Auto merge of #17 - ebfull:various-improvements, r=ebfull

Group encoding negative test vectors

Closes #10

Also simplifies the encoding code, which has the side-effect of being useful for testing. Also adds more descriptive error reporting throughout the API. Also ensures use of Debug/Display are consistent with standard expectations.
This commit is contained in:
bmerge 2017-07-18 16:21:39 +00:00
commit a6528a7876
8 changed files with 823 additions and 172 deletions

View File

@ -1,5 +1,6 @@
macro_rules! curve_impl {
(
$name:expr,
$projective:ident,
$affine:ident,
$prepared:ident,
@ -15,6 +16,17 @@ macro_rules! curve_impl {
pub(crate) infinity: bool
}
impl ::std::fmt::Display for $affine
{
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
if self.infinity {
write!(f, "{}(Infinity)", $name)
} else {
write!(f, "{}(x={}, y={})", $name, self.x, self.y)
}
}
}
#[derive(Copy, Clone, Debug, Eq)]
pub struct $projective {
pub(crate) x: $basefield,
@ -22,6 +34,13 @@ macro_rules! curve_impl {
pub(crate) z: $basefield
}
impl ::std::fmt::Display for $projective
{
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
write!(f, "{}", self.into_affine())
}
}
impl PartialEq for $projective {
fn eq(&self, other: &$projective) -> bool {
if self.is_zero() {
@ -111,10 +130,6 @@ macro_rules! curve_impl {
self.infinity
}
fn is_valid(&self) -> bool {
self.is_on_curve() && self.is_in_correct_subgroup()
}
fn mul<S: Into<<Self::Scalar as PrimeField>::Repr>>(&self, by: S) -> $projective {
let mut res = $projective::zero();
@ -560,12 +575,19 @@ macro_rules! curve_impl {
pub mod g1 {
use rand::{Rand, Rng};
use super::super::{Fq, Fr, FrRepr, FqRepr};
use ::{CurveProjective, CurveAffine, PrimeField, SqrtField, PrimeFieldRepr, Field, BitIterator, EncodedPoint};
use ::{CurveProjective, CurveAffine, PrimeField, SqrtField, PrimeFieldRepr, Field, BitIterator, EncodedPoint, GroupDecodingError};
curve_impl!(G1, G1Affine, G1Prepared, Fq, Fr, G1Uncompressed, G1Compressed);
curve_impl!("G1", G1, G1Affine, G1Prepared, Fq, Fr, G1Uncompressed, G1Compressed);
#[derive(Copy)]
pub struct G1Uncompressed([u8; 96]);
impl Clone for G1Uncompressed {
fn clone(&self) -> G1Uncompressed {
G1Uncompressed(self.0)
}
}
impl AsRef<[u8]> for G1Uncompressed {
fn as_ref(&self) -> &[u8] {
&self.0
@ -583,15 +605,24 @@ pub mod g1 {
fn empty() -> Self { G1Uncompressed([0; 96]) }
fn size() -> usize { 96 }
fn into_affine_unchecked(&self) -> Result<G1Affine, ()> {
use byteorder::{ReadBytesExt, BigEndian};
fn into_affine(&self) -> Result<G1Affine, GroupDecodingError> {
let affine = self.into_affine_unchecked()?;
if !affine.is_on_curve() {
Err(GroupDecodingError::NotOnCurve)
} else if !affine.is_in_correct_subgroup() {
Err(GroupDecodingError::NotInSubgroup)
} else {
Ok(affine)
}
}
fn into_affine_unchecked(&self) -> Result<G1Affine, GroupDecodingError> {
// Create a copy of this representation.
let mut copy = self.0;
if copy[0] & (1 << 7) != 0 {
// Distinguisher bit is set, but this should be uncompressed!
return Err(())
return Err(GroupDecodingError::UnexpectedCompressionMode)
}
if copy[0] & (1 << 6) != 0 {
@ -603,13 +634,13 @@ pub mod g1 {
if copy.iter().all(|b| *b == 0) {
Ok(G1Affine::zero())
} else {
Err(())
Err(GroupDecodingError::UnexpectedInformation)
}
} else {
if copy[0] & (1 << 5) != 0 {
// The bit indicating the y-coordinate should be lexicographically
// largest is set, but this is an uncompressed element.
return Err(())
return Err(GroupDecodingError::UnexpectedInformation)
}
// Unset the three most significant bits.
@ -621,25 +652,18 @@ pub mod g1 {
{
let mut reader = &copy[..];
for b in x.0.iter_mut().rev() {
*b = reader.read_u64::<BigEndian>().unwrap();
}
for b in y.0.iter_mut().rev() {
*b = reader.read_u64::<BigEndian>().unwrap();
}
x.read_be(&mut reader).unwrap();
y.read_be(&mut reader).unwrap();
}
Ok(G1Affine {
x: Fq::from_repr(x)?,
y: Fq::from_repr(y)?,
x: Fq::from_repr(x).map_err(|e| GroupDecodingError::CoordinateDecodingError("x coordinate", e))?,
y: Fq::from_repr(y).map_err(|e| GroupDecodingError::CoordinateDecodingError("y coordinate", e))?,
infinity: false
})
}
}
fn from_affine(affine: G1Affine) -> Self {
use byteorder::{WriteBytesExt, BigEndian};
let mut res = Self::empty();
if affine.is_zero() {
@ -649,21 +673,23 @@ pub mod g1 {
} else {
let mut writer = &mut res.0[..];
for digit in affine.x.into_repr().as_ref().iter().rev() {
writer.write_u64::<BigEndian>(*digit).unwrap();
}
for digit in affine.y.into_repr().as_ref().iter().rev() {
writer.write_u64::<BigEndian>(*digit).unwrap();
}
affine.x.into_repr().write_be(&mut writer).unwrap();
affine.y.into_repr().write_be(&mut writer).unwrap();
}
res
}
}
#[derive(Copy)]
pub struct G1Compressed([u8; 48]);
impl Clone for G1Compressed {
fn clone(&self) -> G1Compressed {
G1Compressed(self.0)
}
}
impl AsRef<[u8]> for G1Compressed {
fn as_ref(&self) -> &[u8] {
&self.0
@ -681,15 +707,24 @@ pub mod g1 {
fn empty() -> Self { G1Compressed([0; 48]) }
fn size() -> usize { 48 }
fn into_affine_unchecked(&self) -> Result<G1Affine, ()> {
use byteorder::{ReadBytesExt, BigEndian};
fn into_affine(&self) -> Result<G1Affine, GroupDecodingError> {
let affine = self.into_affine_unchecked()?;
// NB: Decompression guarantees that it is on the curve already.
if !affine.is_in_correct_subgroup() {
Err(GroupDecodingError::NotInSubgroup)
} else {
Ok(affine)
}
}
fn into_affine_unchecked(&self) -> Result<G1Affine, GroupDecodingError> {
// Create a copy of this representation.
let mut copy = self.0;
if copy[0] & (1 << 7) == 0 {
// Distinguisher bit isn't set.
return Err(())
return Err(GroupDecodingError::UnexpectedCompressionMode)
}
if copy[0] & (1 << 6) != 0 {
@ -701,7 +736,7 @@ pub mod g1 {
if copy.iter().all(|b| *b == 0) {
Ok(G1Affine::zero())
} else {
Err(())
Err(GroupDecodingError::UnexpectedInformation)
}
} else {
// Determine if the intended y coordinate must be greater
@ -716,13 +751,11 @@ pub mod g1 {
{
let mut reader = &copy[..];
for b in x.0.iter_mut().rev() {
*b = reader.read_u64::<BigEndian>().unwrap();
}
x.read_be(&mut reader).unwrap();
}
// Interpret as Fq element.
let x = Fq::from_repr(x)?;
let x = Fq::from_repr(x).map_err(|e| GroupDecodingError::CoordinateDecodingError("x coordinate", e))?;
// Compute x^3 + b
let mut x3b = x;
@ -747,14 +780,12 @@ pub mod g1 {
},
None => {
// Point must not be on the curve.
Err(())
Err(GroupDecodingError::NotOnCurve)
}
}
}
}
fn from_affine(affine: G1Affine) -> Self {
use byteorder::{WriteBytesExt, BigEndian};
let mut res = Self::empty();
if affine.is_zero() {
@ -765,9 +796,7 @@ pub mod g1 {
{
let mut writer = &mut res.0[..];
for digit in affine.x.into_repr().as_ref().iter().rev() {
writer.write_u64::<BigEndian>(*digit).unwrap();
}
affine.x.into_repr().write_be(&mut writer).unwrap();
}
let mut negy = affine.y;
@ -873,7 +902,7 @@ pub mod g1 {
infinity: false
};
assert!(!p.is_valid());
assert!(!p.is_in_correct_subgroup());
let mut g1 = G1::zero();
@ -895,7 +924,7 @@ pub mod g1 {
assert_eq!(i, 4);
let g1 = G1Affine::from(g1);
assert!(g1.is_valid());
assert!(g1.is_in_correct_subgroup());
assert_eq!(g1, G1Affine::one());
break;
@ -918,7 +947,6 @@ pub mod g1 {
};
assert!(!p.is_on_curve());
assert!(p.is_in_correct_subgroup());
assert!(!p.is_valid());
}
// Reject point on a twist (b = 3)
@ -930,7 +958,6 @@ pub mod g1 {
};
assert!(!p.is_on_curve());
assert!(!p.is_in_correct_subgroup());
assert!(!p.is_valid());
}
// Reject point in an invalid subgroup
@ -943,7 +970,6 @@ pub mod g1 {
};
assert!(p.is_on_curve());
assert!(!p.is_in_correct_subgroup());
assert!(!p.is_valid());
}
}
@ -1019,9 +1045,9 @@ pub mod g1 {
infinity: false
};
assert!(a.is_valid());
assert!(b.is_valid());
assert!(c.is_valid());
assert!(a.is_on_curve() && a.is_in_correct_subgroup());
assert!(b.is_on_curve() && b.is_in_correct_subgroup());
assert!(c.is_on_curve() && c.is_in_correct_subgroup());
let mut tmp1 = a.into_projective();
tmp1.add_assign(&b.into_projective());
@ -1097,12 +1123,19 @@ pub mod g1 {
pub mod g2 {
use rand::{Rand, Rng};
use super::super::{Fq2, Fr, Fq, FrRepr, FqRepr};
use ::{CurveProjective, CurveAffine, PrimeField, SqrtField, PrimeFieldRepr, Field, BitIterator, EncodedPoint};
use ::{CurveProjective, CurveAffine, PrimeField, SqrtField, PrimeFieldRepr, Field, BitIterator, EncodedPoint, GroupDecodingError};
curve_impl!(G2, G2Affine, G2Prepared, Fq2, Fr, G2Uncompressed, G2Compressed);
curve_impl!("G2", G2, G2Affine, G2Prepared, Fq2, Fr, G2Uncompressed, G2Compressed);
#[derive(Copy)]
pub struct G2Uncompressed([u8; 192]);
impl Clone for G2Uncompressed {
fn clone(&self) -> G2Uncompressed {
G2Uncompressed(self.0)
}
}
impl AsRef<[u8]> for G2Uncompressed {
fn as_ref(&self) -> &[u8] {
&self.0
@ -1120,15 +1153,24 @@ pub mod g2 {
fn empty() -> Self { G2Uncompressed([0; 192]) }
fn size() -> usize { 192 }
fn into_affine_unchecked(&self) -> Result<G2Affine, ()> {
use byteorder::{ReadBytesExt, BigEndian};
fn into_affine(&self) -> Result<G2Affine, GroupDecodingError> {
let affine = self.into_affine_unchecked()?;
if !affine.is_on_curve() {
Err(GroupDecodingError::NotOnCurve)
} else if !affine.is_in_correct_subgroup() {
Err(GroupDecodingError::NotInSubgroup)
} else {
Ok(affine)
}
}
fn into_affine_unchecked(&self) -> Result<G2Affine, GroupDecodingError> {
// Create a copy of this representation.
let mut copy = self.0;
if copy[0] & (1 << 7) != 0 {
// Distinguisher bit is set, but this should be uncompressed!
return Err(())
return Err(GroupDecodingError::UnexpectedCompressionMode)
}
if copy[0] & (1 << 6) != 0 {
@ -1140,13 +1182,13 @@ pub mod g2 {
if copy.iter().all(|b| *b == 0) {
Ok(G2Affine::zero())
} else {
Err(())
Err(GroupDecodingError::UnexpectedInformation)
}
} else {
if copy[0] & (1 << 5) != 0 {
// The bit indicating the y-coordinate should be lexicographically
// largest is set, but this is an uncompressed element.
return Err(())
return Err(GroupDecodingError::UnexpectedInformation)
}
// Unset the three most significant bits.
@ -1160,39 +1202,26 @@ pub mod g2 {
{
let mut reader = &copy[..];
for b in x_c1.0.iter_mut().rev() {
*b = reader.read_u64::<BigEndian>().unwrap();
}
for b in x_c0.0.iter_mut().rev() {
*b = reader.read_u64::<BigEndian>().unwrap();
}
for b in y_c1.0.iter_mut().rev() {
*b = reader.read_u64::<BigEndian>().unwrap();
}
for b in y_c0.0.iter_mut().rev() {
*b = reader.read_u64::<BigEndian>().unwrap();
}
x_c1.read_be(&mut reader).unwrap();
x_c0.read_be(&mut reader).unwrap();
y_c1.read_be(&mut reader).unwrap();
y_c0.read_be(&mut reader).unwrap();
}
Ok(G2Affine {
x: Fq2 {
c0: Fq::from_repr(x_c0)?,
c1: Fq::from_repr(x_c1)?
c0: Fq::from_repr(x_c0).map_err(|e| GroupDecodingError::CoordinateDecodingError("x coordinate (c0)", e))?,
c1: Fq::from_repr(x_c1).map_err(|e| GroupDecodingError::CoordinateDecodingError("x coordinate (c1)", e))?,
},
y: Fq2 {
c0: Fq::from_repr(y_c0)?,
c1: Fq::from_repr(y_c1)?
c0: Fq::from_repr(y_c0).map_err(|e| GroupDecodingError::CoordinateDecodingError("y coordinate (c0)", e))?,
c1: Fq::from_repr(y_c1).map_err(|e| GroupDecodingError::CoordinateDecodingError("y coordinate (c1)", e))?,
},
infinity: false
})
}
}
fn from_affine(affine: G2Affine) -> Self {
use byteorder::{WriteBytesExt, BigEndian};
let mut res = Self::empty();
if affine.is_zero() {
@ -1202,29 +1231,25 @@ pub mod g2 {
} else {
let mut writer = &mut res.0[..];
for digit in affine.x.c1.into_repr().as_ref().iter().rev() {
writer.write_u64::<BigEndian>(*digit).unwrap();
}
for digit in affine.x.c0.into_repr().as_ref().iter().rev() {
writer.write_u64::<BigEndian>(*digit).unwrap();
}
for digit in affine.y.c1.into_repr().as_ref().iter().rev() {
writer.write_u64::<BigEndian>(*digit).unwrap();
}
for digit in affine.y.c0.into_repr().as_ref().iter().rev() {
writer.write_u64::<BigEndian>(*digit).unwrap();
}
affine.x.c1.into_repr().write_be(&mut writer).unwrap();
affine.x.c0.into_repr().write_be(&mut writer).unwrap();
affine.y.c1.into_repr().write_be(&mut writer).unwrap();
affine.y.c0.into_repr().write_be(&mut writer).unwrap();
}
res
}
}
#[derive(Copy)]
pub struct G2Compressed([u8; 96]);
impl Clone for G2Compressed {
fn clone(&self) -> G2Compressed {
G2Compressed(self.0)
}
}
impl AsRef<[u8]> for G2Compressed {
fn as_ref(&self) -> &[u8] {
&self.0
@ -1242,15 +1267,24 @@ pub mod g2 {
fn empty() -> Self { G2Compressed([0; 96]) }
fn size() -> usize { 96 }
fn into_affine_unchecked(&self) -> Result<G2Affine, ()> {
use byteorder::{ReadBytesExt, BigEndian};
fn into_affine(&self) -> Result<G2Affine, GroupDecodingError> {
let affine = self.into_affine_unchecked()?;
// NB: Decompression guarantees that it is on the curve already.
if !affine.is_in_correct_subgroup() {
Err(GroupDecodingError::NotInSubgroup)
} else {
Ok(affine)
}
}
fn into_affine_unchecked(&self) -> Result<G2Affine, GroupDecodingError> {
// Create a copy of this representation.
let mut copy = self.0;
if copy[0] & (1 << 7) == 0 {
// Distinguisher bit isn't set.
return Err(())
return Err(GroupDecodingError::UnexpectedCompressionMode)
}
if copy[0] & (1 << 6) != 0 {
@ -1262,7 +1296,7 @@ pub mod g2 {
if copy.iter().all(|b| *b == 0) {
Ok(G2Affine::zero())
} else {
Err(())
Err(GroupDecodingError::UnexpectedInformation)
}
} else {
// Determine if the intended y coordinate must be greater
@ -1278,19 +1312,14 @@ pub mod g2 {
{
let mut reader = &copy[..];
for b in x_c1.0.iter_mut().rev() {
*b = reader.read_u64::<BigEndian>().unwrap();
}
for b in x_c0.0.iter_mut().rev() {
*b = reader.read_u64::<BigEndian>().unwrap();
}
x_c1.read_be(&mut reader).unwrap();
x_c0.read_be(&mut reader).unwrap();
}
// Interpret as Fq element.
let x = Fq2 {
c0: Fq::from_repr(x_c0)?,
c1: Fq::from_repr(x_c1)?
c0: Fq::from_repr(x_c0).map_err(|e| GroupDecodingError::CoordinateDecodingError("x coordinate (c0)", e))?,
c1: Fq::from_repr(x_c1).map_err(|e| GroupDecodingError::CoordinateDecodingError("x coordinate (c1)", e))?
};
// Compute x^3 + b
@ -1316,14 +1345,12 @@ pub mod g2 {
},
None => {
// Point must not be on the curve.
Err(())
Err(GroupDecodingError::NotOnCurve)
}
}
}
}
fn from_affine(affine: G2Affine) -> Self {
use byteorder::{WriteBytesExt, BigEndian};
let mut res = Self::empty();
if affine.is_zero() {
@ -1334,13 +1361,8 @@ pub mod g2 {
{
let mut writer = &mut res.0[..];
for digit in affine.x.c1.into_repr().as_ref().iter().rev() {
writer.write_u64::<BigEndian>(*digit).unwrap();
}
for digit in affine.x.c0.into_repr().as_ref().iter().rev() {
writer.write_u64::<BigEndian>(*digit).unwrap();
}
affine.x.c1.into_repr().write_be(&mut writer).unwrap();
affine.x.c0.into_repr().write_be(&mut writer).unwrap();
}
let mut negy = affine.y;
@ -1446,7 +1468,7 @@ pub mod g2 {
infinity: false
};
assert!(!p.is_valid());
assert!(!p.is_in_correct_subgroup());
let mut g2 = G2::zero();
@ -1468,7 +1490,7 @@ pub mod g2 {
assert_eq!(i, 2);
let g2 = G2Affine::from(g2);
assert!(g2.is_valid());
assert!(g2.is_in_correct_subgroup());
assert_eq!(g2, G2Affine::one());
break;
@ -1497,7 +1519,6 @@ pub mod g2 {
};
assert!(!p.is_on_curve());
assert!(p.is_in_correct_subgroup());
assert!(!p.is_valid());
}
// Reject point on a twist (b = 2 * (u + 1))
@ -1515,7 +1536,6 @@ pub mod g2 {
};
assert!(!p.is_on_curve());
assert!(!p.is_in_correct_subgroup());
assert!(!p.is_valid());
}
// Reject point in an invalid subgroup
@ -1534,7 +1554,6 @@ pub mod g2 {
};
assert!(p.is_on_curve());
assert!(!p.is_in_correct_subgroup());
assert!(!p.is_valid());
}
}

View File

@ -1,4 +1,4 @@
use ::{Field, PrimeField, SqrtField, PrimeFieldRepr};
use ::{Field, PrimeField, SqrtField, PrimeFieldRepr, PrimeFieldDecodingError};
use std::cmp::Ordering;
use super::fq2::Fq2;
@ -192,7 +192,7 @@ pub const FROBENIUS_COEFF_FQ12_C1: [Fq2; 12] = [
// -((2**384) mod q) mod q
pub const NEGATIVE_ONE: Fq = Fq(FqRepr([0x43f5fffffffcaaae, 0x32b7fff2ed47fffd, 0x7e83a49a2e99d69, 0xeca8f3318332bb7a, 0xef148d1ea0f4c069, 0x40ab3263eff0206]));
#[derive(Copy, Clone, PartialEq, Eq, Default)]
#[derive(Copy, Clone, PartialEq, Eq, Default, Debug)]
pub struct FqRepr(pub [u64; 6]);
impl ::rand::Rand for FqRepr {
@ -202,7 +202,7 @@ impl ::rand::Rand for FqRepr {
}
}
impl ::std::fmt::Debug for FqRepr
impl ::std::fmt::Display for FqRepr
{
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
try!(write!(f, "0x"));
@ -221,6 +221,13 @@ impl AsRef<[u64]> for FqRepr {
}
}
impl AsMut<[u64]> for FqRepr {
#[inline(always)]
fn as_mut(&mut self) -> &mut [u64] {
&mut self.0
}
}
impl From<u64> for FqRepr {
#[inline(always)]
fn from(val: u64) -> FqRepr {
@ -355,7 +362,7 @@ impl PrimeFieldRepr for FqRepr {
}
}
#[derive(Copy, Clone, PartialEq, Eq)]
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct Fq(FqRepr);
/// `Fq` elements are ordered lexicographically.
@ -373,10 +380,10 @@ impl PartialOrd for Fq {
}
}
impl ::std::fmt::Debug for Fq
impl ::std::fmt::Display for Fq
{
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
write!(f, "Fq({:?})", self.into_repr())
write!(f, "Fq({})", self.into_repr())
}
}
@ -401,14 +408,14 @@ impl From<Fq> for FqRepr {
impl PrimeField for Fq {
type Repr = FqRepr;
fn from_repr(r: FqRepr) -> Result<Fq, ()> {
fn from_repr(r: FqRepr) -> Result<Fq, PrimeFieldDecodingError> {
let mut r = Fq(r);
if r.is_valid() {
r.mul_assign(&Fq(R2));
Ok(r)
} else {
Err(())
Err(PrimeFieldDecodingError::NotInField(format!("{}", r.0)))
}
}
@ -1676,33 +1683,33 @@ fn bench_fq_from_repr(b: &mut ::test::Bencher) {
}
#[test]
fn test_fq_repr_debug() {
fn test_fq_repr_display() {
assert_eq!(
format!("{:?}", FqRepr([0xa956babf9301ea24, 0x39a8f184f3535c7b, 0xb38d35b3f6779585, 0x676cc4eef4c46f2c, 0xb1d4aad87651e694, 0x1947f0d5f4fe325a])),
format!("{}", FqRepr([0xa956babf9301ea24, 0x39a8f184f3535c7b, 0xb38d35b3f6779585, 0x676cc4eef4c46f2c, 0xb1d4aad87651e694, 0x1947f0d5f4fe325a])),
"0x1947f0d5f4fe325ab1d4aad87651e694676cc4eef4c46f2cb38d35b3f677958539a8f184f3535c7ba956babf9301ea24".to_string()
);
assert_eq!(
format!("{:?}", FqRepr([0xb4171485fd8622dd, 0x864229a6edec7ec5, 0xc57f7bdcf8dfb707, 0x6db7ff0ecea4584a, 0xf8d8578c4a57132d, 0x6eb66d42d9fcaaa])),
format!("{}", FqRepr([0xb4171485fd8622dd, 0x864229a6edec7ec5, 0xc57f7bdcf8dfb707, 0x6db7ff0ecea4584a, 0xf8d8578c4a57132d, 0x6eb66d42d9fcaaa])),
"0x06eb66d42d9fcaaaf8d8578c4a57132d6db7ff0ecea4584ac57f7bdcf8dfb707864229a6edec7ec5b4171485fd8622dd".to_string()
);
assert_eq!(
format!("{:?}", FqRepr([0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff])),
format!("{}", FqRepr([0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff])),
"0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff".to_string()
);
assert_eq!(
format!("{:?}", FqRepr([0, 0, 0, 0, 0, 0])),
format!("{}", FqRepr([0, 0, 0, 0, 0, 0])),
"0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000".to_string()
);
}
#[test]
fn test_fq_debug() {
fn test_fq_display() {
assert_eq!(
format!("{:?}", Fq::from_repr(FqRepr([0xa956babf9301ea24, 0x39a8f184f3535c7b, 0xb38d35b3f6779585, 0x676cc4eef4c46f2c, 0xb1d4aad87651e694, 0x1947f0d5f4fe325a])).unwrap()),
format!("{}", Fq::from_repr(FqRepr([0xa956babf9301ea24, 0x39a8f184f3535c7b, 0xb38d35b3f6779585, 0x676cc4eef4c46f2c, 0xb1d4aad87651e694, 0x1947f0d5f4fe325a])).unwrap()),
"Fq(0x1947f0d5f4fe325ab1d4aad87651e694676cc4eef4c46f2cb38d35b3f677958539a8f184f3535c7ba956babf9301ea24)".to_string()
);
assert_eq!(
format!("{:?}", Fq::from_repr(FqRepr([0xe28e79396ac2bbf8, 0x413f6f7f06ea87eb, 0xa4b62af4a792a689, 0xb7f89f88f59c1dc5, 0x9a551859b1e43a9a, 0x6c9f5a1060de974])).unwrap()),
format!("{}", Fq::from_repr(FqRepr([0xe28e79396ac2bbf8, 0x413f6f7f06ea87eb, 0xa4b62af4a792a689, 0xb7f89f88f59c1dc5, 0x9a551859b1e43a9a, 0x6c9f5a1060de974])).unwrap()),
"Fq(0x06c9f5a1060de9749a551859b1e43a9ab7f89f88f59c1dc5a4b62af4a792a689413f6f7f06ea87ebe28e79396ac2bbf8)".to_string()
);
}
@ -1740,6 +1747,6 @@ fn test_fq_ordering() {
// FqRepr's ordering is well-tested, but we still need to make sure the Fq
// elements aren't being compared in Montgomery form.
for i in 0..100 {
assert!(Fq::from_repr(FqRepr::from(i+1)) > Fq::from_repr(FqRepr::from(i)));
assert!(Fq::from_repr(FqRepr::from(i+1)).unwrap() > Fq::from_repr(FqRepr::from(i)).unwrap());
}
}

View File

@ -11,6 +11,13 @@ pub struct Fq12 {
pub c1: Fq6
}
impl ::std::fmt::Display for Fq12
{
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
write!(f, "Fq12({} + {} * w)", self.c0, self.c1)
}
}
impl Rand for Fq12 {
fn rand<R: Rng>(rng: &mut R) -> Self {
Fq12 {

View File

@ -11,6 +11,13 @@ pub struct Fq2 {
pub c1: Fq
}
impl ::std::fmt::Display for Fq2
{
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
write!(f, "Fq2({} + {} * u)", self.c0, self.c1)
}
}
/// `Fq2` elements are ordered lexicographically.
impl Ord for Fq2 {
#[inline(always)]

View File

@ -11,6 +11,13 @@ pub struct Fq6 {
pub c2: Fq2
}
impl ::std::fmt::Display for Fq6
{
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
write!(f, "Fq6({} + {} * v, {} * v^2)", self.c0, self.c1, self.c2)
}
}
impl Rand for Fq6 {
fn rand<R: Rng>(rng: &mut R) -> Self {
Fq6 {

View File

@ -1,4 +1,4 @@
use ::{Field, PrimeField, SqrtField, PrimeFieldRepr};
use ::{Field, PrimeField, SqrtField, PrimeFieldRepr, PrimeFieldDecodingError};
// r = 52435875175126190479447740508185965837690552500527637822603658699938581184513
const MODULUS: FrRepr = FrRepr([0xffffffff00000001, 0x53bda402fffe5bfe, 0x3339d80809a1d805, 0x73eda753299d7d48]);
@ -28,7 +28,7 @@ const S: usize = 32;
// 2^s root of unity computed by GENERATOR^t
const ROOT_OF_UNITY: FrRepr = FrRepr([0xb9b58d8c5f0e466a, 0x5b1b4c801819d7ec, 0xaf53ae352a31e64, 0x5bf3adda19e9b27b]);
#[derive(Copy, Clone, PartialEq, Eq, Default)]
#[derive(Copy, Clone, PartialEq, Eq, Default, Debug)]
pub struct FrRepr(pub [u64; 4]);
impl ::rand::Rand for FrRepr {
@ -38,7 +38,7 @@ impl ::rand::Rand for FrRepr {
}
}
impl ::std::fmt::Debug for FrRepr
impl ::std::fmt::Display for FrRepr
{
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
try!(write!(f, "0x"));
@ -57,6 +57,13 @@ impl AsRef<[u64]> for FrRepr {
}
}
impl AsMut<[u64]> for FrRepr {
#[inline(always)]
fn as_mut(&mut self) -> &mut [u64] {
&mut self.0
}
}
impl From<u64> for FrRepr {
#[inline(always)]
fn from(val: u64) -> FrRepr {
@ -191,13 +198,13 @@ impl PrimeFieldRepr for FrRepr {
}
}
#[derive(Copy, Clone, PartialEq, Eq)]
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct Fr(FrRepr);
impl ::std::fmt::Debug for Fr
impl ::std::fmt::Display for Fr
{
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
write!(f, "Fr({:?})", self.into_repr())
write!(f, "Fr({})", self.into_repr())
}
}
@ -222,14 +229,14 @@ impl From<Fr> for FrRepr {
impl PrimeField for Fr {
type Repr = FrRepr;
fn from_repr(r: FrRepr) -> Result<Fr, ()> {
fn from_repr(r: FrRepr) -> Result<Fr, PrimeFieldDecodingError> {
let mut r = Fr(r);
if r.is_valid() {
r.mul_assign(&Fr(R2));
Ok(r)
} else {
Err(())
Err(PrimeFieldDecodingError::NotInField(format!("{}", r.0)))
}
}
@ -1388,33 +1395,33 @@ fn bench_fr_from_repr(b: &mut ::test::Bencher) {
}
#[test]
fn test_fr_repr_debug() {
fn test_fr_repr_display() {
assert_eq!(
format!("{:?}", FrRepr([0x2829c242fa826143, 0x1f32cf4dd4330917, 0x932e4e479d168cd9, 0x513c77587f563f64])),
format!("{}", FrRepr([0x2829c242fa826143, 0x1f32cf4dd4330917, 0x932e4e479d168cd9, 0x513c77587f563f64])),
"0x513c77587f563f64932e4e479d168cd91f32cf4dd43309172829c242fa826143".to_string()
);
assert_eq!(
format!("{:?}", FrRepr([0x25ebe3a3ad3c0c6a, 0x6990e39d092e817c, 0x941f900d42f5658e, 0x44f8a103b38a71e0])),
format!("{}", FrRepr([0x25ebe3a3ad3c0c6a, 0x6990e39d092e817c, 0x941f900d42f5658e, 0x44f8a103b38a71e0])),
"0x44f8a103b38a71e0941f900d42f5658e6990e39d092e817c25ebe3a3ad3c0c6a".to_string()
);
assert_eq!(
format!("{:?}", FrRepr([0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff])),
format!("{}", FrRepr([0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff])),
"0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff".to_string()
);
assert_eq!(
format!("{:?}", FrRepr([0, 0, 0, 0])),
format!("{}", FrRepr([0, 0, 0, 0])),
"0x0000000000000000000000000000000000000000000000000000000000000000".to_string()
);
}
#[test]
fn test_fr_debug() {
fn test_fr_display() {
assert_eq!(
format!("{:?}", Fr::from_repr(FrRepr([0xc3cae746a3b5ecc7, 0x185ec8eb3f5b5aee, 0x684499ffe4b9dd99, 0x7c9bba7afb68faa])).unwrap()),
format!("{}", Fr::from_repr(FrRepr([0xc3cae746a3b5ecc7, 0x185ec8eb3f5b5aee, 0x684499ffe4b9dd99, 0x7c9bba7afb68faa])).unwrap()),
"Fr(0x07c9bba7afb68faa684499ffe4b9dd99185ec8eb3f5b5aeec3cae746a3b5ecc7)".to_string()
);
assert_eq!(
format!("{:?}", Fr::from_repr(FrRepr([0x44c71298ff198106, 0xb0ad10817df79b6a, 0xd034a80a2b74132b, 0x41cf9a1336f50719])).unwrap()),
format!("{}", Fr::from_repr(FrRepr([0x44c71298ff198106, 0xb0ad10817df79b6a, 0xd034a80a2b74132b, 0x41cf9a1336f50719])).unwrap()),
"Fr(0x41cf9a1336f50719d034a80a2b74132bb0ad10817df79b6a44c71298ff198106)".to_string()
);
}

View File

@ -46,3 +46,508 @@ fn test_g2_compressed_valid_vectors() {
test_vectors::<G2, G2Compressed>(include_bytes!("g2_compressed_valid_test_vectors.dat"));
}
#[test]
fn test_g1_uncompressed_invalid_vectors() {
{
let z = G1Affine::zero().into_uncompressed();
{
let mut z = z;
z.as_mut()[0] |= 0b1000_0000;
if let Err(GroupDecodingError::UnexpectedCompressionMode) = z.into_affine() {
// :)
} else {
panic!("should have rejected the point because we expected an uncompressed point");
}
}
{
let mut z = z;
z.as_mut()[0] |= 0b0010_0000;
if let Err(GroupDecodingError::UnexpectedInformation) = z.into_affine() {
// :)
} else {
panic!("should have rejected the point because the parity bit should not be set if the point is at infinity");
}
}
for i in 0..G1Uncompressed::size() {
let mut z = z;
z.as_mut()[i] |= 0b0000_0001;
if let Err(GroupDecodingError::UnexpectedInformation) = z.into_affine() {
// :)
} else {
panic!("should have rejected the point because the coordinates should be zeroes at the point at infinity");
}
}
}
let o = G1Affine::one().into_uncompressed();
{
let mut o = o;
o.as_mut()[0] |= 0b1000_0000;
if let Err(GroupDecodingError::UnexpectedCompressionMode) = o.into_affine() {
// :)
} else {
panic!("should have rejected the point because we expected an uncompressed point");
}
}
let m = Fq::char();
{
let mut o = o;
m.write_be(&mut o.as_mut()[0..]).unwrap();
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate, _)) = o.into_affine() {
assert_eq!(coordinate, "x coordinate");
} else {
panic!("should have rejected the point")
}
}
{
let mut o = o;
m.write_be(&mut o.as_mut()[48..]).unwrap();
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate, _)) = o.into_affine() {
assert_eq!(coordinate, "y coordinate");
} else {
panic!("should have rejected the point")
}
}
{
let m = Fq::zero().into_repr();
let mut o = o;
m.write_be(&mut o.as_mut()[0..]).unwrap();
if let Err(GroupDecodingError::NotOnCurve) = o.into_affine() {
// :)
} else {
panic!("should have rejected the point because it isn't on the curve")
}
}
{
let mut o = o;
let mut x = Fq::one();
loop {
let mut x3b = x;
x3b.square();
x3b.mul_assign(&x);
x3b.add_assign(&Fq::from_repr(FqRepr::from(4)).unwrap()); // TODO: perhaps expose coeff_b through API?
if let Some(y) = x3b.sqrt() {
// We know this is on the curve, but it's likely not going to be in the correct subgroup.
x.into_repr().write_be(&mut o.as_mut()[0..]).unwrap();
y.into_repr().write_be(&mut o.as_mut()[48..]).unwrap();
if let Err(GroupDecodingError::NotInSubgroup) = o.into_affine() {
break
} else {
panic!("should have rejected the point because it isn't in the correct subgroup")
}
} else {
x.add_assign(&Fq::one());
}
}
}
}
#[test]
fn test_g2_uncompressed_invalid_vectors() {
{
let z = G2Affine::zero().into_uncompressed();
{
let mut z = z;
z.as_mut()[0] |= 0b1000_0000;
if let Err(GroupDecodingError::UnexpectedCompressionMode) = z.into_affine() {
// :)
} else {
panic!("should have rejected the point because we expected an uncompressed point");
}
}
{
let mut z = z;
z.as_mut()[0] |= 0b0010_0000;
if let Err(GroupDecodingError::UnexpectedInformation) = z.into_affine() {
// :)
} else {
panic!("should have rejected the point because the parity bit should not be set if the point is at infinity");
}
}
for i in 0..G2Uncompressed::size() {
let mut z = z;
z.as_mut()[i] |= 0b0000_0001;
if let Err(GroupDecodingError::UnexpectedInformation) = z.into_affine() {
// :)
} else {
panic!("should have rejected the point because the coordinates should be zeroes at the point at infinity");
}
}
}
let o = G2Affine::one().into_uncompressed();
{
let mut o = o;
o.as_mut()[0] |= 0b1000_0000;
if let Err(GroupDecodingError::UnexpectedCompressionMode) = o.into_affine() {
// :)
} else {
panic!("should have rejected the point because we expected an uncompressed point");
}
}
let m = Fq::char();
{
let mut o = o;
m.write_be(&mut o.as_mut()[0..]).unwrap();
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate, _)) = o.into_affine() {
assert_eq!(coordinate, "x coordinate (c1)");
} else {
panic!("should have rejected the point")
}
}
{
let mut o = o;
m.write_be(&mut o.as_mut()[48..]).unwrap();
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate, _)) = o.into_affine() {
assert_eq!(coordinate, "x coordinate (c0)");
} else {
panic!("should have rejected the point")
}
}
{
let mut o = o;
m.write_be(&mut o.as_mut()[96..]).unwrap();
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate, _)) = o.into_affine() {
assert_eq!(coordinate, "y coordinate (c1)");
} else {
panic!("should have rejected the point")
}
}
{
let mut o = o;
m.write_be(&mut o.as_mut()[144..]).unwrap();
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate, _)) = o.into_affine() {
assert_eq!(coordinate, "y coordinate (c0)");
} else {
panic!("should have rejected the point")
}
}
{
let m = Fq::zero().into_repr();
let mut o = o;
m.write_be(&mut o.as_mut()[0..]).unwrap();
m.write_be(&mut o.as_mut()[48..]).unwrap();
if let Err(GroupDecodingError::NotOnCurve) = o.into_affine() {
// :)
} else {
panic!("should have rejected the point because it isn't on the curve")
}
}
{
let mut o = o;
let mut x = Fq2::one();
loop {
let mut x3b = x;
x3b.square();
x3b.mul_assign(&x);
x3b.add_assign(&Fq2 {
c0: Fq::from_repr(FqRepr::from(4)).unwrap(),
c1: Fq::from_repr(FqRepr::from(4)).unwrap()
}); // TODO: perhaps expose coeff_b through API?
if let Some(y) = x3b.sqrt() {
// We know this is on the curve, but it's likely not going to be in the correct subgroup.
x.c1.into_repr().write_be(&mut o.as_mut()[0..]).unwrap();
x.c0.into_repr().write_be(&mut o.as_mut()[48..]).unwrap();
y.c1.into_repr().write_be(&mut o.as_mut()[96..]).unwrap();
y.c0.into_repr().write_be(&mut o.as_mut()[144..]).unwrap();
if let Err(GroupDecodingError::NotInSubgroup) = o.into_affine() {
break
} else {
panic!("should have rejected the point because it isn't in the correct subgroup")
}
} else {
x.add_assign(&Fq2::one());
}
}
}
}
#[test]
fn test_g1_compressed_invalid_vectors() {
{
let z = G1Affine::zero().into_compressed();
{
let mut z = z;
z.as_mut()[0] &= 0b0111_1111;
if let Err(GroupDecodingError::UnexpectedCompressionMode) = z.into_affine() {
// :)
} else {
panic!("should have rejected the point because we expected a compressed point");
}
}
{
let mut z = z;
z.as_mut()[0] |= 0b0010_0000;
if let Err(GroupDecodingError::UnexpectedInformation) = z.into_affine() {
// :)
} else {
panic!("should have rejected the point because the parity bit should not be set if the point is at infinity");
}
}
for i in 0..G1Compressed::size() {
let mut z = z;
z.as_mut()[i] |= 0b0000_0001;
if let Err(GroupDecodingError::UnexpectedInformation) = z.into_affine() {
// :)
} else {
panic!("should have rejected the point because the coordinates should be zeroes at the point at infinity");
}
}
}
let o = G1Affine::one().into_compressed();
{
let mut o = o;
o.as_mut()[0] &= 0b0111_1111;
if let Err(GroupDecodingError::UnexpectedCompressionMode) = o.into_affine() {
// :)
} else {
panic!("should have rejected the point because we expected a compressed point");
}
}
let m = Fq::char();
{
let mut o = o;
m.write_be(&mut o.as_mut()[0..]).unwrap();
o.as_mut()[0] |= 0b1000_0000;
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate, _)) = o.into_affine() {
assert_eq!(coordinate, "x coordinate");
} else {
panic!("should have rejected the point")
}
}
{
let mut o = o;
let mut x = Fq::one();
loop {
let mut x3b = x;
x3b.square();
x3b.mul_assign(&x);
x3b.add_assign(&Fq::from_repr(FqRepr::from(4)).unwrap()); // TODO: perhaps expose coeff_b through API?
if let Some(_) = x3b.sqrt() {
x.add_assign(&Fq::one());
} else {
x.into_repr().write_be(&mut o.as_mut()[0..]).unwrap();
o.as_mut()[0] |= 0b1000_0000;
if let Err(GroupDecodingError::NotOnCurve) = o.into_affine() {
break
} else {
panic!("should have rejected the point because it isn't on the curve")
}
}
}
}
{
let mut o = o;
let mut x = Fq::one();
loop {
let mut x3b = x;
x3b.square();
x3b.mul_assign(&x);
x3b.add_assign(&Fq::from_repr(FqRepr::from(4)).unwrap()); // TODO: perhaps expose coeff_b through API?
if let Some(_) = x3b.sqrt() {
// We know this is on the curve, but it's likely not going to be in the correct subgroup.
x.into_repr().write_be(&mut o.as_mut()[0..]).unwrap();
o.as_mut()[0] |= 0b1000_0000;
if let Err(GroupDecodingError::NotInSubgroup) = o.into_affine() {
break
} else {
panic!("should have rejected the point because it isn't in the correct subgroup")
}
} else {
x.add_assign(&Fq::one());
}
}
}
}
#[test]
fn test_g2_compressed_invalid_vectors() {
{
let z = G2Affine::zero().into_compressed();
{
let mut z = z;
z.as_mut()[0] &= 0b0111_1111;
if let Err(GroupDecodingError::UnexpectedCompressionMode) = z.into_affine() {
// :)
} else {
panic!("should have rejected the point because we expected a compressed point");
}
}
{
let mut z = z;
z.as_mut()[0] |= 0b0010_0000;
if let Err(GroupDecodingError::UnexpectedInformation) = z.into_affine() {
// :)
} else {
panic!("should have rejected the point because the parity bit should not be set if the point is at infinity");
}
}
for i in 0..G2Compressed::size() {
let mut z = z;
z.as_mut()[i] |= 0b0000_0001;
if let Err(GroupDecodingError::UnexpectedInformation) = z.into_affine() {
// :)
} else {
panic!("should have rejected the point because the coordinates should be zeroes at the point at infinity");
}
}
}
let o = G2Affine::one().into_compressed();
{
let mut o = o;
o.as_mut()[0] &= 0b0111_1111;
if let Err(GroupDecodingError::UnexpectedCompressionMode) = o.into_affine() {
// :)
} else {
panic!("should have rejected the point because we expected a compressed point");
}
}
let m = Fq::char();
{
let mut o = o;
m.write_be(&mut o.as_mut()[0..]).unwrap();
o.as_mut()[0] |= 0b1000_0000;
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate, _)) = o.into_affine() {
assert_eq!(coordinate, "x coordinate (c1)");
} else {
panic!("should have rejected the point")
}
}
{
let mut o = o;
m.write_be(&mut o.as_mut()[48..]).unwrap();
o.as_mut()[0] |= 0b1000_0000;
if let Err(GroupDecodingError::CoordinateDecodingError(coordinate, _)) = o.into_affine() {
assert_eq!(coordinate, "x coordinate (c0)");
} else {
panic!("should have rejected the point")
}
}
{
let mut o = o;
let mut x = Fq2 {
c0: Fq::one(),
c1: Fq::one()
};
loop {
let mut x3b = x;
x3b.square();
x3b.mul_assign(&x);
x3b.add_assign(&Fq2 {
c0: Fq::from_repr(FqRepr::from(4)).unwrap(),
c1: Fq::from_repr(FqRepr::from(4)).unwrap(),
}); // TODO: perhaps expose coeff_b through API?
if let Some(_) = x3b.sqrt() {
x.add_assign(&Fq2::one());
} else {
x.c1.into_repr().write_be(&mut o.as_mut()[0..]).unwrap();
x.c0.into_repr().write_be(&mut o.as_mut()[48..]).unwrap();
o.as_mut()[0] |= 0b1000_0000;
if let Err(GroupDecodingError::NotOnCurve) = o.into_affine() {
break
} else {
panic!("should have rejected the point because it isn't on the curve")
}
}
}
}
{
let mut o = o;
let mut x = Fq2 {
c0: Fq::one(),
c1: Fq::one()
};
loop {
let mut x3b = x;
x3b.square();
x3b.mul_assign(&x);
x3b.add_assign(&Fq2 {
c0: Fq::from_repr(FqRepr::from(4)).unwrap(),
c1: Fq::from_repr(FqRepr::from(4)).unwrap(),
}); // TODO: perhaps expose coeff_b through API?
if let Some(_) = x3b.sqrt() {
// We know this is on the curve, but it's likely not going to be in the correct subgroup.
x.c1.into_repr().write_be(&mut o.as_mut()[0..]).unwrap();
x.c0.into_repr().write_be(&mut o.as_mut()[48..]).unwrap();
o.as_mut()[0] |= 0b1000_0000;
if let Err(GroupDecodingError::NotInSubgroup) = o.into_affine() {
break
} else {
panic!("should have rejected the point because it isn't in the correct subgroup")
}
} else {
x.add_assign(&Fq2::one());
}
}
}
}

View File

@ -28,6 +28,8 @@ pub mod bls12_381;
pub mod wnaf;
use std::fmt;
use std::error::Error;
use std::io::{self, Read, Write};
/// An "engine" is a collection of types (fields, elliptic curve groups, etc.)
/// with well-defined relationships. In particular, the G1/G2 curve groups are
@ -91,6 +93,7 @@ pub trait CurveProjective: PartialEq +
Send +
Sync +
fmt::Debug +
fmt::Display +
rand::Rand +
'static
{
@ -158,6 +161,7 @@ pub trait CurveAffine: Copy +
Send +
Sync +
fmt::Debug +
fmt::Display +
PartialEq +
Eq +
'static
@ -179,9 +183,6 @@ pub trait CurveAffine: Copy +
/// additive identity.
fn is_zero(&self) -> bool;
/// Determines if this point is on the curve and in the correct subgroup.
fn is_valid(&self) -> bool;
/// Negates this element.
fn negate(&mut self);
@ -213,6 +214,8 @@ pub trait EncodedPoint: Sized +
Sync +
AsRef<[u8]> +
AsMut<[u8]> +
Clone +
Copy +
'static
{
type Affine: CurveAffine;
@ -224,21 +227,17 @@ pub trait EncodedPoint: Sized +
fn size() -> usize;
/// Converts an `EncodedPoint` into a `CurveAffine` element,
/// if the point is valid.
fn into_affine(&self) -> Result<Self::Affine, ()> {
let affine = self.into_affine_unchecked()?;
if affine.is_valid() {
Ok(affine)
} else {
Err(())
}
}
/// if the encoding represents a valid element.
fn into_affine(&self) -> Result<Self::Affine, GroupDecodingError>;
/// Converts an `EncodedPoint` into a `CurveAffine` element,
/// without checking if it's a valid point. Caller must be careful
/// when using this, as misuse can violate API invariants.
fn into_affine_unchecked(&self) -> Result<Self::Affine, ()>;
/// without guaranteeing that the encoding represents a valid
/// element. This is useful when the caller knows the encoding is
/// valid already.
///
/// If the encoding is invalid, this can break API invariants,
/// so caution is strongly encouraged.
fn into_affine_unchecked(&self) -> Result<Self::Affine, GroupDecodingError>;
/// Creates an `EncodedPoint` from an affine point, as long as the
/// point is not the point at infinity.
@ -253,6 +252,7 @@ pub trait Field: Sized +
Send +
Sync +
fmt::Debug +
fmt::Display +
'static +
rand::Rand
{
@ -333,9 +333,11 @@ pub trait PrimeFieldRepr: Sized +
Send +
Sync +
fmt::Debug +
fmt::Display +
'static +
rand::Rand +
AsRef<[u64]> +
AsMut<[u64]> +
From<u64>
{
/// Subtract another reprensetation from this one, returning the borrow bit.
@ -366,6 +368,96 @@ pub trait PrimeFieldRepr: Sized +
/// Performs a leftwise bitshift of this number, effectively multiplying
/// it by 2. Overflow is ignored.
fn mul2(&mut self);
/// Writes this `PrimeFieldRepr` as a big endian integer. Always writes
/// `(num_bits` / 8) bytes.
fn write_be<W: Write>(&self, mut writer: W) -> io::Result<()> {
use byteorder::{WriteBytesExt, BigEndian};
for digit in self.as_ref().iter().rev() {
writer.write_u64::<BigEndian>(*digit)?;
}
Ok(())
}
/// Reads a big endian integer occupying (`num_bits` / 8) bytes into this
/// representation.
fn read_be<R: Read>(&mut self, mut reader: R) -> io::Result<()> {
use byteorder::{ReadBytesExt, BigEndian};
for digit in self.as_mut().iter_mut().rev() {
*digit = reader.read_u64::<BigEndian>()?;
}
Ok(())
}
}
/// An error that may occur when trying to interpret a `PrimeFieldRepr` as a
/// `PrimeField` element.
#[derive(Debug)]
pub enum PrimeFieldDecodingError {
/// The encoded value is not in the field
NotInField(String)
}
impl Error for PrimeFieldDecodingError {
fn description(&self) -> &str {
match *self {
PrimeFieldDecodingError::NotInField(..) => "not an element of the field"
}
}
}
impl fmt::Display for PrimeFieldDecodingError {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
match *self {
PrimeFieldDecodingError::NotInField(ref repr) => {
write!(f, "{} is not an element of the field", repr)
}
}
}
}
/// An error that may occur when trying to decode an `EncodedPoint`.
#[derive(Debug)]
pub enum GroupDecodingError {
/// The coordinate(s) do not lie on the curve.
NotOnCurve,
/// The element is not part of the r-order subgroup.
NotInSubgroup,
/// One of the coordinates could not be decoded
CoordinateDecodingError(&'static str, PrimeFieldDecodingError),
/// The compression mode of the encoded elemnet was not as expected
UnexpectedCompressionMode,
/// The encoding contained bits that should not have been set
UnexpectedInformation
}
impl Error for GroupDecodingError {
fn description(&self) -> &str {
match *self {
GroupDecodingError::NotOnCurve => "coordinate(s) do not lie on the curve",
GroupDecodingError::NotInSubgroup => "the element is not part of an r-order subgroup",
GroupDecodingError::CoordinateDecodingError(..) => "coordinate(s) could not be decoded",
GroupDecodingError::UnexpectedCompressionMode => "encoding has unexpected compression mode",
GroupDecodingError::UnexpectedInformation => "encoding has unexpected information"
}
}
}
impl fmt::Display for GroupDecodingError {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
match *self {
GroupDecodingError::CoordinateDecodingError(description, ref err) => {
write!(f, "{} decoding error: {}", description, err)
},
_ => {
write!(f, "{}", self.description())
}
}
}
}
/// This represents an element of a prime field.
@ -376,7 +468,7 @@ pub trait PrimeField: Field
type Repr: PrimeFieldRepr + From<Self>;
/// Convert this prime field element into a biginteger representation.
fn from_repr(Self::Repr) -> Result<Self, ()>;
fn from_repr(Self::Repr) -> Result<Self, PrimeFieldDecodingError>;
/// Convert a biginteger reprensentation into a prime field element, if
/// the number is an element of the field.