(
|
||||
self,
|
||||
cs: &mut CS
|
||||
) -> Result<(), SynthesisError>
|
||||
{
|
||||
let a = cs.alloc(|| "a", || self.a.ok_or(SynthesisError::AssignmentMissing))?;
|
||||
let b = cs.alloc(|| "b", || self.b.ok_or(SynthesisError::AssignmentMissing))?;
|
||||
let c = cs.alloc_input(|| "c", || {
|
||||
let mut a = self.a.ok_or(SynthesisError::AssignmentMissing)?;
|
||||
let b = self.b.ok_or(SynthesisError::AssignmentMissing)?;
|
||||
|
||||
a.mul_assign(&b);
|
||||
Ok(a)
|
||||
})?;
|
||||
|
||||
cs.enforce(
|
||||
|| "a*b=c",
|
||||
|lc| lc + a,
|
||||
|lc| lc + b,
|
||||
|lc| lc + c
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
let rng = &mut thread_rng();
|
||||
|
||||
let params = generate_random_parameters::<Bls12, _, _>(
|
||||
MySillyCircuit { a: None, b: None },
|
||||
rng
|
||||
).unwrap();
|
||||
|
||||
{
|
||||
let mut v = vec![];
|
||||
|
||||
params.write(&mut v).unwrap();
|
||||
assert_eq!(v.len(), 2136);
|
||||
|
||||
let de_params = Parameters::read(&v[..], true).unwrap();
|
||||
assert!(params == de_params);
|
||||
|
||||
let de_params = Parameters::read(&v[..], false).unwrap();
|
||||
assert!(params == de_params);
|
||||
}
|
||||
|
||||
let pvk = prepare_verifying_key::<Bls12>(¶ms.vk);
|
||||
|
||||
for _ in 0..100 {
|
||||
let a = Fr::rand(rng);
|
||||
let b = Fr::rand(rng);
|
||||
let mut c = a;
|
||||
c.mul_assign(&b);
|
||||
|
||||
let proof = create_random_proof(
|
||||
MySillyCircuit {
|
||||
a: Some(a),
|
||||
b: Some(b)
|
||||
},
|
||||
¶ms,
|
||||
rng
|
||||
).unwrap();
|
||||
|
||||
let mut v = vec![];
|
||||
proof.write(&mut v).unwrap();
|
||||
|
||||
assert_eq!(v.len(), 192);
|
||||
|
||||
let de_proof = Proof::read(&v[..]).unwrap();
|
||||
assert!(proof == de_proof);
|
||||
|
||||
assert!(verify_proof(&pvk, &proof, &[c]).unwrap());
|
||||
assert!(!verify_proof(&pvk, &proof, &[a]).unwrap());
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,334 @@
|
|||
use rand::Rng;
|
||||
|
||||
use std::sync::Arc;
|
||||
|
||||
use futures::Future;
|
||||
|
||||
use pairing::{
|
||||
Engine,
|
||||
PrimeField,
|
||||
Field,
|
||||
CurveProjective,
|
||||
CurveAffine
|
||||
};
|
||||
|
||||
use super::{
|
||||
ParameterSource,
|
||||
Proof
|
||||
};
|
||||
|
||||
use ::{
|
||||
SynthesisError,
|
||||
Circuit,
|
||||
ConstraintSystem,
|
||||
LinearCombination,
|
||||
Variable,
|
||||
Index
|
||||
};
|
||||
|
||||
use ::domain::{
|
||||
EvaluationDomain,
|
||||
Scalar
|
||||
};
|
||||
|
||||
use ::multiexp::{
|
||||
DensityTracker,
|
||||
FullDensity,
|
||||
multiexp
|
||||
};
|
||||
|
||||
use ::multicore::{
|
||||
Worker
|
||||
};
|
||||
|
||||
fn eval<E: Engine>(
|
||||
lc: &LinearCombination<E>,
|
||||
mut input_density: Option<&mut DensityTracker>,
|
||||
mut aux_density: Option<&mut DensityTracker>,
|
||||
input_assignment: &[E::Fr],
|
||||
aux_assignment: &[E::Fr]
|
||||
) -> E::Fr
|
||||
{
|
||||
let mut acc = E::Fr::zero();
|
||||
|
||||
for &(index, coeff) in lc.0.iter() {
|
||||
let mut tmp;
|
||||
|
||||
match index {
|
||||
Variable(Index::Input(i)) => {
|
||||
tmp = input_assignment[i];
|
||||
if let Some(ref mut v) = input_density {
|
||||
v.inc(i);
|
||||
}
|
||||
},
|
||||
Variable(Index::Aux(i)) => {
|
||||
tmp = aux_assignment[i];
|
||||
if let Some(ref mut v) = aux_density {
|
||||
v.inc(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if coeff == E::Fr::one() {
|
||||
acc.add_assign(&tmp);
|
||||
} else {
|
||||
tmp.mul_assign(&coeff);
|
||||
acc.add_assign(&tmp);
|
||||
}
|
||||
}
|
||||
|
||||
acc
|
||||
}
|
||||
|
||||
struct ProvingAssignment<E: Engine> {
|
||||
// Density of queries
|
||||
a_aux_density: DensityTracker,
|
||||
b_input_density: DensityTracker,
|
||||
b_aux_density: DensityTracker,
|
||||
|
||||
// Evaluations of A, B, C polynomials
|
||||
a: Vec<Scalar<E>>,
|
||||
b: Vec<Scalar<E>>,
|
||||
c: Vec<Scalar<E>>,
|
||||
|
||||
// Assignments of variables
|
||||
input_assignment: Vec<E::Fr>,
|
||||
aux_assignment: Vec<E::Fr>
|
||||
}
|
||||
|
||||
impl<E: Engine> ConstraintSystem<E> for ProvingAssignment<E> {
|
||||
type Root = Self;
|
||||
|
||||
fn alloc<F, A, AR>(
|
||||
&mut self,
|
||||
_: A,
|
||||
f: F
|
||||
) -> Result<Variable, SynthesisError>
|
||||
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
|
||||
{
|
||||
self.aux_assignment.push(f()?);
|
||||
self.a_aux_density.add_element();
|
||||
self.b_aux_density.add_element();
|
||||
|
||||
Ok(Variable(Index::Aux(self.aux_assignment.len() - 1)))
|
||||
}
|
||||
|
||||
fn alloc_input<F, A, AR>(
|
||||
&mut self,
|
||||
_: A,
|
||||
f: F
|
||||
) -> Result<Variable, SynthesisError>
|
||||
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
|
||||
{
|
||||
self.input_assignment.push(f()?);
|
||||
self.b_input_density.add_element();
|
||||
|
||||
Ok(Variable(Index::Input(self.input_assignment.len() - 1)))
|
||||
}
|
||||
|
||||
fn enforce<A, AR, LA, LB, LC>(
|
||||
&mut self,
|
||||
_: A,
|
||||
a: LA,
|
||||
b: LB,
|
||||
c: LC
|
||||
)
|
||||
where A: FnOnce() -> AR, AR: Into<String>,
|
||||
LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
|
||||
LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
|
||||
LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>
|
||||
{
|
||||
let a = a(LinearCombination::zero());
|
||||
let b = b(LinearCombination::zero());
|
||||
let c = c(LinearCombination::zero());
|
||||
|
||||
self.a.push(Scalar(eval(
|
||||
&a,
|
||||
// Inputs have full density in the A query
|
||||
// because there are constraints of the
|
||||
// form x * 0 = 0 for each input.
|
||||
None,
|
||||
Some(&mut self.a_aux_density),
|
||||
&self.input_assignment,
|
||||
&self.aux_assignment
|
||||
)));
|
||||
self.b.push(Scalar(eval(
|
||||
&b,
|
||||
Some(&mut self.b_input_density),
|
||||
Some(&mut self.b_aux_density),
|
||||
&self.input_assignment,
|
||||
&self.aux_assignment
|
||||
)));
|
||||
self.c.push(Scalar(eval(
|
||||
&c,
|
||||
// There is no C polynomial query,
|
||||
// though there is an (beta)A + (alpha)B + C
|
||||
// query for all aux variables.
|
||||
// However, that query has full density.
|
||||
None,
|
||||
None,
|
||||
&self.input_assignment,
|
||||
&self.aux_assignment
|
||||
)));
|
||||
}
|
||||
|
||||
fn push_namespace<NR, N>(&mut self, _: N)
|
||||
where NR: Into<String>, N: FnOnce() -> NR
|
||||
{
|
||||
// Do nothing; we don't care about namespaces in this context.
|
||||
}
|
||||
|
||||
fn pop_namespace(&mut self)
|
||||
{
|
||||
// Do nothing; we don't care about namespaces in this context.
|
||||
}
|
||||
|
||||
fn get_root(&mut self) -> &mut Self::Root {
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
pub fn create_random_proof<E, C, R, P: ParameterSource<E>>(
|
||||
circuit: C,
|
||||
params: P,
|
||||
rng: &mut R
|
||||
) -> Result<Proof<E>, SynthesisError>
|
||||
where E: Engine, C: Circuit<E>, R: Rng
|
||||
{
|
||||
let r = rng.gen();
|
||||
let s = rng.gen();
|
||||
|
||||
create_proof::<E, C, P>(circuit, params, r, s)
|
||||
}
|
||||
|
||||
pub fn create_proof<E, C, P: ParameterSource<E>>(
|
||||
circuit: C,
|
||||
mut params: P,
|
||||
r: E::Fr,
|
||||
s: E::Fr
|
||||
) -> Result<Proof<E>, SynthesisError>
|
||||
where E: Engine, C: Circuit<E>
|
||||
{
|
||||
let mut prover = ProvingAssignment {
|
||||
a_aux_density: DensityTracker::new(),
|
||||
b_input_density: DensityTracker::new(),
|
||||
b_aux_density: DensityTracker::new(),
|
||||
a: vec![],
|
||||
b: vec![],
|
||||
c: vec![],
|
||||
input_assignment: vec![],
|
||||
aux_assignment: vec![]
|
||||
};
|
||||
|
||||
prover.alloc_input(|| "", || Ok(E::Fr::one()))?;
|
||||
|
||||
circuit.synthesize(&mut prover)?;
|
||||
|
||||
for i in 0..prover.input_assignment.len() {
|
||||
prover.enforce(|| "",
|
||||
|lc| lc + Variable(Index::Input(i)),
|
||||
|lc| lc,
|
||||
|lc| lc,
|
||||
);
|
||||
}
|
||||
|
||||
let worker = Worker::new();
|
||||
|
||||
let vk = params.get_vk(prover.input_assignment.len())?;
|
||||
|
||||
let h = {
|
||||
let mut a = EvaluationDomain::from_coeffs(prover.a)?;
|
||||
let mut b = EvaluationDomain::from_coeffs(prover.b)?;
|
||||
let mut c = EvaluationDomain::from_coeffs(prover.c)?;
|
||||
a.ifft(&worker);
|
||||
a.coset_fft(&worker);
|
||||
b.ifft(&worker);
|
||||
b.coset_fft(&worker);
|
||||
c.ifft(&worker);
|
||||
c.coset_fft(&worker);
|
||||
|
||||
a.mul_assign(&worker, &b);
|
||||
drop(b);
|
||||
a.sub_assign(&worker, &c);
|
||||
drop(c);
|
||||
a.divide_by_z_on_coset(&worker);
|
||||
a.icoset_fft(&worker);
|
||||
let mut a = a.into_coeffs();
|
||||
let a_len = a.len() - 1;
|
||||
a.truncate(a_len);
|
||||
// TODO: parallelize if it's even helpful
|
||||
let a = Arc::new(a.into_iter().map(|s| s.0.into_repr()).collect::<Vec<_>>());
|
||||
|
||||
multiexp(&worker, params.get_h(a.len())?, FullDensity, a)
|
||||
};
|
||||
|
||||
// TODO: parallelize if it's even helpful
|
||||
let input_assignment = Arc::new(prover.input_assignment.into_iter().map(|s| s.into_repr()).collect::<Vec<_>>());
|
||||
let aux_assignment = Arc::new(prover.aux_assignment.into_iter().map(|s| s.into_repr()).collect::<Vec<_>>());
|
||||
|
||||
let l = multiexp(&worker, params.get_l(aux_assignment.len())?, FullDensity, aux_assignment.clone());
|
||||
|
||||
let a_aux_density_total = prover.a_aux_density.get_total_density();
|
||||
|
||||
let (a_inputs_source, a_aux_source) = params.get_a(input_assignment.len(), a_aux_density_total)?;
|
||||
|
||||
let a_inputs = multiexp(&worker, a_inputs_source, FullDensity, input_assignment.clone());
|
||||
let a_aux = multiexp(&worker, a_aux_source, Arc::new(prover.a_aux_density), aux_assignment.clone());
|
||||
|
||||
let b_input_density = Arc::new(prover.b_input_density);
|
||||
let b_input_density_total = b_input_density.get_total_density();
|
||||
let b_aux_density = Arc::new(prover.b_aux_density);
|
||||
let b_aux_density_total = b_aux_density.get_total_density();
|
||||
|
||||
let (b_g1_inputs_source, b_g1_aux_source) = params.get_b_g1(b_input_density_total, b_aux_density_total)?;
|
||||
|
||||
let b_g1_inputs = multiexp(&worker, b_g1_inputs_source, b_input_density.clone(), input_assignment.clone());
|
||||
let b_g1_aux = multiexp(&worker, b_g1_aux_source, b_aux_density.clone(), aux_assignment.clone());
|
||||
|
||||
let (b_g2_inputs_source, b_g2_aux_source) = params.get_b_g2(b_input_density_total, b_aux_density_total)?;
|
||||
|
||||
let b_g2_inputs = multiexp(&worker, b_g2_inputs_source, b_input_density, input_assignment);
|
||||
let b_g2_aux = multiexp(&worker, b_g2_aux_source, b_aux_density, aux_assignment);
|
||||
|
||||
if vk.delta_g1.is_zero() || vk.delta_g2.is_zero() {
|
||||
// If this element is zero, someone is trying to perform a
|
||||
// subversion-CRS attack.
|
||||
return Err(SynthesisError::UnexpectedIdentity);
|
||||
}
|
||||
|
||||
let mut g_a = vk.delta_g1.mul(r);
|
||||
g_a.add_assign_mixed(&vk.alpha_g1);
|
||||
let mut g_b = vk.delta_g2.mul(s);
|
||||
g_b.add_assign_mixed(&vk.beta_g2);
|
||||
let mut g_c;
|
||||
{
|
||||
let mut rs = r;
|
||||
rs.mul_assign(&s);
|
||||
|
||||
g_c = vk.delta_g1.mul(rs);
|
||||
g_c.add_assign(&vk.alpha_g1.mul(s));
|
||||
g_c.add_assign(&vk.beta_g1.mul(r));
|
||||
}
|
||||
let mut a_answer = a_inputs.wait()?;
|
||||
a_answer.add_assign(&a_aux.wait()?);
|
||||
g_a.add_assign(&a_answer);
|
||||
a_answer.mul_assign(s);
|
||||
g_c.add_assign(&a_answer);
|
||||
|
||||
let mut b1_answer = b_g1_inputs.wait()?;
|
||||
b1_answer.add_assign(&b_g1_aux.wait()?);
|
||||
let mut b2_answer = b_g2_inputs.wait()?;
|
||||
b2_answer.add_assign(&b_g2_aux.wait()?);
|
||||
|
||||
g_b.add_assign(&b2_answer);
|
||||
b1_answer.mul_assign(r);
|
||||
g_c.add_assign(&b1_answer);
|
||||
g_c.add_assign(&h.wait()?);
|
||||
g_c.add_assign(&l.wait()?);
|
||||
|
||||
Ok(Proof {
|
||||
a: g_a.into_affine(),
|
||||
b: g_b.into_affine(),
|
||||
c: g_c.into_affine()
|
||||
})
|
||||
}
|
|
@ -0,0 +1,451 @@
|
|||
use pairing::{
|
||||
Engine,
|
||||
PrimeField,
|
||||
PrimeFieldRepr,
|
||||
Field,
|
||||
SqrtField,
|
||||
LegendreSymbol,
|
||||
CurveProjective,
|
||||
CurveAffine,
|
||||
PrimeFieldDecodingError,
|
||||
GroupDecodingError,
|
||||
EncodedPoint
|
||||
};
|
||||
|
||||
use std::cmp::Ordering;
|
||||
use std::fmt;
|
||||
use rand::{Rand, Rng};
|
||||
use std::num::Wrapping;
|
||||
|
||||
const MODULUS_R: Wrapping<u32> = Wrapping(64513);
|
||||
|
||||
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
|
||||
pub struct Fr(Wrapping<u32>);
|
||||
|
||||
impl fmt::Display for Fr {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
|
||||
write!(f, "{}", (self.0).0)
|
||||
}
|
||||
}
|
||||
|
||||
impl Rand for Fr {
|
||||
fn rand<R: Rng>(rng: &mut R) -> Self {
|
||||
Fr(Wrapping(rng.gen()) % MODULUS_R)
|
||||
}
|
||||
}
|
||||
|
||||
impl Field for Fr {
|
||||
fn zero() -> Self {
|
||||
Fr(Wrapping(0))
|
||||
}
|
||||
|
||||
fn one() -> Self {
|
||||
Fr(Wrapping(1))
|
||||
}
|
||||
|
||||
fn is_zero(&self) -> bool {
|
||||
(self.0).0 == 0
|
||||
}
|
||||
|
||||
fn square(&mut self) {
|
||||
self.0 = (self.0 * self.0) % MODULUS_R;
|
||||
}
|
||||
|
||||
fn double(&mut self) {
|
||||
self.0 = (self.0 << 1) % MODULUS_R;
|
||||
}
|
||||
|
||||
fn negate(&mut self) {
|
||||
if !<Fr as Field>::is_zero(self) {
|
||||
self.0 = MODULUS_R - self.0;
|
||||
}
|
||||
}
|
||||
|
||||
fn add_assign(&mut self, other: &Self) {
|
||||
self.0 = (self.0 + other.0) % MODULUS_R;
|
||||
}
|
||||
|
||||
fn sub_assign(&mut self, other: &Self) {
|
||||
self.0 = ((MODULUS_R + self.0) - other.0) % MODULUS_R;
|
||||
}
|
||||
|
||||
fn mul_assign(&mut self, other: &Self) {
|
||||
self.0 = (self.0 * other.0) % MODULUS_R;
|
||||
}
|
||||
|
||||
fn inverse(&self) -> Option<Self> {
|
||||
if <Fr as Field>::is_zero(self) {
|
||||
None
|
||||
} else {
|
||||
Some(self.pow(&[(MODULUS_R.0 as u64) - 2]))
|
||||
}
|
||||
}
|
||||
|
||||
fn frobenius_map(&mut self, _: usize) {
|
||||
// identity
|
||||
}
|
||||
}
|
||||
|
||||
impl SqrtField for Fr {
|
||||
fn legendre(&self) -> LegendreSymbol {
|
||||
// s = self^((r - 1) // 2)
|
||||
let s = self.pow([32256]);
|
||||
if s == <Fr as Field>::zero() { LegendreSymbol::Zero }
|
||||
else if s == <Fr as Field>::one() { LegendreSymbol::QuadraticResidue }
|
||||
else { LegendreSymbol::QuadraticNonResidue }
|
||||
}
|
||||
|
||||
fn sqrt(&self) -> Option<Self> {
|
||||
// Tonelli-Shank's algorithm for q mod 16 = 1
|
||||
// https://eprint.iacr.org/2012/685.pdf (page 12, algorithm 5)
|
||||
match self.legendre() {
|
||||
LegendreSymbol::Zero => Some(*self),
|
||||
LegendreSymbol::QuadraticNonResidue => None,
|
||||
LegendreSymbol::QuadraticResidue => {
|
||||
let mut c = Fr::root_of_unity();
|
||||
// r = self^((t + 1) // 2)
|
||||
let mut r = self.pow([32]);
|
||||
// t = self^t
|
||||
let mut t = self.pow([63]);
|
||||
let mut m = Fr::S;
|
||||
|
||||
while t != <Fr as Field>::one() {
|
||||
let mut i = 1;
|
||||
{
|
||||
let mut t2i = t;
|
||||
t2i.square();
|
||||
loop {
|
||||
if t2i == <Fr as Field>::one() {
|
||||
break;
|
||||
}
|
||||
t2i.square();
|
||||
i += 1;
|
||||
}
|
||||
}
|
||||
|
||||
for _ in 0..(m - i - 1) {
|
||||
c.square();
|
||||
}
|
||||
<Fr as Field>::mul_assign(&mut r, &c);
|
||||
c.square();
|
||||
<Fr as Field>::mul_assign(&mut t, &c);
|
||||
m = i;
|
||||
}
|
||||
|
||||
Some(r)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
||||
pub struct FrRepr([u64; 1]);
|
||||
|
||||
impl Ord for FrRepr {
|
||||
fn cmp(&self, other: &FrRepr) -> Ordering {
|
||||
(self.0)[0].cmp(&(other.0)[0])
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialOrd for FrRepr {
|
||||
fn partial_cmp(&self, other: &FrRepr) -> Option<Ordering> {
|
||||
Some(self.cmp(other))
|
||||
}
|
||||
}
|
||||
|
||||
impl Rand for FrRepr {
|
||||
fn rand<R: Rng>(rng: &mut R) -> Self {
|
||||
FrRepr([rng.gen()])
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Display for FrRepr {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
|
||||
write!(f, "{}", (self.0)[0])
|
||||
}
|
||||
}
|
||||
|
||||
impl From<u64> for FrRepr {
|
||||
fn from(v: u64) -> FrRepr {
|
||||
FrRepr([v])
|
||||
}
|
||||
}
|
||||
|
||||
impl From<Fr> for FrRepr {
|
||||
fn from(v: Fr) -> FrRepr {
|
||||
FrRepr([(v.0).0 as u64])
|
||||
}
|
||||
}
|
||||
|
||||
impl AsMut<[u64]> for FrRepr {
|
||||
fn as_mut(&mut self) -> &mut [u64] {
|
||||
&mut self.0[..]
|
||||
}
|
||||
}
|
||||
|
||||
impl AsRef<[u64]> for FrRepr {
|
||||
fn as_ref(&self) -> &[u64] {
|
||||
&self.0[..]
|
||||
}
|
||||
}
|
||||
|
||||
impl Default for FrRepr {
|
||||
fn default() -> FrRepr {
|
||||
FrRepr::from(0u64)
|
||||
}
|
||||
}
|
||||
|
||||
impl PrimeFieldRepr for FrRepr {
|
||||
fn sub_noborrow(&mut self, other: &Self) {
|
||||
self.0[0] = self.0[0].wrapping_sub(other.0[0]);
|
||||
}
|
||||
fn add_nocarry(&mut self, other: &Self) {
|
||||
self.0[0] = self.0[0].wrapping_add(other.0[0]);
|
||||
}
|
||||
fn num_bits(&self) -> u32 {
|
||||
64 - self.0[0].leading_zeros()
|
||||
}
|
||||
fn is_zero(&self) -> bool {
|
||||
self.0[0] == 0
|
||||
}
|
||||
fn is_odd(&self) -> bool {
|
||||
!self.is_even()
|
||||
}
|
||||
fn is_even(&self) -> bool {
|
||||
self.0[0] % 2 == 0
|
||||
}
|
||||
fn div2(&mut self) {
|
||||
self.shr(1)
|
||||
}
|
||||
fn shr(&mut self, amt: u32) {
|
||||
self.0[0] >>= amt;
|
||||
}
|
||||
fn mul2(&mut self) {
|
||||
self.shl(1)
|
||||
}
|
||||
fn shl(&mut self, amt: u32) {
|
||||
self.0[0] <<= amt;
|
||||
}
|
||||
}
|
||||
|
||||
impl PrimeField for Fr {
|
||||
type Repr = FrRepr;
|
||||
|
||||
const NUM_BITS: u32 = 16;
|
||||
const CAPACITY: u32 = 15;
|
||||
const S: u32 = 10;
|
||||
|
||||
fn from_repr(repr: FrRepr) -> Result<Self, PrimeFieldDecodingError> {
|
||||
if repr.0[0] >= (MODULUS_R.0 as u64) {
|
||||
Err(PrimeFieldDecodingError::NotInField(format!("{}", repr)))
|
||||
} else {
|
||||
Ok(Fr(Wrapping(repr.0[0] as u32)))
|
||||
}
|
||||
}
|
||||
|
||||
fn into_repr(&self) -> FrRepr {
|
||||
FrRepr::from(*self)
|
||||
}
|
||||
|
||||
fn char() -> FrRepr {
|
||||
Fr(MODULUS_R).into()
|
||||
}
|
||||
|
||||
fn multiplicative_generator() -> Fr {
|
||||
Fr(Wrapping(5))
|
||||
}
|
||||
|
||||
fn root_of_unity() -> Fr {
|
||||
Fr(Wrapping(57751))
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct DummyEngine;
|
||||
|
||||
impl Engine for DummyEngine {
|
||||
type Fr = Fr;
|
||||
type G1 = Fr;
|
||||
type G1Affine = Fr;
|
||||
type G2 = Fr;
|
||||
type G2Affine = Fr;
|
||||
type Fq = Fr;
|
||||
type Fqe = Fr;
|
||||
|
||||
// TODO: This should be F_645131 or something. Doesn't matter for now.
|
||||
type Fqk = Fr;
|
||||
|
||||
fn miller_loop<'a, I>(i: I) -> Self::Fqk
|
||||
where I: IntoIterator<Item=&'a (
|
||||
&'a <Self::G1Affine as CurveAffine>::Prepared,
|
||||
&'a <Self::G2Affine as CurveAffine>::Prepared
|
||||
)>
|
||||
{
|
||||
let mut acc = <Fr as Field>::zero();
|
||||
|
||||
for &(a, b) in i {
|
||||
let mut tmp = *a;
|
||||
<Fr as Field>::mul_assign(&mut tmp, b);
|
||||
<Fr as Field>::add_assign(&mut acc, &tmp);
|
||||
}
|
||||
|
||||
acc
|
||||
}
|
||||
|
||||
/// Perform final exponentiation of the result of a miller loop.
|
||||
fn final_exponentiation(this: &Self::Fqk) -> Option<Self::Fqk>
|
||||
{
|
||||
Some(*this)
|
||||
}
|
||||
}
|
||||
|
||||
impl CurveProjective for Fr {
|
||||
type Affine = Fr;
|
||||
type Base = Fr;
|
||||
type Scalar = Fr;
|
||||
type Engine = DummyEngine;
|
||||
|
||||
fn zero() -> Self {
|
||||
<Fr as Field>::zero()
|
||||
}
|
||||
|
||||
fn one() -> Self {
|
||||
<Fr as Field>::one()
|
||||
}
|
||||
|
||||
fn is_zero(&self) -> bool {
|
||||
<Fr as Field>::is_zero(self)
|
||||
}
|
||||
|
||||
fn batch_normalization(_: &mut [Self]) {
|
||||
|
||||
}
|
||||
|
||||
fn is_normalized(&self) -> bool {
|
||||
true
|
||||
}
|
||||
|
||||
fn double(&mut self) {
|
||||
<Fr as Field>::double(self);
|
||||
}
|
||||
|
||||
fn add_assign(&mut self, other: &Self) {
|
||||
<Fr as Field>::add_assign(self, other);
|
||||
}
|
||||
|
||||
fn add_assign_mixed(&mut self, other: &Self) {
|
||||
<Fr as Field>::add_assign(self, other);
|
||||
}
|
||||
|
||||
fn negate(&mut self) {
|
||||
<Fr as Field>::negate(self);
|
||||
}
|
||||
|
||||
fn mul_assign<S: Into<<Self::Scalar as PrimeField>::Repr>>(&mut self, other: S)
|
||||
{
|
||||
let tmp = Fr::from_repr(other.into()).unwrap();
|
||||
|
||||
<Fr as Field>::mul_assign(self, &tmp);
|
||||
}
|
||||
|
||||
fn into_affine(&self) -> Fr {
|
||||
*self
|
||||
}
|
||||
|
||||
fn recommended_wnaf_for_scalar(_: <Self::Scalar as PrimeField>::Repr) -> usize {
|
||||
3
|
||||
}
|
||||
|
||||
fn recommended_wnaf_for_num_scalars(_: usize) -> usize {
|
||||
3
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct FakePoint;
|
||||
|
||||
impl AsMut<[u8]> for FakePoint {
|
||||
fn as_mut(&mut self) -> &mut [u8] {
|
||||
unimplemented!()
|
||||
}
|
||||
}
|
||||
|
||||
impl AsRef<[u8]> for FakePoint {
|
||||
fn as_ref(&self) -> &[u8] {
|
||||
unimplemented!()
|
||||
}
|
||||
}
|
||||
|
||||
impl EncodedPoint for FakePoint {
|
||||
type Affine = Fr;
|
||||
|
||||
fn empty() -> Self {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
fn size() -> usize {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
fn into_affine(&self) -> Result<Self::Affine, GroupDecodingError> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
fn into_affine_unchecked(&self) -> Result<Self::Affine, GroupDecodingError> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
fn from_affine(_: Self::Affine) -> Self {
|
||||
unimplemented!()
|
||||
}
|
||||
}
|
||||
|
||||
impl CurveAffine for Fr {
|
||||
type Pair = Fr;
|
||||
type PairingResult = Fr;
|
||||
type Compressed = FakePoint;
|
||||
type Uncompressed = FakePoint;
|
||||
type Prepared = Fr;
|
||||
type Projective = Fr;
|
||||
type Base = Fr;
|
||||
type Scalar = Fr;
|
||||
type Engine = DummyEngine;
|
||||
|
||||
fn zero() -> Self {
|
||||
<Fr as Field>::zero()
|
||||
}
|
||||
|
||||
fn one() -> Self {
|
||||
<Fr as Field>::one()
|
||||
}
|
||||
|
||||
fn is_zero(&self) -> bool {
|
||||
<Fr as Field>::is_zero(self)
|
||||
}
|
||||
|
||||
fn negate(&mut self) {
|
||||
<Fr as Field>::negate(self);
|
||||
}
|
||||
|
||||
fn mul<S: Into<<Self::Scalar as PrimeField>::Repr>>(&self, other: S) -> Self::Projective
|
||||
{
|
||||
let mut res = *self;
|
||||
let tmp = Fr::from_repr(other.into()).unwrap();
|
||||
|
||||
<Fr as Field>::mul_assign(&mut res, &tmp);
|
||||
|
||||
res
|
||||
}
|
||||
|
||||
fn prepare(&self) -> Self::Prepared {
|
||||
*self
|
||||
}
|
||||
|
||||
fn pairing_with(&self, other: &Self::Pair) -> Self::PairingResult {
|
||||
self.mul(*other)
|
||||
}
|
||||
|
||||
fn into_projective(&self) -> Self::Projective {
|
||||
*self
|
||||
}
|
||||
}
|
|
@ -0,0 +1,400 @@
|
|||
use pairing::{
|
||||
Engine,
|
||||
Field,
|
||||
PrimeField
|
||||
};
|
||||
|
||||
mod dummy_engine;
|
||||
use self::dummy_engine::*;
|
||||
|
||||
use std::marker::PhantomData;
|
||||
|
||||
use ::{
|
||||
Circuit,
|
||||
ConstraintSystem,
|
||||
SynthesisError
|
||||
};
|
||||
|
||||
use super::{
|
||||
generate_parameters,
|
||||
prepare_verifying_key,
|
||||
create_proof,
|
||||
verify_proof
|
||||
};
|
||||
|
||||
struct XORDemo<E: Engine> {
|
||||
a: Option<bool>,
|
||||
b: Option<bool>,
|
||||
_marker: PhantomData<E>
|
||||
}
|
||||
|
||||
impl<E: Engine> Circuit<E> for XORDemo<E> {
|
||||
fn synthesize<CS: ConstraintSystem<E>>(
|
||||
self,
|
||||
cs: &mut CS
|
||||
) -> Result<(), SynthesisError>
|
||||
{
|
||||
let a_var = cs.alloc(|| "a", || {
|
||||
if self.a.is_some() {
|
||||
if self.a.unwrap() {
|
||||
Ok(E::Fr::one())
|
||||
} else {
|
||||
Ok(E::Fr::zero())
|
||||
}
|
||||
} else {
|
||||
Err(SynthesisError::AssignmentMissing)
|
||||
}
|
||||
})?;
|
||||
|
||||
cs.enforce(
|
||||
|| "a_boolean_constraint",
|
||||
|lc| lc + CS::one() - a_var,
|
||||
|lc| lc + a_var,
|
||||
|lc| lc
|
||||
);
|
||||
|
||||
let b_var = cs.alloc(|| "b", || {
|
||||
if self.b.is_some() {
|
||||
if self.b.unwrap() {
|
||||
Ok(E::Fr::one())
|
||||
} else {
|
||||
Ok(E::Fr::zero())
|
||||
}
|
||||
} else {
|
||||
Err(SynthesisError::AssignmentMissing)
|
||||
}
|
||||
})?;
|
||||
|
||||
cs.enforce(
|
||||
|| "b_boolean_constraint",
|
||||
|lc| lc + CS::one() - b_var,
|
||||
|lc| lc + b_var,
|
||||
|lc| lc
|
||||
);
|
||||
|
||||
let c_var = cs.alloc_input(|| "c", || {
|
||||
if self.a.is_some() && self.b.is_some() {
|
||||
if self.a.unwrap() ^ self.b.unwrap() {
|
||||
Ok(E::Fr::one())
|
||||
} else {
|
||||
Ok(E::Fr::zero())
|
||||
}
|
||||
} else {
|
||||
Err(SynthesisError::AssignmentMissing)
|
||||
}
|
||||
})?;
|
||||
|
||||
cs.enforce(
|
||||
|| "c_xor_constraint",
|
||||
|lc| lc + a_var + a_var,
|
||||
|lc| lc + b_var,
|
||||
|lc| lc + a_var + b_var - c_var
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_xordemo() {
|
||||
let g1 = Fr::one();
|
||||
let g2 = Fr::one();
|
||||
let alpha = Fr::from_str("48577").unwrap();
|
||||
let beta = Fr::from_str("22580").unwrap();
|
||||
let gamma = Fr::from_str("53332").unwrap();
|
||||
let delta = Fr::from_str("5481").unwrap();
|
||||
let tau = Fr::from_str("3673").unwrap();
|
||||
|
||||
let params = {
|
||||
let c = XORDemo::<DummyEngine> {
|
||||
a: None,
|
||||
b: None,
|
||||
_marker: PhantomData
|
||||
};
|
||||
|
||||
generate_parameters(
|
||||
c,
|
||||
g1,
|
||||
g2,
|
||||
alpha,
|
||||
beta,
|
||||
gamma,
|
||||
delta,
|
||||
tau
|
||||
).unwrap()
|
||||
};
|
||||
|
||||
// This will synthesize the constraint system:
|
||||
//
|
||||
// public inputs: a_0 = 1, a_1 = c
|
||||
// aux inputs: a_2 = a, a_3 = b
|
||||
// constraints:
|
||||
// (a_0 - a_2) * (a_2) = 0
|
||||
// (a_0 - a_3) * (a_3) = 0
|
||||
// (a_2 + a_2) * (a_3) = (a_2 + a_3 - a_1)
|
||||
// (a_0) * 0 = 0
|
||||
// (a_1) * 0 = 0
|
||||
|
||||
// The evaluation domain is 8. The H query should
|
||||
// have 7 elements (it's a quotient polynomial)
|
||||
assert_eq!(7, params.h.len());
|
||||
|
||||
let mut root_of_unity = Fr::root_of_unity();
|
||||
|
||||
// We expect this to be a 2^10 root of unity
|
||||
assert_eq!(Fr::one(), root_of_unity.pow(&[1 << 10]));
|
||||
|
||||
// Let's turn it into a 2^3 root of unity.
|
||||
root_of_unity = root_of_unity.pow(&[1 << 7]);
|
||||
assert_eq!(Fr::one(), root_of_unity.pow(&[1 << 3]));
|
||||
assert_eq!(Fr::from_str("20201").unwrap(), root_of_unity);
|
||||
|
||||
// Let's compute all the points in our evaluation domain.
|
||||
let mut points = Vec::with_capacity(8);
|
||||
for i in 0..8 {
|
||||
points.push(root_of_unity.pow(&[i]));
|
||||
}
|
||||
|
||||
// Let's compute t(tau) = (tau - p_0)(tau - p_1)...
|
||||
// = tau^8 - 1
|
||||
let mut t_at_tau = tau.pow(&[8]);
|
||||
t_at_tau.sub_assign(&Fr::one());
|
||||
{
|
||||
let mut tmp = Fr::one();
|
||||
for p in &points {
|
||||
let mut term = tau;
|
||||
term.sub_assign(p);
|
||||
tmp.mul_assign(&term);
|
||||
}
|
||||
assert_eq!(tmp, t_at_tau);
|
||||
}
|
||||
|
||||
// We expect our H query to be 7 elements of the form...
|
||||
// {tau^i t(tau) / delta}
|
||||
let delta_inverse = delta.inverse().unwrap();
|
||||
let gamma_inverse = gamma.inverse().unwrap();
|
||||
{
|
||||
let mut coeff = delta_inverse;
|
||||
coeff.mul_assign(&t_at_tau);
|
||||
|
||||
let mut cur = Fr::one();
|
||||
for h in params.h.iter() {
|
||||
let mut tmp = cur;
|
||||
tmp.mul_assign(&coeff);
|
||||
|
||||
assert_eq!(*h, tmp);
|
||||
|
||||
cur.mul_assign(&tau);
|
||||
}
|
||||
}
|
||||
|
||||
// The density of the IC query is 2 (2 inputs)
|
||||
assert_eq!(2, params.vk.ic.len());
|
||||
|
||||
// The density of the L query is 2 (2 aux variables)
|
||||
assert_eq!(2, params.l.len());
|
||||
|
||||
// The density of the A query is 4 (each variable is in at least one A term)
|
||||
assert_eq!(4, params.a.len());
|
||||
|
||||
// The density of the B query is 2 (two variables are in at least one B term)
|
||||
assert_eq!(2, params.b_g1.len());
|
||||
assert_eq!(2, params.b_g2.len());
|
||||
|
||||
/*
|
||||
Lagrange interpolation polynomials in our evaluation domain:
|
||||
|
||||
,-------------------------------. ,-------------------------------. ,-------------------------------.
|
||||
| A TERM | | B TERM | | C TERM |
|
||||
`-------------------------------. `-------------------------------' `-------------------------------'
|
||||
| a_0 | a_1 | a_2 | a_3 | | a_0 | a_1 | a_2 | a_3 | | a_0 | a_1 | a_2 | a_3 |
|
||||
| 1 | 0 | 64512 | 0 | | 0 | 0 | 1 | 0 | | 0 | 0 | 0 | 0 |
|
||||
| 1 | 0 | 0 | 64512 | | 0 | 0 | 0 | 1 | | 0 | 0 | 0 | 0 |
|
||||
| 0 | 0 | 2 | 0 | | 0 | 0 | 0 | 1 | | 0 | 64512 | 1 | 1 |
|
||||
| 1 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 |
|
||||
| 0 | 1 | 0 | 0 | | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 |
|
||||
`-------'-------'-------'-------' `-------'-------'-------'-------' `-------'-------'-------'-------'
|
||||
|
||||
Example for u_0:
|
||||
|
||||
sage: r = 64513
|
||||
sage: Fr = GF(r)
|
||||
sage: omega = (Fr(5)^63)^(2^7)
|
||||
sage: tau = Fr(3673)
|
||||
sage: R.<x> = PolynomialRing(Fr, 'x')
|
||||
sage: def eval(tau, c0, c1, c2, c3, c4):
|
||||
....: p = R.lagrange_polynomial([(omega^0, c0), (omega^1, c1), (omega^2, c2), (omega^3, c3), (omega^4, c4), (omega^5, 0), (omega^6, 0), (omega^7, 0)])
|
||||
....: return p.substitute(tau)
|
||||
sage: eval(tau, 1, 1, 0, 1, 0)
|
||||
59158
|
||||
*/
|
||||
|
||||
let u_i = [59158, 48317, 21767, 10402].iter().map(|e| {
|
||||
Fr::from_str(&format!("{}", e)).unwrap()
|
||||
}).collect::<Vec<Fr>>();
|
||||
let v_i = [0, 0, 60619, 30791].iter().map(|e| {
|
||||
Fr::from_str(&format!("{}", e)).unwrap()
|
||||
}).collect::<Vec<Fr>>();
|
||||
let w_i = [0, 23320, 41193, 41193].iter().map(|e| {
|
||||
Fr::from_str(&format!("{}", e)).unwrap()
|
||||
}).collect::<Vec<Fr>>();
|
||||
|
||||
for (u, a) in u_i.iter()
|
||||
.zip(¶ms.a[..])
|
||||
{
|
||||
assert_eq!(u, a);
|
||||
}
|
||||
|
||||
for (v, b) in v_i.iter()
|
||||
.filter(|&&e| e != Fr::zero())
|
||||
.zip(¶ms.b_g1[..])
|
||||
{
|
||||
assert_eq!(v, b);
|
||||
}
|
||||
|
||||
for (v, b) in v_i.iter()
|
||||
.filter(|&&e| e != Fr::zero())
|
||||
.zip(¶ms.b_g2[..])
|
||||
{
|
||||
assert_eq!(v, b);
|
||||
}
|
||||
|
||||
for i in 0..4 {
|
||||
let mut tmp1 = beta;
|
||||
tmp1.mul_assign(&u_i[i]);
|
||||
|
||||
let mut tmp2 = alpha;
|
||||
tmp2.mul_assign(&v_i[i]);
|
||||
|
||||
tmp1.add_assign(&tmp2);
|
||||
tmp1.add_assign(&w_i[i]);
|
||||
|
||||
if i < 2 {
|
||||
// Check the correctness of the IC query elements
|
||||
tmp1.mul_assign(&gamma_inverse);
|
||||
|
||||
assert_eq!(tmp1, params.vk.ic[i]);
|
||||
} else {
|
||||
// Check the correctness of the L query elements
|
||||
tmp1.mul_assign(&delta_inverse);
|
||||
|
||||
assert_eq!(tmp1, params.l[i - 2]);
|
||||
}
|
||||
}
|
||||
|
||||
// Check consistency of the other elements
|
||||
assert_eq!(alpha, params.vk.alpha_g1);
|
||||
assert_eq!(beta, params.vk.beta_g1);
|
||||
assert_eq!(beta, params.vk.beta_g2);
|
||||
assert_eq!(gamma, params.vk.gamma_g2);
|
||||
assert_eq!(delta, params.vk.delta_g1);
|
||||
assert_eq!(delta, params.vk.delta_g2);
|
||||
|
||||
let pvk = prepare_verifying_key(¶ms.vk);
|
||||
|
||||
let r = Fr::from_str("27134").unwrap();
|
||||
let s = Fr::from_str("17146").unwrap();
|
||||
|
||||
let proof = {
|
||||
let c = XORDemo {
|
||||
a: Some(true),
|
||||
b: Some(false),
|
||||
_marker: PhantomData
|
||||
};
|
||||
|
||||
create_proof(
|
||||
c,
|
||||
¶ms,
|
||||
r,
|
||||
s
|
||||
).unwrap()
|
||||
};
|
||||
|
||||
// A(x) =
|
||||
// a_0 * (44865*x^7 + 56449*x^6 + 44865*x^5 + 8064*x^4 + 3520*x^3 + 56449*x^2 + 3520*x + 40321) +
|
||||
// a_1 * (8064*x^7 + 56449*x^6 + 8064*x^5 + 56449*x^4 + 8064*x^3 + 56449*x^2 + 8064*x + 56449) +
|
||||
// a_2 * (16983*x^7 + 24192*x^6 + 63658*x^5 + 56449*x^4 + 16983*x^3 + 24192*x^2 + 63658*x + 56449) +
|
||||
// a_3 * (5539*x^7 + 27797*x^6 + 6045*x^5 + 56449*x^4 + 58974*x^3 + 36716*x^2 + 58468*x + 8064) +
|
||||
{
|
||||
// proof A = alpha + A(tau) + delta * r
|
||||
let mut expected_a = delta;
|
||||
expected_a.mul_assign(&r);
|
||||
expected_a.add_assign(&alpha);
|
||||
expected_a.add_assign(&u_i[0]); // a_0 = 1
|
||||
expected_a.add_assign(&u_i[1]); // a_1 = 1
|
||||
expected_a.add_assign(&u_i[2]); // a_2 = 1
|
||||
// a_3 = 0
|
||||
assert_eq!(proof.a, expected_a);
|
||||
}
|
||||
|
||||
// B(x) =
|
||||
// a_0 * (0) +
|
||||
// a_1 * (0) +
|
||||
// a_2 * (56449*x^7 + 56449*x^6 + 56449*x^5 + 56449*x^4 + 56449*x^3 + 56449*x^2 + 56449*x + 56449) +
|
||||
// a_3 * (31177*x^7 + 44780*x^6 + 21752*x^5 + 42255*x^3 + 35861*x^2 + 33842*x + 48385)
|
||||
{
|
||||
// proof B = beta + B(tau) + delta * s
|
||||
let mut expected_b = delta;
|
||||
expected_b.mul_assign(&s);
|
||||
expected_b.add_assign(&beta);
|
||||
expected_b.add_assign(&v_i[0]); // a_0 = 1
|
||||
expected_b.add_assign(&v_i[1]); // a_1 = 1
|
||||
expected_b.add_assign(&v_i[2]); // a_2 = 1
|
||||
// a_3 = 0
|
||||
assert_eq!(proof.b, expected_b);
|
||||
}
|
||||
|
||||
// C(x) =
|
||||
// a_0 * (0) +
|
||||
// a_1 * (27797*x^7 + 56449*x^6 + 36716*x^5 + 8064*x^4 + 27797*x^3 + 56449*x^2 + 36716*x + 8064) +
|
||||
// a_2 * (36716*x^7 + 8064*x^6 + 27797*x^5 + 56449*x^4 + 36716*x^3 + 8064*x^2 + 27797*x + 56449) +
|
||||
// a_3 * (36716*x^7 + 8064*x^6 + 27797*x^5 + 56449*x^4 + 36716*x^3 + 8064*x^2 + 27797*x + 56449)
|
||||
//
|
||||
// If A * B = C at each point in the domain, then the following polynomial...
|
||||
// P(x) = A(x) * B(x) - C(x)
|
||||
// = 49752*x^14 + 13914*x^13 + 29243*x^12 + 27227*x^11 + 62362*x^10 + 35703*x^9 + 4032*x^8 + 14761*x^6 + 50599*x^5 + 35270*x^4 + 37286*x^3 + 2151*x^2 + 28810*x + 60481
|
||||
//
|
||||
// ... should be divisible by t(x), producing the quotient polynomial:
|
||||
// h(x) = P(x) / t(x)
|
||||
// = 49752*x^6 + 13914*x^5 + 29243*x^4 + 27227*x^3 + 62362*x^2 + 35703*x + 4032
|
||||
{
|
||||
let mut expected_c = Fr::zero();
|
||||
|
||||
// A * s
|
||||
let mut tmp = proof.a;
|
||||
tmp.mul_assign(&s);
|
||||
expected_c.add_assign(&tmp);
|
||||
|
||||
// B * r
|
||||
let mut tmp = proof.b;
|
||||
tmp.mul_assign(&r);
|
||||
expected_c.add_assign(&tmp);
|
||||
|
||||
// delta * r * s
|
||||
let mut tmp = delta;
|
||||
tmp.mul_assign(&r);
|
||||
tmp.mul_assign(&s);
|
||||
expected_c.sub_assign(&tmp);
|
||||
|
||||
// L query answer
|
||||
// a_2 = 1, a_3 = 0
|
||||
expected_c.add_assign(¶ms.l[0]);
|
||||
|
||||
// H query answer
|
||||
for (i, coeff) in [5040, 11763, 10755, 63633, 128, 9747, 8739].iter().enumerate() {
|
||||
let coeff = Fr::from_str(&format!("{}", coeff)).unwrap();
|
||||
|
||||
let mut tmp = params.h[i];
|
||||
tmp.mul_assign(&coeff);
|
||||
expected_c.add_assign(&tmp);
|
||||
}
|
||||
|
||||
assert_eq!(expected_c, proof.c);
|
||||
}
|
||||
|
||||
assert!(verify_proof(
|
||||
&pvk,
|
||||
&proof,
|
||||
&[Fr::one()]
|
||||
).unwrap());
|
||||
}
|
|
@ -0,0 +1,66 @@
|
|||
use pairing::{
|
||||
Engine,
|
||||
CurveProjective,
|
||||
CurveAffine,
|
||||
PrimeField
|
||||
};
|
||||
|
||||
use super::{
|
||||
Proof,
|
||||
VerifyingKey,
|
||||
PreparedVerifyingKey
|
||||
};
|
||||
|
||||
use ::{
|
||||
SynthesisError
|
||||
};
|
||||
|
||||
pub fn prepare_verifying_key<E: Engine>(
|
||||
vk: &VerifyingKey<E>
|
||||
) -> PreparedVerifyingKey<E>
|
||||
{
|
||||
let mut gamma = vk.gamma_g2;
|
||||
gamma.negate();
|
||||
let mut delta = vk.delta_g2;
|
||||
delta.negate();
|
||||
|
||||
PreparedVerifyingKey {
|
||||
alpha_g1_beta_g2: E::pairing(vk.alpha_g1, vk.beta_g2),
|
||||
neg_gamma_g2: gamma.prepare(),
|
||||
neg_delta_g2: delta.prepare(),
|
||||
ic: vk.ic.clone()
|
||||
}
|
||||
}
|
||||
|
||||
pub fn verify_proof<'a, E: Engine>(
|
||||
pvk: &'a PreparedVerifyingKey<E>,
|
||||
proof: &Proof<E>,
|
||||
public_inputs: &[E::Fr]
|
||||
) -> Result<bool, SynthesisError>
|
||||
{
|
||||
if (public_inputs.len() + 1) != pvk.ic.len() {
|
||||
return Err(SynthesisError::MalformedVerifyingKey);
|
||||
}
|
||||
|
||||
let mut acc = pvk.ic[0].into_projective();
|
||||
|
||||
for (i, b) in public_inputs.iter().zip(pvk.ic.iter().skip(1)) {
|
||||
acc.add_assign(&b.mul(i.into_repr()));
|
||||
}
|
||||
|
||||
// The original verification equation is:
|
||||
// A * B = alpha * beta + inputs * gamma + C * delta
|
||||
// ... however, we rearrange it so that it is:
|
||||
// A * B - inputs * gamma - C * delta = alpha * beta
|
||||
// or equivalently:
|
||||
// A * B + inputs * (-gamma) + C * (-delta) = alpha * beta
|
||||
// which allows us to do a single final exponentiation.
|
||||
|
||||
Ok(E::final_exponentiation(
|
||||
&E::miller_loop([
|
||||
(&proof.a.prepare(), &proof.b.prepare()),
|
||||
(&acc.into_affine().prepare(), &pvk.neg_gamma_g2),
|
||||
(&proof.c.prepare(), &pvk.neg_delta_g2)
|
||||
].into_iter())
|
||||
).unwrap() == pvk.alpha_g1_beta_g2)
|
||||
}
|
|
@ -0,0 +1,424 @@
|
|||
extern crate pairing;
|
||||
extern crate rand;
|
||||
extern crate num_cpus;
|
||||
extern crate futures;
|
||||
extern crate futures_cpupool;
|
||||
extern crate bit_vec;
|
||||
extern crate crossbeam;
|
||||
extern crate byteorder;
|
||||
|
||||
pub mod multicore;
|
||||
mod multiexp;
|
||||
pub mod domain;
|
||||
pub mod groth16;
|
||||
|
||||
use pairing::{Engine, Field};
|
||||
|
||||
use std::ops::{Add, Sub};
|
||||
use std::fmt;
|
||||
use std::error::Error;
|
||||
use std::io;
|
||||
use std::marker::PhantomData;
|
||||
|
||||
/// Computations are expressed in terms of arithmetic circuits, in particular
|
||||
/// rank-1 quadratic constraint systems. The `Circuit` trait represents a
|
||||
/// circuit that can be synthesized. The `synthesize` method is called during
|
||||
/// CRS generation and during proving.
|
||||
pub trait Circuit<E: Engine> {
|
||||
/// Synthesize the circuit into a rank-1 quadratic constraint system
|
||||
fn synthesize<CS: ConstraintSystem<E>>(
|
||||
self,
|
||||
cs: &mut CS
|
||||
) -> Result<(), SynthesisError>;
|
||||
}
|
||||
|
||||
/// Represents a variable in our constraint system.
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub struct Variable(Index);
|
||||
|
||||
impl Variable {
|
||||
/// This constructs a variable with an arbitrary index.
|
||||
/// Circuit implementations are not recommended to use this.
|
||||
pub fn new_unchecked(idx: Index) -> Variable {
|
||||
Variable(idx)
|
||||
}
|
||||
|
||||
/// This returns the index underlying the variable.
|
||||
/// Circuit implementations are not recommended to use this.
|
||||
pub fn get_unchecked(&self) -> Index {
|
||||
self.0
|
||||
}
|
||||
}
|
||||
|
||||
/// Represents the index of either an input variable or
|
||||
/// auxillary variable.
|
||||
#[derive(Copy, Clone, PartialEq, Debug)]
|
||||
pub enum Index {
|
||||
Input(usize),
|
||||
Aux(usize)
|
||||
}
|
||||
|
||||
/// This represents a linear combination of some variables, with coefficients
|
||||
/// in the scalar field of a pairing-friendly elliptic curve group.
|
||||
#[derive(Clone)]
|
||||
pub struct LinearCombination<E: Engine>(Vec<(Variable, E::Fr)>);
|
||||
|
||||
impl<E: Engine> AsRef<[(Variable, E::Fr)]> for LinearCombination<E> {
|
||||
fn as_ref(&self) -> &[(Variable, E::Fr)] {
|
||||
&self.0
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: Engine> LinearCombination<E> {
|
||||
pub fn zero() -> LinearCombination<E> {
|
||||
LinearCombination(vec![])
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: Engine> Add<(E::Fr, Variable)> for LinearCombination<E> {
|
||||
type Output = LinearCombination<E>;
|
||||
|
||||
fn add(mut self, (coeff, var): (E::Fr, Variable)) -> LinearCombination<E> {
|
||||
self.0.push((var, coeff));
|
||||
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: Engine> Sub<(E::Fr, Variable)> for LinearCombination<E> {
|
||||
type Output = LinearCombination<E>;
|
||||
|
||||
fn sub(self, (mut coeff, var): (E::Fr, Variable)) -> LinearCombination<E> {
|
||||
coeff.negate();
|
||||
|
||||
self + (coeff, var)
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: Engine> Add<Variable> for LinearCombination<E> {
|
||||
type Output = LinearCombination<E>;
|
||||
|
||||
fn add(self, other: Variable) -> LinearCombination<E> {
|
||||
self + (E::Fr::one(), other)
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: Engine> Sub<Variable> for LinearCombination<E> {
|
||||
type Output = LinearCombination<E>;
|
||||
|
||||
fn sub(self, other: Variable) -> LinearCombination<E> {
|
||||
self - (E::Fr::one(), other)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, E: Engine> Add<&'a LinearCombination<E>> for LinearCombination<E> {
|
||||
type Output = LinearCombination<E>;
|
||||
|
||||
fn add(mut self, other: &'a LinearCombination<E>) -> LinearCombination<E> {
|
||||
for s in &other.0 {
|
||||
self = self + (s.1, s.0);
|
||||
}
|
||||
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, E: Engine> Sub<&'a LinearCombination<E>> for LinearCombination<E> {
|
||||
type Output = LinearCombination<E>;
|
||||
|
||||
fn sub(mut self, other: &'a LinearCombination<E>) -> LinearCombination<E> {
|
||||
for s in &other.0 {
|
||||
self = self - (s.1, s.0);
|
||||
}
|
||||
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, E: Engine> Add<(E::Fr, &'a LinearCombination<E>)> for LinearCombination<E> {
|
||||
type Output = LinearCombination<E>;
|
||||
|
||||
fn add(mut self, (coeff, other): (E::Fr, &'a LinearCombination<E>)) -> LinearCombination<E> {
|
||||
for s in &other.0 {
|
||||
let mut tmp = s.1;
|
||||
tmp.mul_assign(&coeff);
|
||||
self = self + (tmp, s.0);
|
||||
}
|
||||
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, E: Engine> Sub<(E::Fr, &'a LinearCombination<E>)> for LinearCombination<E> {
|
||||
type Output = LinearCombination<E>;
|
||||
|
||||
fn sub(mut self, (coeff, other): (E::Fr, &'a LinearCombination<E>)) -> LinearCombination<E> {
|
||||
for s in &other.0 {
|
||||
let mut tmp = s.1;
|
||||
tmp.mul_assign(&coeff);
|
||||
self = self - (tmp, s.0);
|
||||
}
|
||||
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
/// This is an error that could occur during circuit synthesis contexts,
|
||||
/// such as CRS generation, proving or verification.
|
||||
#[derive(Debug)]
|
||||
pub enum SynthesisError {
|
||||
/// During synthesis, we lacked knowledge of a variable assignment.
|
||||
AssignmentMissing,
|
||||
/// During synthesis, we divided by zero.
|
||||
DivisionByZero,
|
||||
/// During synthesis, we constructed an unsatisfiable constraint system.
|
||||
Unsatisfiable,
|
||||
/// During synthesis, our polynomials ended up being too high of degree
|
||||
PolynomialDegreeTooLarge,
|
||||
/// During proof generation, we encountered an identity in the CRS
|
||||
UnexpectedIdentity,
|
||||
/// During proof generation, we encountered an I/O error with the CRS
|
||||
IoError(io::Error),
|
||||
/// During verification, our verifying key was malformed.
|
||||
MalformedVerifyingKey,
|
||||
/// During CRS generation, we observed an unconstrained auxillary variable
|
||||
UnconstrainedVariable
|
||||
}
|
||||
|
||||
impl From<io::Error> for SynthesisError {
|
||||
fn from(e: io::Error) -> SynthesisError {
|
||||
SynthesisError::IoError(e)
|
||||
}
|
||||
}
|
||||
|
||||
impl Error for SynthesisError {
|
||||
fn description(&self) -> &str {
|
||||
match *self {
|
||||
SynthesisError::AssignmentMissing => "an assignment for a variable could not be computed",
|
||||
SynthesisError::DivisionByZero => "division by zero",
|
||||
SynthesisError::Unsatisfiable => "unsatisfiable constraint system",
|
||||
SynthesisError::PolynomialDegreeTooLarge => "polynomial degree is too large",
|
||||
SynthesisError::UnexpectedIdentity => "encountered an identity element in the CRS",
|
||||
SynthesisError::IoError(_) => "encountered an I/O error",
|
||||
SynthesisError::MalformedVerifyingKey => "malformed verifying key",
|
||||
SynthesisError::UnconstrainedVariable => "auxillary variable was unconstrained"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Display for SynthesisError {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
|
||||
if let &SynthesisError::IoError(ref e) = self {
|
||||
write!(f, "I/O error: ")?;
|
||||
e.fmt(f)
|
||||
} else {
|
||||
write!(f, "{}", self.description())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Represents a constraint system which can have new variables
|
||||
/// allocated and constrains between them formed.
|
||||
pub trait ConstraintSystem<E: Engine>: Sized {
|
||||
/// Represents the type of the "root" of this constraint system
|
||||
/// so that nested namespaces can minimize indirection.
|
||||
type Root: ConstraintSystem<E>;
|
||||
|
||||
/// Return the "one" input variable
|
||||
fn one() -> Variable {
|
||||
Variable::new_unchecked(Index::Input(0))
|
||||
}
|
||||
|
||||
/// Allocate a private variable in the constraint system. The provided function is used to
|
||||
/// determine the assignment of the variable. The given `annotation` function is invoked
|
||||
/// in testing contexts in order to derive a unique name for this variable in the current
|
||||
/// namespace.
|
||||
fn alloc<F, A, AR>(
|
||||
&mut self,
|
||||
annotation: A,
|
||||
f: F
|
||||
) -> Result<Variable, SynthesisError>
|
||||
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>;
|
||||
|
||||
/// Allocate a public variable in the constraint system. The provided function is used to
|
||||
/// determine the assignment of the variable.
|
||||
fn alloc_input<F, A, AR>(
|
||||
&mut self,
|
||||
annotation: A,
|
||||
f: F
|
||||
) -> Result<Variable, SynthesisError>
|
||||
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>;
|
||||
|
||||
/// Enforce that `A` * `B` = `C`. The `annotation` function is invoked in testing contexts
|
||||
/// in order to derive a unique name for the constraint in the current namespace.
|
||||
fn enforce<A, AR, LA, LB, LC>(
|
||||
&mut self,
|
||||
annotation: A,
|
||||
a: LA,
|
||||
b: LB,
|
||||
c: LC
|
||||
)
|
||||
where A: FnOnce() -> AR, AR: Into<String>,
|
||||
LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
|
||||
LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
|
||||
LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>;
|
||||
|
||||
/// Create a new (sub)namespace and enter into it. Not intended
|
||||
/// for downstream use; use `namespace` instead.
|
||||
fn push_namespace<NR, N>(&mut self, name_fn: N)
|
||||
where NR: Into<String>, N: FnOnce() -> NR;
|
||||
|
||||
/// Exit out of the existing namespace. Not intended for
|
||||
/// downstream use; use `namespace` instead.
|
||||
fn pop_namespace(&mut self);
|
||||
|
||||
/// Gets the "root" constraint system, bypassing the namespacing.
|
||||
/// Not intended for downstream use; use `namespace` instead.
|
||||
fn get_root(&mut self) -> &mut Self::Root;
|
||||
|
||||
/// Begin a namespace for this constraint system.
|
||||
fn namespace<'a, NR, N>(
|
||||
&'a mut self,
|
||||
name_fn: N
|
||||
) -> Namespace<'a, E, Self::Root>
|
||||
where NR: Into<String>, N: FnOnce() -> NR
|
||||
{
|
||||
self.get_root().push_namespace(name_fn);
|
||||
|
||||
Namespace(self.get_root(), PhantomData)
|
||||
}
|
||||
}
|
||||
|
||||
/// This is a "namespaced" constraint system which borrows a constraint system (pushing
|
||||
/// a namespace context) and, when dropped, pops out of the namespace context.
|
||||
pub struct Namespace<'a, E: Engine, CS: ConstraintSystem<E> + 'a>(&'a mut CS, PhantomData<E>);
|
||||
|
||||
impl<'cs, E: Engine, CS: ConstraintSystem<E>> ConstraintSystem<E> for Namespace<'cs, E, CS> {
|
||||
type Root = CS::Root;
|
||||
|
||||
fn one() -> Variable {
|
||||
CS::one()
|
||||
}
|
||||
|
||||
fn alloc<F, A, AR>(
|
||||
&mut self,
|
||||
annotation: A,
|
||||
f: F
|
||||
) -> Result<Variable, SynthesisError>
|
||||
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
|
||||
{
|
||||
self.0.alloc(annotation, f)
|
||||
}
|
||||
|
||||
fn alloc_input<F, A, AR>(
|
||||
&mut self,
|
||||
annotation: A,
|
||||
f: F
|
||||
) -> Result<Variable, SynthesisError>
|
||||
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
|
||||
{
|
||||
self.0.alloc_input(annotation, f)
|
||||
}
|
||||
|
||||
fn enforce<A, AR, LA, LB, LC>(
|
||||
&mut self,
|
||||
annotation: A,
|
||||
a: LA,
|
||||
b: LB,
|
||||
c: LC
|
||||
)
|
||||
where A: FnOnce() -> AR, AR: Into<String>,
|
||||
LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
|
||||
LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
|
||||
LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>
|
||||
{
|
||||
self.0.enforce(annotation, a, b, c)
|
||||
}
|
||||
|
||||
// Downstream users who use `namespace` will never interact with these
|
||||
// functions and they will never be invoked because the namespace is
|
||||
// never a root constraint system.
|
||||
|
||||
fn push_namespace<NR, N>(&mut self, _: N)
|
||||
where NR: Into<String>, N: FnOnce() -> NR
|
||||
{
|
||||
panic!("only the root's push_namespace should be called");
|
||||
}
|
||||
|
||||
fn pop_namespace(&mut self)
|
||||
{
|
||||
panic!("only the root's pop_namespace should be called");
|
||||
}
|
||||
|
||||
fn get_root(&mut self) -> &mut Self::Root
|
||||
{
|
||||
self.0.get_root()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, E: Engine, CS: ConstraintSystem<E>> Drop for Namespace<'a, E, CS> {
|
||||
fn drop(&mut self) {
|
||||
self.get_root().pop_namespace()
|
||||
}
|
||||
}
|
||||
|
||||
/// Convenience implementation of ConstraintSystem<E> for mutable references to
|
||||
/// constraint systems.
|
||||
impl<'cs, E: Engine, CS: ConstraintSystem<E>> ConstraintSystem<E> for &'cs mut CS {
|
||||
type Root = CS::Root;
|
||||
|
||||
fn one() -> Variable {
|
||||
CS::one()
|
||||
}
|
||||
|
||||
fn alloc<F, A, AR>(
|
||||
&mut self,
|
||||
annotation: A,
|
||||
f: F
|
||||
) -> Result<Variable, SynthesisError>
|
||||
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
|
||||
{
|
||||
(**self).alloc(annotation, f)
|
||||
}
|
||||
|
||||
fn alloc_input<F, A, AR>(
|
||||
&mut self,
|
||||
annotation: A,
|
||||
f: F
|
||||
) -> Result<Variable, SynthesisError>
|
||||
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
|
||||
{
|
||||
(**self).alloc_input(annotation, f)
|
||||
}
|
||||
|
||||
fn enforce<A, AR, LA, LB, LC>(
|
||||
&mut self,
|
||||
annotation: A,
|
||||
a: LA,
|
||||
b: LB,
|
||||
c: LC
|
||||
)
|
||||
where A: FnOnce() -> AR, AR: Into<String>,
|
||||
LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
|
||||
LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
|
||||
LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>
|
||||
{
|
||||
(**self).enforce(annotation, a, b, c)
|
||||
}
|
||||
|
||||
fn push_namespace<NR, N>(&mut self, name_fn: N)
|
||||
where NR: Into<String>, N: FnOnce() -> NR
|
||||
{
|
||||
(**self).push_namespace(name_fn)
|
||||
}
|
||||
|
||||
fn pop_namespace(&mut self)
|
||||
{
|
||||
(**self).pop_namespace()
|
||||
}
|
||||
|
||||
fn get_root(&mut self) -> &mut Self::Root
|
||||
{
|
||||
(**self).get_root()
|
||||
}
|
||||
}
|
|
@ -0,0 +1,106 @@
|
|||
//! This is an interface for dealing with the kinds of
|
||||
//! parallel computations involved in bellman. It's
|
||||
//! currently just a thin wrapper around CpuPool and
|
||||
//! crossbeam but may be extended in the future to
|
||||
//! allow for various parallelism strategies.
|
||||
|
||||
use num_cpus;
|
||||
use futures::{Future, IntoFuture, Poll};
|
||||
use futures_cpupool::{CpuPool, CpuFuture};
|
||||
use crossbeam::{self, Scope};
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct Worker {
|
||||
cpus: usize,
|
||||
pool: CpuPool
|
||||
}
|
||||
|
||||
impl Worker {
|
||||
// We don't expose this outside the library so that
|
||||
// all `Worker` instances have the same number of
|
||||
// CPUs configured.
|
||||
pub(crate) fn new_with_cpus(cpus: usize) -> Worker {
|
||||
Worker {
|
||||
cpus: cpus,
|
||||
pool: CpuPool::new(cpus)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn new() -> Worker {
|
||||
Self::new_with_cpus(num_cpus::get())
|
||||
}
|
||||
|
||||
pub fn log_num_cpus(&self) -> u32 {
|
||||
log2_floor(self.cpus)
|
||||
}
|
||||
|
||||
pub fn compute<F, R>(
|
||||
&self, f: F
|
||||
) -> WorkerFuture<R::Item, R::Error>
|
||||
where F: FnOnce() -> R + Send + 'static,
|
||||
R: IntoFuture + 'static,
|
||||
R::Future: Send + 'static,
|
||||
R::Item: Send + 'static,
|
||||
R::Error: Send + 'static
|
||||
{
|
||||
WorkerFuture {
|
||||
future: self.pool.spawn_fn(f)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn scope<'a, F, R>(
|
||||
&self,
|
||||
elements: usize,
|
||||
f: F
|
||||
) -> R
|
||||
where F: FnOnce(&Scope<'a>, usize) -> R
|
||||
{
|
||||
let chunk_size = if elements < self.cpus {
|
||||
1
|
||||
} else {
|
||||
elements / self.cpus
|
||||
};
|
||||
|
||||
crossbeam::scope(|scope| {
|
||||
f(scope, chunk_size)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
pub struct WorkerFuture<T, E> {
|
||||
future: CpuFuture<T, E>
|
||||
}
|
||||
|
||||
impl<T: Send + 'static, E: Send + 'static> Future for WorkerFuture<T, E> {
|
||||
type Item = T;
|
||||
type Error = E;
|
||||
|
||||
fn poll(&mut self) -> Poll<Self::Item, Self::Error>
|
||||
{
|
||||
self.future.poll()
|
||||
}
|
||||
}
|
||||
|
||||
fn log2_floor(num: usize) -> u32 {
|
||||
assert!(num > 0);
|
||||
|
||||
let mut pow = 0;
|
||||
|
||||
while (1 << (pow+1)) <= num {
|
||||
pow += 1;
|
||||
}
|
||||
|
||||
pow
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_log2_floor() {
|
||||
assert_eq!(log2_floor(1), 0);
|
||||
assert_eq!(log2_floor(2), 1);
|
||||
assert_eq!(log2_floor(3), 1);
|
||||
assert_eq!(log2_floor(4), 2);
|
||||
assert_eq!(log2_floor(5), 2);
|
||||
assert_eq!(log2_floor(6), 2);
|
||||
assert_eq!(log2_floor(7), 2);
|
||||
assert_eq!(log2_floor(8), 3);
|
||||
}
|
|
@ -0,0 +1,303 @@
|
|||
use pairing::{
|
||||
CurveAffine,
|
||||
CurveProjective,
|
||||
Engine,
|
||||
PrimeField,
|
||||
Field,
|
||||
PrimeFieldRepr
|
||||
};
|
||||
use std::sync::Arc;
|
||||
use std::io;
|
||||
use bit_vec::{self, BitVec};
|
||||
use std::iter;
|
||||
use futures::{Future};
|
||||
use super::multicore::Worker;
|
||||
|
||||
use super::SynthesisError;
|
||||
|
||||
/// An object that builds a source of bases.
|
||||
pub trait SourceBuilder<G: CurveAffine>: Send + Sync + 'static + Clone {
|
||||
type Source: Source<G>;
|
||||
|
||||
fn new(self) -> Self::Source;
|
||||
}
|
||||
|
||||
/// A source of bases, like an iterator.
|
||||
pub trait Source<G: CurveAffine> {
|
||||
/// Parses the element from the source. Fails if the point is at infinity.
|
||||
fn add_assign_mixed(&mut self, to: &mut <G as CurveAffine>::Projective) -> Result<(), SynthesisError>;
|
||||
|
||||
/// Skips `amt` elements from the source, avoiding deserialization.
|
||||
fn skip(&mut self, amt: usize) -> Result<(), SynthesisError>;
|
||||
}
|
||||
|
||||
impl<G: CurveAffine> SourceBuilder<G> for (Arc<Vec<G>>, usize) {
|
||||
type Source = (Arc<Vec<G>>, usize);
|
||||
|
||||
fn new(self) -> (Arc<Vec<G>>, usize) {
|
||||
(self.0.clone(), self.1)
|
||||
}
|
||||
}
|
||||
|
||||
impl<G: CurveAffine> Source<G> for (Arc<Vec<G>>, usize) {
|
||||
fn add_assign_mixed(&mut self, to: &mut <G as CurveAffine>::Projective) -> Result<(), SynthesisError> {
|
||||
if self.0.len() <= self.1 {
|
||||
return Err(io::Error::new(io::ErrorKind::UnexpectedEof, "expected more bases from source").into());
|
||||
}
|
||||
|
||||
if self.0[self.1].is_zero() {
|
||||
return Err(SynthesisError::UnexpectedIdentity)
|
||||
}
|
||||
|
||||
to.add_assign_mixed(&self.0[self.1]);
|
||||
|
||||
self.1 += 1;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn skip(&mut self, amt: usize) -> Result<(), SynthesisError> {
|
||||
if self.0.len() <= self.1 {
|
||||
return Err(io::Error::new(io::ErrorKind::UnexpectedEof, "expected more bases from source").into());
|
||||
}
|
||||
|
||||
self.1 += amt;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
pub trait QueryDensity {
|
||||
/// Returns whether the base exists.
|
||||
type Iter: Iterator<Item=bool>;
|
||||
|
||||
fn iter(self) -> Self::Iter;
|
||||
fn get_query_size(self) -> Option<usize>;
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct FullDensity;
|
||||
|
||||
impl AsRef<FullDensity> for FullDensity {
|
||||
fn as_ref(&self) -> &FullDensity {
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> QueryDensity for &'a FullDensity {
|
||||
type Iter = iter::Repeat<bool>;
|
||||
|
||||
fn iter(self) -> Self::Iter {
|
||||
iter::repeat(true)
|
||||
}
|
||||
|
||||
fn get_query_size(self) -> Option<usize> {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
pub struct DensityTracker {
|
||||
bv: BitVec,
|
||||
total_density: usize
|
||||
}
|
||||
|
||||
impl<'a> QueryDensity for &'a DensityTracker {
|
||||
type Iter = bit_vec::Iter<'a>;
|
||||
|
||||
fn iter(self) -> Self::Iter {
|
||||
self.bv.iter()
|
||||
}
|
||||
|
||||
fn get_query_size(self) -> Option<usize> {
|
||||
Some(self.bv.len())
|
||||
}
|
||||
}
|
||||
|
||||
impl DensityTracker {
|
||||
pub fn new() -> DensityTracker {
|
||||
DensityTracker {
|
||||
bv: BitVec::new(),
|
||||
total_density: 0
|
||||
}
|
||||
}
|
||||
|
||||
pub fn add_element(&mut self) {
|
||||
self.bv.push(false);
|
||||
}
|
||||
|
||||
pub fn inc(&mut self, idx: usize) {
|
||||
if !self.bv.get(idx).unwrap() {
|
||||
self.bv.set(idx, true);
|
||||
self.total_density += 1;
|
||||
}
|
||||
}
|
||||
|
||||
pub fn get_total_density(&self) -> usize {
|
||||
self.total_density
|
||||
}
|
||||
}
|
||||
|
||||
fn multiexp_inner<Q, D, G, S>(
|
||||
pool: &Worker,
|
||||
bases: S,
|
||||
density_map: D,
|
||||
exponents: Arc<Vec<<<G::Engine as Engine>::Fr as PrimeField>::Repr>>,
|
||||
mut skip: u32,
|
||||
c: u32,
|
||||
handle_trivial: bool
|
||||
) -> Box<Future<Item=<G as CurveAffine>::Projective, Error=SynthesisError>>
|
||||
where for<'a> &'a Q: QueryDensity,
|
||||
D: Send + Sync + 'static + Clone + AsRef<Q>,
|
||||
G: CurveAffine,
|
||||
S: SourceBuilder<G>
|
||||
{
|
||||
// Perform this region of the multiexp
|
||||
let this = {
|
||||
let bases = bases.clone();
|
||||
let exponents = exponents.clone();
|
||||
let density_map = density_map.clone();
|
||||
|
||||
pool.compute(move || {
|
||||
// Accumulate the result
|
||||
let mut acc = G::Projective::zero();
|
||||
|
||||
// Build a source for the bases
|
||||
let mut bases = bases.new();
|
||||
|
||||
// Create space for the buckets
|
||||
let mut buckets = vec![<G as CurveAffine>::Projective::zero(); (1 << c) - 1];
|
||||
|
||||
let zero = <G::Engine as Engine>::Fr::zero().into_repr();
|
||||
let one = <G::Engine as Engine>::Fr::one().into_repr();
|
||||
|
||||
// Sort the bases into buckets
|
||||
for (&exp, density) in exponents.iter().zip(density_map.as_ref().iter()) {
|
||||
if density {
|
||||
if exp == zero {
|
||||
bases.skip(1)?;
|
||||
} else if exp == one {
|
||||
if handle_trivial {
|
||||
bases.add_assign_mixed(&mut acc)?;
|
||||
} else {
|
||||
bases.skip(1)?;
|
||||
}
|
||||
} else {
|
||||
let mut exp = exp;
|
||||
exp.shr(skip);
|
||||
let exp = exp.as_ref()[0] % (1 << c);
|
||||
|
||||
if exp != 0 {
|
||||
bases.add_assign_mixed(&mut buckets[(exp - 1) as usize])?;
|
||||
} else {
|
||||
bases.skip(1)?;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Summation by parts
|
||||
// e.g. 3a + 2b + 1c = a +
|
||||
// (a) + b +
|
||||
// ((a) + b) + c
|
||||
let mut running_sum = G::Projective::zero();
|
||||
for exp in buckets.into_iter().rev() {
|
||||
running_sum.add_assign(&exp);
|
||||
acc.add_assign(&running_sum);
|
||||
}
|
||||
|
||||
Ok(acc)
|
||||
})
|
||||
};
|
||||
|
||||
skip += c;
|
||||
|
||||
if skip >= <G::Engine as Engine>::Fr::NUM_BITS {
|
||||
// There isn't another region.
|
||||
Box::new(this)
|
||||
} else {
|
||||
// There's another region more significant. Calculate and join it with
|
||||
// this region recursively.
|
||||
Box::new(
|
||||
this.join(multiexp_inner(pool, bases, density_map, exponents, skip, c, false))
|
||||
.map(move |(this, mut higher)| {
|
||||
for _ in 0..c {
|
||||
higher.double();
|
||||
}
|
||||
|
||||
higher.add_assign(&this);
|
||||
|
||||
higher
|
||||
})
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
/// Perform multi-exponentiation. The caller is responsible for ensuring the
|
||||
/// query size is the same as the number of exponents.
|
||||
pub fn multiexp<Q, D, G, S>(
|
||||
pool: &Worker,
|
||||
bases: S,
|
||||
density_map: D,
|
||||
exponents: Arc<Vec<<<G::Engine as Engine>::Fr as PrimeField>::Repr>>
|
||||
) -> Box<Future<Item=<G as CurveAffine>::Projective, Error=SynthesisError>>
|
||||
where for<'a> &'a Q: QueryDensity,
|
||||
D: Send + Sync + 'static + Clone + AsRef<Q>,
|
||||
G: CurveAffine,
|
||||
S: SourceBuilder<G>
|
||||
{
|
||||
let c = if exponents.len() < 32 {
|
||||
3u32
|
||||
} else {
|
||||
(f64::from(exponents.len() as u32)).ln().ceil() as u32
|
||||
};
|
||||
|
||||
if let Some(query_size) = density_map.as_ref().get_query_size() {
|
||||
// If the density map has a known query size, it should not be
|
||||
// inconsistent with the number of exponents.
|
||||
|
||||
assert!(query_size == exponents.len());
|
||||
}
|
||||
|
||||
multiexp_inner(pool, bases, density_map, exponents, 0, c, true)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_with_bls12() {
|
||||
fn naive_multiexp<G: CurveAffine>(
|
||||
bases: Arc<Vec<G>>,
|
||||
exponents: Arc<Vec<<G::Scalar as PrimeField>::Repr>>
|
||||
) -> G::Projective
|
||||
{
|
||||
assert_eq!(bases.len(), exponents.len());
|
||||
|
||||
let mut acc = G::Projective::zero();
|
||||
|
||||
for (base, exp) in bases.iter().zip(exponents.iter()) {
|
||||
acc.add_assign(&base.mul(*exp));
|
||||
}
|
||||
|
||||
acc
|
||||
}
|
||||
|
||||
use rand::{self, Rand};
|
||||
use pairing::bls12_381::Bls12;
|
||||
|
||||
const SAMPLES: usize = 1 << 14;
|
||||
|
||||
let rng = &mut rand::thread_rng();
|
||||
let v = Arc::new((0..SAMPLES).map(|_| <Bls12 as Engine>::Fr::rand(rng).into_repr()).collect::<Vec<_>>());
|
||||
let g = Arc::new((0..SAMPLES).map(|_| <Bls12 as Engine>::G1::rand(rng).into_affine()).collect::<Vec<_>>());
|
||||
|
||||
let naive = naive_multiexp(g.clone(), v.clone());
|
||||
|
||||
let pool = Worker::new();
|
||||
|
||||
let fast = multiexp(
|
||||
&pool,
|
||||
(g, 0),
|
||||
FullDensity,
|
||||
v
|
||||
).wait().unwrap();
|
||||
|
||||
assert_eq!(naive, fast);
|
||||
}
|
|
@ -0,0 +1,251 @@
|
|||
extern crate bellman;
|
||||
extern crate pairing;
|
||||
extern crate rand;
|
||||
|
||||
// For randomness (during paramgen and proof generation)
|
||||
use rand::{thread_rng, Rng};
|
||||
|
||||
// For benchmarking
|
||||
use std::time::{Duration, Instant};
|
||||
|
||||
// Bring in some tools for using pairing-friendly curves
|
||||
use pairing::{
|
||||
Engine,
|
||||
Field
|
||||
};
|
||||
|
||||
// We're going to use the BLS12-381 pairing-friendly elliptic curve.
|
||||
use pairing::bls12_381::{
|
||||
Bls12
|
||||
};
|
||||
|
||||
// We'll use these interfaces to construct our circuit.
|
||||
use bellman::{
|
||||
Circuit,
|
||||
ConstraintSystem,
|
||||
SynthesisError
|
||||
};
|
||||
|
||||
// We're going to use the Groth16 proving system.
|
||||
use bellman::groth16::{
|
||||
Proof,
|
||||
generate_random_parameters,
|
||||
prepare_verifying_key,
|
||||
create_random_proof,
|
||||
verify_proof,
|
||||
};
|
||||
|
||||
const MIMC_ROUNDS: usize = 322;
|
||||
|
||||
/// This is an implementation of MiMC, specifically a
|
||||
/// variant named `LongsightF322p3` for BLS12-381.
|
||||
/// See http://eprint.iacr.org/2016/492 for more
|
||||
/// information about this construction.
|
||||
///
|
||||
/// ```
|
||||
/// function LongsightF322p3(xL ⦂ Fp, xR ⦂ Fp) {
|
||||
/// for i from 0 up to 321 {
|
||||
/// xL, xR := xR + (xL + Ci)^3, xL
|
||||
/// }
|
||||
/// return xL
|
||||
/// }
|
||||
/// ```
|
||||
fn mimc<E: Engine>(
|
||||
mut xl: E::Fr,
|
||||
mut xr: E::Fr,
|
||||
constants: &[E::Fr]
|
||||
) -> E::Fr
|
||||
{
|
||||
assert_eq!(constants.len(), MIMC_ROUNDS);
|
||||
|
||||
for i in 0..MIMC_ROUNDS {
|
||||
let mut tmp1 = xl;
|
||||
tmp1.add_assign(&constants[i]);
|
||||
let mut tmp2 = tmp1;
|
||||
tmp2.square();
|
||||
tmp2.mul_assign(&tmp1);
|
||||
tmp2.add_assign(&xr);
|
||||
xr = xl;
|
||||
xl = tmp2;
|
||||
}
|
||||
|
||||
xl
|
||||
}
|
||||
|
||||
/// This is our demo circuit for proving knowledge of the
|
||||
/// preimage of a MiMC hash invocation.
|
||||
struct MiMCDemo<'a, E: Engine> {
|
||||
xl: Option<E::Fr>,
|
||||
xr: Option<E::Fr>,
|
||||
constants: &'a [E::Fr]
|
||||
}
|
||||
|
||||
/// Our demo circuit implements this `Circuit` trait which
|
||||
/// is used during paramgen and proving in order to
|
||||
/// synthesize the constraint system.
|
||||
impl<'a, E: Engine> Circuit<E> for MiMCDemo<'a, E> {
|
||||
fn synthesize<CS: ConstraintSystem<E>>(
|
||||
self,
|
||||
cs: &mut CS
|
||||
) -> Result<(), SynthesisError>
|
||||
{
|
||||
assert_eq!(self.constants.len(), MIMC_ROUNDS);
|
||||
|
||||
// Allocate the first component of the preimage.
|
||||
let mut xl_value = self.xl;
|
||||
let mut xl = cs.alloc(|| "preimage xl", || {
|
||||
xl_value.ok_or(SynthesisError::AssignmentMissing)
|
||||
})?;
|
||||
|
||||
// Allocate the second component of the preimage.
|
||||
let mut xr_value = self.xr;
|
||||
let mut xr = cs.alloc(|| "preimage xr", || {
|
||||
xr_value.ok_or(SynthesisError::AssignmentMissing)
|
||||
})?;
|
||||
|
||||
for i in 0..MIMC_ROUNDS {
|
||||
// xL, xR := xR + (xL + Ci)^3, xL
|
||||
let cs = &mut cs.namespace(|| format!("round {}", i));
|
||||
|
||||
// tmp = (xL + Ci)^2
|
||||
let mut tmp_value = xl_value.map(|mut e| {
|
||||
e.add_assign(&self.constants[i]);
|
||||
e.square();
|
||||
e
|
||||
});
|
||||
let mut tmp = cs.alloc(|| "tmp", || {
|
||||
tmp_value.ok_or(SynthesisError::AssignmentMissing)
|
||||
})?;
|
||||
|
||||
cs.enforce(
|
||||
|| "tmp = (xL + Ci)^2",
|
||||
|lc| lc + xl + (self.constants[i], CS::one()),
|
||||
|lc| lc + xl + (self.constants[i], CS::one()),
|
||||
|lc| lc + tmp
|
||||
);
|
||||
|
||||
// new_xL = xR + (xL + Ci)^3
|
||||
// new_xL = xR + tmp * (xL + Ci)
|
||||
// new_xL - xR = tmp * (xL + Ci)
|
||||
let mut new_xl_value = xl_value.map(|mut e| {
|
||||
e.add_assign(&self.constants[i]);
|
||||
e.mul_assign(&tmp_value.unwrap());
|
||||
e.add_assign(&xr_value.unwrap());
|
||||
e
|
||||
});
|
||||
|
||||
let mut new_xl = if i == (MIMC_ROUNDS-1) {
|
||||
// This is the last round, xL is our image and so
|
||||
// we allocate a public input.
|
||||
cs.alloc_input(|| "image", || {
|
||||
new_xl_value.ok_or(SynthesisError::AssignmentMissing)
|
||||
})?
|
||||
} else {
|
||||
cs.alloc(|| "new_xl", || {
|
||||
new_xl_value.ok_or(SynthesisError::AssignmentMissing)
|
||||
})?
|
||||
};
|
||||
|
||||
cs.enforce(
|
||||
|| "new_xL = xR + (xL + Ci)^3",
|
||||
|lc| lc + tmp,
|
||||
|lc| lc + xl + (self.constants[i], CS::one()),
|
||||
|lc| lc + new_xl - xr
|
||||
);
|
||||
|
||||
// xR = xL
|
||||
xr = xl;
|
||||
xr_value = xl_value;
|
||||
|
||||
// xL = new_xL
|
||||
xl = new_xl;
|
||||
xl_value = new_xl_value;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_mimc() {
|
||||
// This may not be cryptographically safe, use
|
||||
// `OsRng` (for example) in production software.
|
||||
let rng = &mut thread_rng();
|
||||
|
||||
// Generate the MiMC round constants
|
||||
let constants = (0..MIMC_ROUNDS).map(|_| rng.gen()).collect::<Vec<_>>();
|
||||
|
||||
println!("Creating parameters...");
|
||||
|
||||
// Create parameters for our circuit
|
||||
let params = {
|
||||
let c = MiMCDemo::<Bls12> {
|
||||
xl: None,
|
||||
xr: None,
|
||||
constants: &constants
|
||||
};
|
||||
|
||||
generate_random_parameters(c, rng).unwrap()
|
||||
};
|
||||
|
||||
// Prepare the verification key (for proof verification)
|
||||
let pvk = prepare_verifying_key(¶ms.vk);
|
||||
|
||||
println!("Creating proofs...");
|
||||
|
||||
// Let's benchmark stuff!
|
||||
const SAMPLES: u32 = 50;
|
||||
let mut total_proving = Duration::new(0, 0);
|
||||
let mut total_verifying = Duration::new(0, 0);
|
||||
|
||||
// Just a place to put the proof data, so we can
|
||||
// benchmark deserialization.
|
||||
let mut proof_vec = vec![];
|
||||
|
||||
for _ in 0..SAMPLES {
|
||||
// Generate a random preimage and compute the image
|
||||
let xl = rng.gen();
|
||||
let xr = rng.gen();
|
||||
let image = mimc::<Bls12>(xl, xr, &constants);
|
||||
|
||||
proof_vec.truncate(0);
|
||||
|
||||
let start = Instant::now();
|
||||
{
|
||||
// Create an instance of our circuit (with the
|
||||
// witness)
|
||||
let c = MiMCDemo {
|
||||
xl: Some(xl),
|
||||
xr: Some(xr),
|
||||
constants: &constants
|
||||
};
|
||||
|
||||
// Create a groth16 proof with our parameters.
|
||||
let proof = create_random_proof(c, ¶ms, rng).unwrap();
|
||||
|
||||
proof.write(&mut proof_vec).unwrap();
|
||||
}
|
||||
|
||||
total_proving += start.elapsed();
|
||||
|
||||
let start = Instant::now();
|
||||
let proof = Proof::read(&proof_vec[..]).unwrap();
|
||||
// Check the proof
|
||||
assert!(verify_proof(
|
||||
&pvk,
|
||||
&proof,
|
||||
&[image]
|
||||
).unwrap());
|
||||
total_verifying += start.elapsed();
|
||||
}
|
||||
let proving_avg = total_proving / SAMPLES;
|
||||
let proving_avg = proving_avg.subsec_nanos() as f64 / 1_000_000_000f64
|
||||
+ (proving_avg.as_secs() as f64);
|
||||
|
||||
let verifying_avg = total_verifying / SAMPLES;
|
||||
let verifying_avg = verifying_avg.subsec_nanos() as f64 / 1_000_000_000f64
|
||||
+ (verifying_avg.as_secs() as f64);
|
||||
|
||||
println!("Average proving time: {:?} seconds", proving_avg);
|
||||
println!("Average verifying time: {:?} seconds", verifying_avg);
|
||||
}
|
Loading…
Reference in New Issue