commit
c091e274ee
|
@ -16,7 +16,7 @@ features = ["expose-arith"]
|
|||
rand = "0.3"
|
||||
blake2 = "0.7"
|
||||
digest = "0.7"
|
||||
bellman = "0.0.7"
|
||||
bellman = "0.0.8"
|
||||
|
||||
[features]
|
||||
default = ["u128-support"]
|
||||
|
|
|
@ -90,13 +90,13 @@ const SIGMA: [[usize; 16]; 10] = [
|
|||
|
||||
fn mixing_g<E: Engine, CS: ConstraintSystem<E>>(
|
||||
mut cs: CS,
|
||||
v: &mut [UInt32<CS::Variable>],
|
||||
v: &mut [UInt32],
|
||||
a: usize,
|
||||
b: usize,
|
||||
c: usize,
|
||||
d: usize,
|
||||
x: &UInt32<CS::Variable>,
|
||||
y: &UInt32<CS::Variable>
|
||||
x: &UInt32,
|
||||
y: &UInt32
|
||||
) -> Result<(), SynthesisError>
|
||||
{
|
||||
v[a] = UInt32::addmany(cs.namespace(|| "mixing step 1"), &[v[a].clone(), v[b].clone(), x.clone()])?;
|
||||
|
@ -162,8 +162,8 @@ fn mixing_g<E: Engine, CS: ConstraintSystem<E>>(
|
|||
|
||||
fn blake2s_compression<E: Engine, CS: ConstraintSystem<E>>(
|
||||
mut cs: CS,
|
||||
h: &mut [UInt32<CS::Variable>],
|
||||
m: &[UInt32<CS::Variable>],
|
||||
h: &mut [UInt32],
|
||||
m: &[UInt32],
|
||||
t: u64,
|
||||
f: bool
|
||||
) -> Result<(), SynthesisError>
|
||||
|
@ -254,8 +254,8 @@ fn blake2s_compression<E: Engine, CS: ConstraintSystem<E>>(
|
|||
|
||||
pub fn blake2s<E: Engine, CS: ConstraintSystem<E>>(
|
||||
mut cs: CS,
|
||||
input: &[Boolean<CS::Variable>]
|
||||
) -> Result<Vec<Boolean<CS::Variable>>, SynthesisError>
|
||||
input: &[Boolean]
|
||||
) -> Result<Vec<Boolean>, SynthesisError>
|
||||
{
|
||||
assert!(input.len() % 8 == 0);
|
||||
|
||||
|
@ -269,7 +269,7 @@ pub fn blake2s<E: Engine, CS: ConstraintSystem<E>>(
|
|||
h.push(UInt32::constant(0x1F83D9AB));
|
||||
h.push(UInt32::constant(0x5BE0CD19));
|
||||
|
||||
let mut blocks: Vec<Vec<UInt32<CS::Variable>>> = vec![];
|
||||
let mut blocks: Vec<Vec<UInt32>> = vec![];
|
||||
|
||||
for block in input.chunks(512) {
|
||||
let mut this_block = Vec::with_capacity(16);
|
||||
|
|
|
@ -9,7 +9,8 @@ use pairing::{
|
|||
use bellman::{
|
||||
ConstraintSystem,
|
||||
SynthesisError,
|
||||
LinearCombination
|
||||
LinearCombination,
|
||||
Variable
|
||||
};
|
||||
|
||||
use super::{
|
||||
|
@ -19,17 +20,17 @@ use super::{
|
|||
/// Represents a variable in the constraint system which is guaranteed
|
||||
/// to be either zero or one.
|
||||
#[derive(Clone)]
|
||||
pub struct AllocatedBit<Var> {
|
||||
variable: Var,
|
||||
pub struct AllocatedBit {
|
||||
variable: Variable,
|
||||
value: Option<bool>
|
||||
}
|
||||
|
||||
impl<Var: Copy> AllocatedBit<Var> {
|
||||
impl AllocatedBit {
|
||||
pub fn get_value(&self) -> Option<bool> {
|
||||
self.value
|
||||
}
|
||||
|
||||
pub fn get_variable(&self) -> Var {
|
||||
pub fn get_variable(&self) -> Variable {
|
||||
self.variable
|
||||
}
|
||||
|
||||
|
@ -40,7 +41,7 @@ impl<Var: Copy> AllocatedBit<Var> {
|
|||
value: Option<bool>,
|
||||
) -> Result<Self, SynthesisError>
|
||||
where E: Engine,
|
||||
CS: ConstraintSystem<E, Variable=Var>
|
||||
CS: ConstraintSystem<E>
|
||||
{
|
||||
let var = cs.alloc(|| "boolean", || {
|
||||
if *value.get()? {
|
||||
|
@ -52,12 +53,11 @@ impl<Var: Copy> AllocatedBit<Var> {
|
|||
|
||||
// Constrain: (1 - a) * a = 0
|
||||
// This constrains a to be either 0 or 1.
|
||||
let one = cs.one();
|
||||
cs.enforce(
|
||||
|| "boolean constraint",
|
||||
LinearCombination::zero() + one - var,
|
||||
LinearCombination::zero() + var,
|
||||
LinearCombination::zero()
|
||||
|lc| lc + CS::one() - var,
|
||||
|lc| lc + var,
|
||||
|lc| lc
|
||||
);
|
||||
|
||||
Ok(AllocatedBit {
|
||||
|
@ -74,7 +74,7 @@ impl<Var: Copy> AllocatedBit<Var> {
|
|||
b: &Self
|
||||
) -> Result<Self, SynthesisError>
|
||||
where E: Engine,
|
||||
CS: ConstraintSystem<E, Variable=Var>
|
||||
CS: ConstraintSystem<E>
|
||||
{
|
||||
let mut result_value = None;
|
||||
|
||||
|
@ -107,9 +107,9 @@ impl<Var: Copy> AllocatedBit<Var> {
|
|||
// (a + a) * b = a + b - c
|
||||
cs.enforce(
|
||||
|| "xor constraint",
|
||||
LinearCombination::zero() + a.variable + a.variable,
|
||||
LinearCombination::zero() + b.variable,
|
||||
LinearCombination::zero() + a.variable + b.variable - result_var
|
||||
|lc| lc + a.variable + a.variable,
|
||||
|lc| lc + b.variable,
|
||||
|lc| lc + a.variable + b.variable - result_var
|
||||
);
|
||||
|
||||
Ok(AllocatedBit {
|
||||
|
@ -126,7 +126,7 @@ impl<Var: Copy> AllocatedBit<Var> {
|
|||
b: &Self
|
||||
) -> Result<Self, SynthesisError>
|
||||
where E: Engine,
|
||||
CS: ConstraintSystem<E, Variable=Var>
|
||||
CS: ConstraintSystem<E>
|
||||
{
|
||||
let mut result_value = None;
|
||||
|
||||
|
@ -146,9 +146,9 @@ impl<Var: Copy> AllocatedBit<Var> {
|
|||
// a AND b are both 1.
|
||||
cs.enforce(
|
||||
|| "and constraint",
|
||||
LinearCombination::zero() + a.variable,
|
||||
LinearCombination::zero() + b.variable,
|
||||
LinearCombination::zero() + result_var
|
||||
|lc| lc + a.variable,
|
||||
|lc| lc + b.variable,
|
||||
|lc| lc + result_var
|
||||
);
|
||||
|
||||
Ok(AllocatedBit {
|
||||
|
@ -164,7 +164,7 @@ impl<Var: Copy> AllocatedBit<Var> {
|
|||
b: &Self
|
||||
) -> Result<Self, SynthesisError>
|
||||
where E: Engine,
|
||||
CS: ConstraintSystem<E, Variable=Var>
|
||||
CS: ConstraintSystem<E>
|
||||
{
|
||||
let mut result_value = None;
|
||||
|
||||
|
@ -182,12 +182,11 @@ impl<Var: Copy> AllocatedBit<Var> {
|
|||
|
||||
// Constrain (a) * (1 - b) = (c), ensuring c is 1 iff
|
||||
// a is true and b is false, and otherwise c is 0.
|
||||
let one = cs.one();
|
||||
cs.enforce(
|
||||
|| "and not constraint",
|
||||
LinearCombination::zero() + a.variable,
|
||||
LinearCombination::zero() + one - b.variable,
|
||||
LinearCombination::zero() + result_var
|
||||
|lc| lc + a.variable,
|
||||
|lc| lc + CS::one() - b.variable,
|
||||
|lc| lc + result_var
|
||||
);
|
||||
|
||||
Ok(AllocatedBit {
|
||||
|
@ -203,7 +202,7 @@ impl<Var: Copy> AllocatedBit<Var> {
|
|||
b: &Self
|
||||
) -> Result<Self, SynthesisError>
|
||||
where E: Engine,
|
||||
CS: ConstraintSystem<E, Variable=Var>
|
||||
CS: ConstraintSystem<E>
|
||||
{
|
||||
let mut result_value = None;
|
||||
|
||||
|
@ -221,12 +220,11 @@ impl<Var: Copy> AllocatedBit<Var> {
|
|||
|
||||
// Constrain (1 - a) * (1 - b) = (c), ensuring c is 1 iff
|
||||
// a and b are both false, and otherwise c is 0.
|
||||
let one = cs.one();
|
||||
cs.enforce(
|
||||
|| "nor constraint",
|
||||
LinearCombination::zero() + one - a.variable,
|
||||
LinearCombination::zero() + one - b.variable,
|
||||
LinearCombination::zero() + result_var
|
||||
|lc| lc + CS::one() - a.variable,
|
||||
|lc| lc + CS::one() - b.variable,
|
||||
|lc| lc + result_var
|
||||
);
|
||||
|
||||
Ok(AllocatedBit {
|
||||
|
@ -239,23 +237,23 @@ impl<Var: Copy> AllocatedBit<Var> {
|
|||
/// This is a boolean value which may be either a constant or
|
||||
/// an interpretation of an `AllocatedBit`.
|
||||
#[derive(Clone)]
|
||||
pub enum Boolean<Var> {
|
||||
pub enum Boolean {
|
||||
/// Existential view of the boolean variable
|
||||
Is(AllocatedBit<Var>),
|
||||
Is(AllocatedBit),
|
||||
/// Negated view of the boolean variable
|
||||
Not(AllocatedBit<Var>),
|
||||
Not(AllocatedBit),
|
||||
/// Constant (not an allocated variable)
|
||||
Constant(bool)
|
||||
}
|
||||
|
||||
impl<Var: Copy> Boolean<Var> {
|
||||
impl Boolean {
|
||||
pub fn enforce_equal<E, CS>(
|
||||
mut cs: CS,
|
||||
a: &Self,
|
||||
b: &Self
|
||||
) -> Result<(), SynthesisError>
|
||||
where E: Engine,
|
||||
CS: ConstraintSystem<E, Variable=Var>
|
||||
CS: ConstraintSystem<E>
|
||||
{
|
||||
let c = Self::xor(&mut cs, a, b)?;
|
||||
|
||||
|
@ -270,21 +268,25 @@ impl<Var: Copy> Boolean<Var> {
|
|||
}
|
||||
}
|
||||
|
||||
pub fn lc<E: Engine>(&self, one: Var, coeff: E::Fr) -> LinearCombination<Var, E>
|
||||
pub fn lc<E: Engine>(
|
||||
&self,
|
||||
one: Variable,
|
||||
coeff: E::Fr
|
||||
) -> LinearCombination<E>
|
||||
{
|
||||
match self {
|
||||
&Boolean::Constant(c) => {
|
||||
if c {
|
||||
LinearCombination::<Var, E>::zero() + (coeff, one)
|
||||
LinearCombination::<E>::zero() + (coeff, one)
|
||||
} else {
|
||||
LinearCombination::<Var, E>::zero()
|
||||
LinearCombination::<E>::zero()
|
||||
}
|
||||
},
|
||||
&Boolean::Is(ref v) => {
|
||||
LinearCombination::<Var, E>::zero() + (coeff, v.get_variable())
|
||||
LinearCombination::<E>::zero() + (coeff, v.get_variable())
|
||||
},
|
||||
&Boolean::Not(ref v) => {
|
||||
LinearCombination::<Var, E>::zero() + (coeff, one) - (coeff, v.get_variable())
|
||||
LinearCombination::<E>::zero() + (coeff, one) - (coeff, v.get_variable())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -310,7 +312,7 @@ impl<Var: Copy> Boolean<Var> {
|
|||
b: &'a Self
|
||||
) -> Result<Self, SynthesisError>
|
||||
where E: Engine,
|
||||
CS: ConstraintSystem<E, Variable=Var>
|
||||
CS: ConstraintSystem<E>
|
||||
{
|
||||
match (a, b) {
|
||||
(&Boolean::Constant(false), x) | (x, &Boolean::Constant(false)) => Ok(x.clone()),
|
||||
|
@ -337,7 +339,7 @@ impl<Var: Copy> Boolean<Var> {
|
|||
b: &'a Self
|
||||
) -> Result<Self, SynthesisError>
|
||||
where E: Engine,
|
||||
CS: ConstraintSystem<E, Variable=Var>
|
||||
CS: ConstraintSystem<E>
|
||||
{
|
||||
match (a, b) {
|
||||
// false AND x is always false
|
||||
|
@ -364,7 +366,7 @@ impl<Var: Copy> Boolean<Var> {
|
|||
bits: &[Self]
|
||||
) -> Result<Self, SynthesisError>
|
||||
where E: Engine,
|
||||
CS: ConstraintSystem<E, Variable=Var>
|
||||
CS: ConstraintSystem<E>
|
||||
{
|
||||
assert!(bits.len() > 0);
|
||||
let mut bits = bits.iter();
|
||||
|
@ -387,7 +389,7 @@ impl<Var: Copy> Boolean<Var> {
|
|||
bits: &[Self]
|
||||
) -> Result<(), SynthesisError>
|
||||
where E: Engine,
|
||||
CS: ConstraintSystem<E, Variable=Var>
|
||||
CS: ConstraintSystem<E>
|
||||
{
|
||||
let res = Self::kary_and(&mut cs, bits)?;
|
||||
|
||||
|
@ -396,25 +398,24 @@ impl<Var: Copy> Boolean<Var> {
|
|||
Ok(())
|
||||
},
|
||||
Boolean::Constant(true) => {
|
||||
Err(SynthesisError::AssignmentMissing)
|
||||
Err(SynthesisError::Unsatisfiable)
|
||||
},
|
||||
Boolean::Is(ref res) => {
|
||||
cs.enforce(
|
||||
|| "enforce nand",
|
||||
LinearCombination::zero(),
|
||||
LinearCombination::zero(),
|
||||
LinearCombination::zero() + res.get_variable()
|
||||
|lc| lc,
|
||||
|lc| lc,
|
||||
|lc| lc + res.get_variable()
|
||||
);
|
||||
|
||||
Ok(())
|
||||
},
|
||||
Boolean::Not(ref res) => {
|
||||
let one = cs.one();
|
||||
cs.enforce(
|
||||
|| "enforce nand",
|
||||
LinearCombination::zero(),
|
||||
LinearCombination::zero(),
|
||||
LinearCombination::zero() + one - res.get_variable()
|
||||
|lc| lc,
|
||||
|lc| lc,
|
||||
|lc| lc + CS::one() - res.get_variable()
|
||||
);
|
||||
|
||||
Ok(())
|
||||
|
@ -429,7 +430,7 @@ impl<Var: Copy> Boolean<Var> {
|
|||
bits: &[Self]
|
||||
) -> Result<(), SynthesisError>
|
||||
where E: Engine,
|
||||
CS: ConstraintSystem<E, Variable=Var>
|
||||
CS: ConstraintSystem<E>
|
||||
{
|
||||
assert_eq!(bits.len(), F::NUM_BITS as usize);
|
||||
|
||||
|
@ -440,7 +441,7 @@ impl<Var: Copy> Boolean<Var> {
|
|||
b.sub_noborrow(&1.into());
|
||||
|
||||
// Runs of ones in r
|
||||
let mut last_run = Boolean::<Var>::constant(true);
|
||||
let mut last_run = Boolean::constant(true);
|
||||
let mut current_run = vec![];
|
||||
|
||||
let mut found_one = false;
|
||||
|
@ -495,8 +496,8 @@ impl<Var: Copy> Boolean<Var> {
|
|||
}
|
||||
}
|
||||
|
||||
impl<Var> From<AllocatedBit<Var>> for Boolean<Var> {
|
||||
fn from(b: AllocatedBit<Var>) -> Boolean<Var> {
|
||||
impl From<AllocatedBit> for Boolean {
|
||||
fn from(b: AllocatedBit) -> Boolean {
|
||||
Boolean::Is(b)
|
||||
}
|
||||
}
|
||||
|
|
|
@ -3,8 +3,7 @@ use super::*;
|
|||
use super::num::AllocatedNum;
|
||||
use super::boolean::Boolean;
|
||||
use bellman::{
|
||||
ConstraintSystem,
|
||||
LinearCombination
|
||||
ConstraintSystem
|
||||
};
|
||||
|
||||
// Synthesize the constants for each base pattern.
|
||||
|
@ -32,12 +31,12 @@ fn synth<'a, E: Engine, I>(
|
|||
|
||||
/// Performs a 3-bit window table lookup. `bits` is in
|
||||
/// little-endian order.
|
||||
pub fn lookup3_xy<E: Engine, CS, Var: Copy>(
|
||||
pub fn lookup3_xy<E: Engine, CS>(
|
||||
mut cs: CS,
|
||||
bits: &[Boolean<Var>],
|
||||
bits: &[Boolean],
|
||||
coords: &[(E::Fr, E::Fr)]
|
||||
) -> Result<(AllocatedNum<E, Var>, AllocatedNum<E, Var>), SynthesisError>
|
||||
where CS: ConstraintSystem<E, Variable=Var>
|
||||
) -> Result<(AllocatedNum<E>, AllocatedNum<E>), SynthesisError>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
assert_eq!(bits.len(), 3);
|
||||
assert_eq!(coords.len(), 8);
|
||||
|
@ -85,34 +84,34 @@ pub fn lookup3_xy<E: Engine, CS, Var: Copy>(
|
|||
|
||||
let precomp = Boolean::and(cs.namespace(|| "precomp"), &bits[1], &bits[2])?;
|
||||
|
||||
let one = cs.one();
|
||||
let one = CS::one();
|
||||
|
||||
cs.enforce(
|
||||
|| "x-coordinate lookup",
|
||||
LinearCombination::<Var, E>::zero() + (x_coeffs[0b001], one)
|
||||
+ &bits[1].lc::<E>(one, x_coeffs[0b011])
|
||||
+ &bits[2].lc::<E>(one, x_coeffs[0b101])
|
||||
+ &precomp.lc::<E>(one, x_coeffs[0b111]),
|
||||
LinearCombination::<Var, E>::zero() + &bits[0].lc::<E>(one, E::Fr::one()),
|
||||
LinearCombination::<Var, E>::zero() + res_x.get_variable()
|
||||
- (x_coeffs[0b000], one)
|
||||
- &bits[1].lc::<E>(one, x_coeffs[0b010])
|
||||
- &bits[2].lc::<E>(one, x_coeffs[0b100])
|
||||
- &precomp.lc::<E>(one, x_coeffs[0b110]),
|
||||
|lc| lc + (x_coeffs[0b001], one)
|
||||
+ &bits[1].lc::<E>(one, x_coeffs[0b011])
|
||||
+ &bits[2].lc::<E>(one, x_coeffs[0b101])
|
||||
+ &precomp.lc::<E>(one, x_coeffs[0b111]),
|
||||
|lc| lc + &bits[0].lc::<E>(one, E::Fr::one()),
|
||||
|lc| lc + res_x.get_variable()
|
||||
- (x_coeffs[0b000], one)
|
||||
- &bits[1].lc::<E>(one, x_coeffs[0b010])
|
||||
- &bits[2].lc::<E>(one, x_coeffs[0b100])
|
||||
- &precomp.lc::<E>(one, x_coeffs[0b110]),
|
||||
);
|
||||
|
||||
cs.enforce(
|
||||
|| "y-coordinate lookup",
|
||||
LinearCombination::<Var, E>::zero() + (y_coeffs[0b001], one)
|
||||
+ &bits[1].lc::<E>(one, y_coeffs[0b011])
|
||||
+ &bits[2].lc::<E>(one, y_coeffs[0b101])
|
||||
+ &precomp.lc::<E>(one, y_coeffs[0b111]),
|
||||
LinearCombination::<Var, E>::zero() + &bits[0].lc::<E>(one, E::Fr::one()),
|
||||
LinearCombination::<Var, E>::zero() + res_y.get_variable()
|
||||
- (y_coeffs[0b000], one)
|
||||
- &bits[1].lc::<E>(one, y_coeffs[0b010])
|
||||
- &bits[2].lc::<E>(one, y_coeffs[0b100])
|
||||
- &precomp.lc::<E>(one, y_coeffs[0b110]),
|
||||
|lc| lc + (y_coeffs[0b001], one)
|
||||
+ &bits[1].lc::<E>(one, y_coeffs[0b011])
|
||||
+ &bits[2].lc::<E>(one, y_coeffs[0b101])
|
||||
+ &precomp.lc::<E>(one, y_coeffs[0b111]),
|
||||
|lc| lc + &bits[0].lc::<E>(one, E::Fr::one()),
|
||||
|lc| lc + res_y.get_variable()
|
||||
- (y_coeffs[0b000], one)
|
||||
- &bits[1].lc::<E>(one, y_coeffs[0b010])
|
||||
- &bits[2].lc::<E>(one, y_coeffs[0b100])
|
||||
- &precomp.lc::<E>(one, y_coeffs[0b110]),
|
||||
);
|
||||
|
||||
Ok((res_x, res_y))
|
||||
|
@ -120,12 +119,12 @@ pub fn lookup3_xy<E: Engine, CS, Var: Copy>(
|
|||
|
||||
/// Performs a 3-bit window table lookup, where
|
||||
/// one of the bits is a sign bit.
|
||||
pub fn lookup3_xy_with_conditional_negation<E: Engine, CS, Var: Copy>(
|
||||
pub fn lookup3_xy_with_conditional_negation<E: Engine, CS>(
|
||||
mut cs: CS,
|
||||
bits: &[Boolean<Var>],
|
||||
bits: &[Boolean],
|
||||
coords: &[(E::Fr, E::Fr)]
|
||||
) -> Result<(AllocatedNum<E, Var>, AllocatedNum<E, Var>), SynthesisError>
|
||||
where CS: ConstraintSystem<E, Variable=Var>
|
||||
) -> Result<(AllocatedNum<E>, AllocatedNum<E>), SynthesisError>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
assert_eq!(bits.len(), 3);
|
||||
assert_eq!(coords.len(), 4);
|
||||
|
@ -162,7 +161,7 @@ pub fn lookup3_xy_with_conditional_negation<E: Engine, CS, Var: Copy>(
|
|||
}
|
||||
)?;
|
||||
|
||||
let one = cs.one();
|
||||
let one = CS::one();
|
||||
|
||||
// Compute the coefficients for the lookup constraints
|
||||
let mut x_coeffs = [E::Fr::zero(); 4];
|
||||
|
@ -172,22 +171,22 @@ pub fn lookup3_xy_with_conditional_negation<E: Engine, CS, Var: Copy>(
|
|||
|
||||
cs.enforce(
|
||||
|| "x-coordinate lookup",
|
||||
LinearCombination::<Var, E>::zero() + (x_coeffs[0b01], one)
|
||||
+ &bits[1].lc::<E>(one, x_coeffs[0b11]),
|
||||
LinearCombination::<Var, E>::zero() + &bits[0].lc::<E>(one, E::Fr::one()),
|
||||
LinearCombination::<Var, E>::zero() + res_x.get_variable()
|
||||
- (x_coeffs[0b00], one)
|
||||
- &bits[1].lc::<E>(one, x_coeffs[0b10])
|
||||
|lc| lc + (x_coeffs[0b01], one)
|
||||
+ &bits[1].lc::<E>(one, x_coeffs[0b11]),
|
||||
|lc| lc + &bits[0].lc::<E>(one, E::Fr::one()),
|
||||
|lc| lc + res_x.get_variable()
|
||||
- (x_coeffs[0b00], one)
|
||||
- &bits[1].lc::<E>(one, x_coeffs[0b10])
|
||||
);
|
||||
|
||||
cs.enforce(
|
||||
|| "y-coordinate lookup",
|
||||
LinearCombination::<Var, E>::zero() + (y_coeffs[0b01], one)
|
||||
+ &bits[1].lc::<E>(one, y_coeffs[0b11]),
|
||||
LinearCombination::<Var, E>::zero() + &bits[0].lc::<E>(one, E::Fr::one()),
|
||||
LinearCombination::<Var, E>::zero() + res_y.get_variable()
|
||||
- (y_coeffs[0b00], one)
|
||||
- &bits[1].lc::<E>(one, y_coeffs[0b10])
|
||||
|lc| lc + (y_coeffs[0b01], one)
|
||||
+ &bits[1].lc::<E>(one, y_coeffs[0b11]),
|
||||
|lc| lc + &bits[0].lc::<E>(one, E::Fr::one()),
|
||||
|lc| lc + res_y.get_variable()
|
||||
- (y_coeffs[0b00], one)
|
||||
- &bits[1].lc::<E>(one, y_coeffs[0b10])
|
||||
);
|
||||
|
||||
let final_y = res_y.conditionally_negate(&mut cs, &bits[2])?;
|
||||
|
@ -290,7 +289,7 @@ mod test {
|
|||
|
||||
let window_size = 4;
|
||||
|
||||
let mut assignment = vec![Fr::zero(); (1 << window_size)];
|
||||
let mut assignment = vec![Fr::zero(); 1 << window_size];
|
||||
let constants: Vec<_> = (0..(1 << window_size)).map(|_| Fr::rand(&mut rng)).collect();
|
||||
|
||||
synth::<Bls12, _>(window_size, &constants, &mut assignment);
|
||||
|
|
|
@ -5,8 +5,8 @@ pub mod boolean;
|
|||
pub mod uint32;
|
||||
pub mod blake2s;
|
||||
pub mod num;
|
||||
pub mod mont;
|
||||
pub mod lookup;
|
||||
pub mod mont;
|
||||
pub mod pedersen_hash;
|
||||
|
||||
use bellman::SynthesisError;
|
||||
|
|
|
@ -5,8 +5,7 @@ use pairing::{
|
|||
|
||||
use bellman::{
|
||||
SynthesisError,
|
||||
ConstraintSystem,
|
||||
LinearCombination
|
||||
ConstraintSystem
|
||||
};
|
||||
|
||||
use super::{
|
||||
|
@ -27,12 +26,12 @@ use super::lookup::{
|
|||
|
||||
use super::boolean::Boolean;
|
||||
|
||||
pub struct EdwardsPoint<E: Engine, Var> {
|
||||
pub x: AllocatedNum<E, Var>,
|
||||
pub y: AllocatedNum<E, Var>
|
||||
pub struct EdwardsPoint<E: Engine> {
|
||||
pub x: AllocatedNum<E>,
|
||||
pub y: AllocatedNum<E>
|
||||
}
|
||||
|
||||
impl<E: Engine, Var: Copy> Clone for EdwardsPoint<E, Var> {
|
||||
impl<E: Engine> Clone for EdwardsPoint<E> {
|
||||
fn clone(&self) -> Self {
|
||||
EdwardsPoint {
|
||||
x: self.x.clone(),
|
||||
|
@ -44,15 +43,14 @@ impl<E: Engine, Var: Copy> Clone for EdwardsPoint<E, Var> {
|
|||
/// Perform a fixed-base scalar multiplication with
|
||||
/// `by` being in little-endian bit order. `by` must
|
||||
/// be a multiple of 3.
|
||||
pub fn fixed_base_multiplication<E, Var, CS>(
|
||||
pub fn fixed_base_multiplication<E, CS>(
|
||||
mut cs: CS,
|
||||
base: FixedGenerators,
|
||||
by: &[Boolean<Var>],
|
||||
by: &[Boolean],
|
||||
params: &E::Params
|
||||
) -> Result<EdwardsPoint<E, Var>, SynthesisError>
|
||||
where CS: ConstraintSystem<E, Variable=Var>,
|
||||
E: JubjubEngine,
|
||||
Var: Copy
|
||||
) -> Result<EdwardsPoint<E>, SynthesisError>
|
||||
where CS: ConstraintSystem<E>,
|
||||
E: JubjubEngine
|
||||
{
|
||||
// We're going to chunk the scalar into 3-bit windows,
|
||||
// so let's force the caller to supply the right number
|
||||
|
@ -91,10 +89,10 @@ pub fn fixed_base_multiplication<E, Var, CS>(
|
|||
Ok(result.get()?.clone())
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine, Var: Copy> EdwardsPoint<E, Var> {
|
||||
impl<E: JubjubEngine> EdwardsPoint<E> {
|
||||
/// This extracts the x-coordinate, which is an injective
|
||||
/// encoding for elements of the prime order subgroup.
|
||||
pub fn into_num(&self) -> AllocatedNum<E, Var> {
|
||||
pub fn into_num(&self) -> AllocatedNum<E> {
|
||||
self.x.clone()
|
||||
}
|
||||
|
||||
|
@ -103,9 +101,9 @@ impl<E: JubjubEngine, Var: Copy> EdwardsPoint<E, Var> {
|
|||
pub fn conditionally_select<CS>(
|
||||
&self,
|
||||
mut cs: CS,
|
||||
condition: &Boolean<Var>
|
||||
condition: &Boolean
|
||||
) -> Result<Self, SynthesisError>
|
||||
where CS: ConstraintSystem<E, Variable=Var>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
// Compute x' = self.x if condition, and 0 otherwise
|
||||
let x_prime = AllocatedNum::alloc(cs.namespace(|| "x'"), || {
|
||||
|
@ -119,12 +117,12 @@ impl<E: JubjubEngine, Var: Copy> EdwardsPoint<E, Var> {
|
|||
// condition * x = x'
|
||||
// if condition is 0, x' must be 0
|
||||
// if condition is 1, x' must be x
|
||||
let one = cs.one();
|
||||
let one = CS::one();
|
||||
cs.enforce(
|
||||
|| "x' computation",
|
||||
LinearCombination::<Var, E>::zero() + self.x.get_variable(),
|
||||
condition.lc(one, E::Fr::one()),
|
||||
LinearCombination::<Var, E>::zero() + x_prime.get_variable()
|
||||
|lc| lc + self.x.get_variable(),
|
||||
|_| condition.lc(one, E::Fr::one()),
|
||||
|lc| lc + x_prime.get_variable()
|
||||
);
|
||||
|
||||
// Compute y' = self.y if condition, and 1 otherwise
|
||||
|
@ -141,9 +139,9 @@ impl<E: JubjubEngine, Var: Copy> EdwardsPoint<E, Var> {
|
|||
// if condition is 1, y' must be y
|
||||
cs.enforce(
|
||||
|| "y' computation",
|
||||
LinearCombination::<Var, E>::zero() + self.y.get_variable(),
|
||||
condition.lc(one, E::Fr::one()),
|
||||
LinearCombination::<Var, E>::zero() + y_prime.get_variable()
|
||||
|lc| lc + self.y.get_variable(),
|
||||
|_| condition.lc(one, E::Fr::one()),
|
||||
|lc| lc + y_prime.get_variable()
|
||||
- &condition.not().lc(one, E::Fr::one())
|
||||
);
|
||||
|
||||
|
@ -159,10 +157,10 @@ impl<E: JubjubEngine, Var: Copy> EdwardsPoint<E, Var> {
|
|||
pub fn mul<CS>(
|
||||
&self,
|
||||
mut cs: CS,
|
||||
by: &[Boolean<Var>],
|
||||
by: &[Boolean],
|
||||
params: &E::Params
|
||||
) -> Result<Self, SynthesisError>
|
||||
where CS: ConstraintSystem<E, Variable=Var>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
// Represents the current "magnitude" of the base
|
||||
// that we're operating over. Starts at self,
|
||||
|
@ -210,11 +208,11 @@ impl<E: JubjubEngine, Var: Copy> EdwardsPoint<E, Var> {
|
|||
|
||||
pub fn interpret<CS>(
|
||||
mut cs: CS,
|
||||
x: &AllocatedNum<E, Var>,
|
||||
y: &AllocatedNum<E, Var>,
|
||||
x: &AllocatedNum<E>,
|
||||
y: &AllocatedNum<E>,
|
||||
params: &E::Params
|
||||
) -> Result<Self, SynthesisError>
|
||||
where CS: ConstraintSystem<E, Variable=Var>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
// -x^2 + y^2 = 1 + dx^2y^2
|
||||
|
||||
|
@ -222,14 +220,14 @@ impl<E: JubjubEngine, Var: Copy> EdwardsPoint<E, Var> {
|
|||
let y2 = y.square(cs.namespace(|| "y^2"))?;
|
||||
let x2y2 = x2.mul(cs.namespace(|| "x^2 y^2"), &y2)?;
|
||||
|
||||
let one = cs.one();
|
||||
let one = CS::one();
|
||||
cs.enforce(
|
||||
|| "on curve check",
|
||||
LinearCombination::zero() - x2.get_variable()
|
||||
+ y2.get_variable(),
|
||||
LinearCombination::zero() + one,
|
||||
LinearCombination::zero() + one
|
||||
+ (*params.edwards_d(), x2y2.get_variable())
|
||||
|lc| lc - x2.get_variable()
|
||||
+ y2.get_variable(),
|
||||
|lc| lc + one,
|
||||
|lc| lc + one
|
||||
+ (*params.edwards_d(), x2y2.get_variable())
|
||||
);
|
||||
|
||||
Ok(EdwardsPoint {
|
||||
|
@ -243,7 +241,7 @@ impl<E: JubjubEngine, Var: Copy> EdwardsPoint<E, Var> {
|
|||
cs: CS,
|
||||
params: &E::Params
|
||||
) -> Result<Self, SynthesisError>
|
||||
where CS: ConstraintSystem<E, Variable=Var>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
self.add(cs, self, params)
|
||||
}
|
||||
|
@ -255,7 +253,7 @@ impl<E: JubjubEngine, Var: Copy> EdwardsPoint<E, Var> {
|
|||
other: &Self,
|
||||
params: &E::Params
|
||||
) -> Result<Self, SynthesisError>
|
||||
where CS: ConstraintSystem<E, Variable=Var>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
// Compute U = (x1 + y1) * (x2 + y2)
|
||||
let u = AllocatedNum::alloc(cs.namespace(|| "U"), || {
|
||||
|
@ -272,11 +270,11 @@ impl<E: JubjubEngine, Var: Copy> EdwardsPoint<E, Var> {
|
|||
|
||||
cs.enforce(
|
||||
|| "U computation",
|
||||
LinearCombination::<Var, E>::zero() + self.x.get_variable()
|
||||
+ self.y.get_variable(),
|
||||
LinearCombination::<Var, E>::zero() + other.x.get_variable()
|
||||
+ other.y.get_variable(),
|
||||
LinearCombination::<Var, E>::zero() + u.get_variable()
|
||||
|lc| lc + self.x.get_variable()
|
||||
+ self.y.get_variable(),
|
||||
|lc| lc + other.x.get_variable()
|
||||
+ other.y.get_variable(),
|
||||
|lc| lc + u.get_variable()
|
||||
);
|
||||
|
||||
// Compute A = y2 * x1
|
||||
|
@ -296,9 +294,9 @@ impl<E: JubjubEngine, Var: Copy> EdwardsPoint<E, Var> {
|
|||
|
||||
cs.enforce(
|
||||
|| "C computation",
|
||||
LinearCombination::<Var, E>::zero() + (*params.edwards_d(), a.get_variable()),
|
||||
LinearCombination::<Var, E>::zero() + b.get_variable(),
|
||||
LinearCombination::<Var, E>::zero() + c.get_variable()
|
||||
|lc| lc + (*params.edwards_d(), a.get_variable()),
|
||||
|lc| lc + b.get_variable(),
|
||||
|lc| lc + c.get_variable()
|
||||
);
|
||||
|
||||
// Compute x3 = (A + B) / (1 + C)
|
||||
|
@ -316,18 +314,18 @@ impl<E: JubjubEngine, Var: Copy> EdwardsPoint<E, Var> {
|
|||
Ok(t0)
|
||||
},
|
||||
None => {
|
||||
Err(SynthesisError::AssignmentMissing)
|
||||
Err(SynthesisError::DivisionByZero)
|
||||
}
|
||||
}
|
||||
})?;
|
||||
|
||||
let one = cs.one();
|
||||
let one = CS::one();
|
||||
cs.enforce(
|
||||
|| "x3 computation",
|
||||
LinearCombination::<Var, E>::zero() + one + c.get_variable(),
|
||||
LinearCombination::<Var, E>::zero() + x3.get_variable(),
|
||||
LinearCombination::<Var, E>::zero() + a.get_variable()
|
||||
+ b.get_variable()
|
||||
|lc| lc + one + c.get_variable(),
|
||||
|lc| lc + x3.get_variable(),
|
||||
|lc| lc + a.get_variable()
|
||||
+ b.get_variable()
|
||||
);
|
||||
|
||||
// Compute y3 = (U - A - B) / (1 - C)
|
||||
|
@ -346,18 +344,18 @@ impl<E: JubjubEngine, Var: Copy> EdwardsPoint<E, Var> {
|
|||
Ok(t0)
|
||||
},
|
||||
None => {
|
||||
Err(SynthesisError::AssignmentMissing)
|
||||
Err(SynthesisError::DivisionByZero)
|
||||
}
|
||||
}
|
||||
})?;
|
||||
|
||||
cs.enforce(
|
||||
|| "y3 computation",
|
||||
LinearCombination::<Var, E>::zero() + one - c.get_variable(),
|
||||
LinearCombination::<Var, E>::zero() + y3.get_variable(),
|
||||
LinearCombination::<Var, E>::zero() + u.get_variable()
|
||||
- a.get_variable()
|
||||
- b.get_variable()
|
||||
|lc| lc + one - c.get_variable(),
|
||||
|lc| lc + y3.get_variable(),
|
||||
|lc| lc + u.get_variable()
|
||||
- a.get_variable()
|
||||
- b.get_variable()
|
||||
);
|
||||
|
||||
Ok(EdwardsPoint {
|
||||
|
@ -367,12 +365,12 @@ impl<E: JubjubEngine, Var: Copy> EdwardsPoint<E, Var> {
|
|||
}
|
||||
}
|
||||
|
||||
pub struct MontgomeryPoint<E: Engine, Var> {
|
||||
x: AllocatedNum<E, Var>,
|
||||
y: AllocatedNum<E, Var>
|
||||
pub struct MontgomeryPoint<E: Engine> {
|
||||
x: AllocatedNum<E>,
|
||||
y: AllocatedNum<E>
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine, Var: Copy> MontgomeryPoint<E, Var> {
|
||||
impl<E: JubjubEngine> MontgomeryPoint<E> {
|
||||
/// Converts an element in the prime order subgroup into
|
||||
/// a point in the birationally equivalent twisted
|
||||
/// Edwards curve.
|
||||
|
@ -380,8 +378,8 @@ impl<E: JubjubEngine, Var: Copy> MontgomeryPoint<E, Var> {
|
|||
&self,
|
||||
mut cs: CS,
|
||||
params: &E::Params
|
||||
) -> Result<EdwardsPoint<E, Var>, SynthesisError>
|
||||
where CS: ConstraintSystem<E, Variable=Var>
|
||||
) -> Result<EdwardsPoint<E>, SynthesisError>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
// Compute u = (scale*x) / y
|
||||
let u = AllocatedNum::alloc(cs.namespace(|| "u"), || {
|
||||
|
@ -395,16 +393,16 @@ impl<E: JubjubEngine, Var: Copy> MontgomeryPoint<E, Var> {
|
|||
Ok(t0)
|
||||
},
|
||||
None => {
|
||||
Err(SynthesisError::AssignmentMissing)
|
||||
Err(SynthesisError::DivisionByZero)
|
||||
}
|
||||
}
|
||||
})?;
|
||||
|
||||
cs.enforce(
|
||||
|| "u computation",
|
||||
LinearCombination::<Var, E>::zero() + self.y.get_variable(),
|
||||
LinearCombination::<Var, E>::zero() + u.get_variable(),
|
||||
LinearCombination::<Var, E>::zero() + (*params.scale(), self.x.get_variable())
|
||||
|lc| lc + self.y.get_variable(),
|
||||
|lc| lc + u.get_variable(),
|
||||
|lc| lc + (*params.scale(), self.x.get_variable())
|
||||
);
|
||||
|
||||
// Compute v = (x - 1) / (x + 1)
|
||||
|
@ -421,19 +419,19 @@ impl<E: JubjubEngine, Var: Copy> MontgomeryPoint<E, Var> {
|
|||
Ok(t0)
|
||||
},
|
||||
None => {
|
||||
Err(SynthesisError::AssignmentMissing)
|
||||
Err(SynthesisError::DivisionByZero)
|
||||
}
|
||||
}
|
||||
})?;
|
||||
|
||||
let one = cs.one();
|
||||
let one = CS::one();
|
||||
cs.enforce(
|
||||
|| "v computation",
|
||||
LinearCombination::<Var, E>::zero() + self.x.get_variable()
|
||||
+ one,
|
||||
LinearCombination::<Var, E>::zero() + v.get_variable(),
|
||||
LinearCombination::<Var, E>::zero() + self.x.get_variable()
|
||||
- one,
|
||||
|lc| lc + self.x.get_variable()
|
||||
+ one,
|
||||
|lc| lc + v.get_variable(),
|
||||
|lc| lc + self.x.get_variable()
|
||||
- one,
|
||||
);
|
||||
|
||||
Ok(EdwardsPoint {
|
||||
|
@ -447,8 +445,8 @@ impl<E: JubjubEngine, Var: Copy> MontgomeryPoint<E, Var> {
|
|||
/// on the curve. Useful for constants and
|
||||
/// window table lookups.
|
||||
pub fn interpret_unchecked(
|
||||
x: AllocatedNum<E, Var>,
|
||||
y: AllocatedNum<E, Var>
|
||||
x: AllocatedNum<E>,
|
||||
y: AllocatedNum<E>
|
||||
) -> Self
|
||||
{
|
||||
MontgomeryPoint {
|
||||
|
@ -465,7 +463,7 @@ impl<E: JubjubEngine, Var: Copy> MontgomeryPoint<E, Var> {
|
|||
other: &Self,
|
||||
params: &E::Params
|
||||
) -> Result<Self, SynthesisError>
|
||||
where CS: ConstraintSystem<E, Variable=Var>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
// Compute lambda = (y' - y) / (x' - x)
|
||||
let lambda = AllocatedNum::alloc(cs.namespace(|| "lambda"), || {
|
||||
|
@ -481,20 +479,20 @@ impl<E: JubjubEngine, Var: Copy> MontgomeryPoint<E, Var> {
|
|||
Ok(n)
|
||||
},
|
||||
None => {
|
||||
Err(SynthesisError::AssignmentMissing)
|
||||
Err(SynthesisError::DivisionByZero)
|
||||
}
|
||||
}
|
||||
})?;
|
||||
|
||||
cs.enforce(
|
||||
|| "evaluate lambda",
|
||||
LinearCombination::<Var, E>::zero() + other.x.get_variable()
|
||||
- self.x.get_variable(),
|
||||
|lc| lc + other.x.get_variable()
|
||||
- self.x.get_variable(),
|
||||
|
||||
LinearCombination::zero() + lambda.get_variable(),
|
||||
|lc| lc + lambda.get_variable(),
|
||||
|
||||
LinearCombination::<Var, E>::zero() + other.y.get_variable()
|
||||
- self.y.get_variable()
|
||||
|lc| lc + other.y.get_variable()
|
||||
- self.y.get_variable()
|
||||
);
|
||||
|
||||
// Compute x'' = lambda^2 - A - x - x'
|
||||
|
@ -509,15 +507,15 @@ impl<E: JubjubEngine, Var: Copy> MontgomeryPoint<E, Var> {
|
|||
})?;
|
||||
|
||||
// (lambda) * (lambda) = (A + x + x' + x'')
|
||||
let one = cs.one();
|
||||
let one = CS::one();
|
||||
cs.enforce(
|
||||
|| "evaluate xprime",
|
||||
LinearCombination::zero() + lambda.get_variable(),
|
||||
LinearCombination::zero() + lambda.get_variable(),
|
||||
LinearCombination::<Var, E>::zero() + (*params.montgomery_a(), one)
|
||||
+ self.x.get_variable()
|
||||
+ other.x.get_variable()
|
||||
+ xprime.get_variable()
|
||||
|lc| lc + lambda.get_variable(),
|
||||
|lc| lc + lambda.get_variable(),
|
||||
|lc| lc + (*params.montgomery_a(), one)
|
||||
+ self.x.get_variable()
|
||||
+ other.x.get_variable()
|
||||
+ xprime.get_variable()
|
||||
);
|
||||
|
||||
// Compute y' = -(y + lambda(x' - x))
|
||||
|
@ -534,13 +532,13 @@ impl<E: JubjubEngine, Var: Copy> MontgomeryPoint<E, Var> {
|
|||
// y' + y = lambda(x - x')
|
||||
cs.enforce(
|
||||
|| "evaluate yprime",
|
||||
LinearCombination::zero() + self.x.get_variable()
|
||||
- xprime.get_variable(),
|
||||
|lc| lc + self.x.get_variable()
|
||||
- xprime.get_variable(),
|
||||
|
||||
LinearCombination::zero() + lambda.get_variable(),
|
||||
|lc| lc + lambda.get_variable(),
|
||||
|
||||
LinearCombination::<Var, E>::zero() + yprime.get_variable()
|
||||
+ self.y.get_variable()
|
||||
|lc| lc + yprime.get_variable()
|
||||
+ self.y.get_variable()
|
||||
);
|
||||
|
||||
Ok(MontgomeryPoint {
|
||||
|
@ -556,7 +554,7 @@ impl<E: JubjubEngine, Var: Copy> MontgomeryPoint<E, Var> {
|
|||
mut cs: CS,
|
||||
params: &E::Params
|
||||
) -> Result<Self, SynthesisError>
|
||||
where CS: ConstraintSystem<E, Variable=Var>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
// Square x
|
||||
let xx = self.x.square(&mut cs)?;
|
||||
|
@ -580,25 +578,25 @@ impl<E: JubjubEngine, Var: Copy> MontgomeryPoint<E, Var> {
|
|||
Ok(t0)
|
||||
},
|
||||
None => {
|
||||
Err(SynthesisError::AssignmentMissing)
|
||||
Err(SynthesisError::DivisionByZero)
|
||||
}
|
||||
}
|
||||
})?;
|
||||
|
||||
// (2.y) * (lambda) = (3.xx + 2.A.x + 1)
|
||||
let one = cs.one();
|
||||
let one = CS::one();
|
||||
cs.enforce(
|
||||
|| "evaluate lambda",
|
||||
LinearCombination::<Var, E>::zero() + self.y.get_variable()
|
||||
+ self.y.get_variable(),
|
||||
|lc| lc + self.y.get_variable()
|
||||
+ self.y.get_variable(),
|
||||
|
||||
LinearCombination::zero() + lambda.get_variable(),
|
||||
|lc| lc + lambda.get_variable(),
|
||||
|
||||
LinearCombination::<Var, E>::zero() + xx.get_variable()
|
||||
+ xx.get_variable()
|
||||
+ xx.get_variable()
|
||||
+ (*params.montgomery_2a(), self.x.get_variable())
|
||||
+ one
|
||||
|lc| lc + xx.get_variable()
|
||||
+ xx.get_variable()
|
||||
+ xx.get_variable()
|
||||
+ (*params.montgomery_2a(), self.x.get_variable())
|
||||
+ one
|
||||
);
|
||||
|
||||
// Compute x' = (lambda^2) - A - 2.x
|
||||
|
@ -615,12 +613,12 @@ impl<E: JubjubEngine, Var: Copy> MontgomeryPoint<E, Var> {
|
|||
// (lambda) * (lambda) = (A + 2.x + x')
|
||||
cs.enforce(
|
||||
|| "evaluate xprime",
|
||||
LinearCombination::zero() + lambda.get_variable(),
|
||||
LinearCombination::zero() + lambda.get_variable(),
|
||||
LinearCombination::<Var, E>::zero() + (*params.montgomery_a(), one)
|
||||
+ self.x.get_variable()
|
||||
+ self.x.get_variable()
|
||||
+ xprime.get_variable()
|
||||
|lc| lc + lambda.get_variable(),
|
||||
|lc| lc + lambda.get_variable(),
|
||||
|lc| lc + (*params.montgomery_a(), one)
|
||||
+ self.x.get_variable()
|
||||
+ self.x.get_variable()
|
||||
+ xprime.get_variable()
|
||||
);
|
||||
|
||||
// Compute y' = -(y + lambda(x' - x))
|
||||
|
@ -637,13 +635,13 @@ impl<E: JubjubEngine, Var: Copy> MontgomeryPoint<E, Var> {
|
|||
// y' + y = lambda(x - x')
|
||||
cs.enforce(
|
||||
|| "evaluate yprime",
|
||||
LinearCombination::zero() + self.x.get_variable()
|
||||
- xprime.get_variable(),
|
||||
|lc| lc + self.x.get_variable()
|
||||
- xprime.get_variable(),
|
||||
|
||||
LinearCombination::zero() + lambda.get_variable(),
|
||||
|lc| lc + lambda.get_variable(),
|
||||
|
||||
LinearCombination::<Var, E>::zero() + yprime.get_variable()
|
||||
+ self.y.get_variable()
|
||||
|lc| lc + yprime.get_variable()
|
||||
+ self.y.get_variable()
|
||||
);
|
||||
|
||||
Ok(MontgomeryPoint {
|
||||
|
|
|
@ -8,7 +8,8 @@ use pairing::{
|
|||
use bellman::{
|
||||
SynthesisError,
|
||||
ConstraintSystem,
|
||||
LinearCombination
|
||||
LinearCombination,
|
||||
Variable
|
||||
};
|
||||
|
||||
use super::{
|
||||
|
@ -20,12 +21,12 @@ use super::boolean::{
|
|||
AllocatedBit
|
||||
};
|
||||
|
||||
pub struct AllocatedNum<E: Engine, Var> {
|
||||
pub struct AllocatedNum<E: Engine> {
|
||||
value: Option<E::Fr>,
|
||||
variable: Var
|
||||
variable: Variable
|
||||
}
|
||||
|
||||
impl<Var: Copy, E: Engine> Clone for AllocatedNum<E, Var> {
|
||||
impl<E: Engine> Clone for AllocatedNum<E> {
|
||||
fn clone(&self) -> Self {
|
||||
AllocatedNum {
|
||||
value: self.value,
|
||||
|
@ -34,12 +35,12 @@ impl<Var: Copy, E: Engine> Clone for AllocatedNum<E, Var> {
|
|||
}
|
||||
}
|
||||
|
||||
impl<E: Engine, Var: Copy> AllocatedNum<E, Var> {
|
||||
impl<E: Engine> AllocatedNum<E> {
|
||||
pub fn alloc<CS, F>(
|
||||
mut cs: CS,
|
||||
value: F,
|
||||
) -> Result<Self, SynthesisError>
|
||||
where CS: ConstraintSystem<E, Variable=Var>,
|
||||
where CS: ConstraintSystem<E>,
|
||||
F: FnOnce() -> Result<E::Fr, SynthesisError>
|
||||
{
|
||||
let mut new_value = None;
|
||||
|
@ -60,8 +61,8 @@ impl<E: Engine, Var: Copy> AllocatedNum<E, Var> {
|
|||
pub fn into_bits_strict<CS>(
|
||||
&self,
|
||||
mut cs: CS
|
||||
) -> Result<Vec<Boolean<Var>>, SynthesisError>
|
||||
where CS: ConstraintSystem<E, Variable=Var>
|
||||
) -> Result<Vec<Boolean>, SynthesisError>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
let bits = self.into_bits(&mut cs)?;
|
||||
Boolean::enforce_in_field::<_, _, E::Fr>(&mut cs, &bits)?;
|
||||
|
@ -72,8 +73,8 @@ impl<E: Engine, Var: Copy> AllocatedNum<E, Var> {
|
|||
pub fn into_bits<CS>(
|
||||
&self,
|
||||
mut cs: CS
|
||||
) -> Result<Vec<Boolean<Var>>, SynthesisError>
|
||||
where CS: ConstraintSystem<E, Variable=Var>
|
||||
) -> Result<Vec<Boolean>, SynthesisError>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
let bit_values = match self.value {
|
||||
Some(value) => {
|
||||
|
@ -122,9 +123,9 @@ impl<E: Engine, Var: Copy> AllocatedNum<E, Var> {
|
|||
|
||||
cs.enforce(
|
||||
|| "unpacking constraint",
|
||||
LinearCombination::zero(),
|
||||
LinearCombination::zero(),
|
||||
lc
|
||||
|lc| lc,
|
||||
|lc| lc,
|
||||
|_| lc
|
||||
);
|
||||
|
||||
Ok(bits.into_iter().map(|b| Boolean::from(b)).collect())
|
||||
|
@ -132,16 +133,16 @@ impl<E: Engine, Var: Copy> AllocatedNum<E, Var> {
|
|||
|
||||
pub fn from_bits_strict<CS>(
|
||||
mut cs: CS,
|
||||
bits: &[Boolean<Var>]
|
||||
bits: &[Boolean]
|
||||
) -> Result<Self, SynthesisError>
|
||||
where CS: ConstraintSystem<E, Variable=Var>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
assert_eq!(bits.len(), E::Fr::NUM_BITS as usize);
|
||||
|
||||
Boolean::enforce_in_field::<_, _, E::Fr>(&mut cs, bits)?;
|
||||
|
||||
let one = cs.one();
|
||||
let mut lc = LinearCombination::<Var, E>::zero();
|
||||
let one = CS::one();
|
||||
let mut lc = LinearCombination::<E>::zero();
|
||||
let mut coeff = E::Fr::one();
|
||||
let mut value = Some(E::Fr::zero());
|
||||
for bit in bits.iter().rev() {
|
||||
|
@ -191,9 +192,9 @@ impl<E: Engine, Var: Copy> AllocatedNum<E, Var> {
|
|||
|
||||
cs.enforce(
|
||||
|| "packing constraint",
|
||||
LinearCombination::zero(),
|
||||
LinearCombination::zero(),
|
||||
lc
|
||||
|lc| lc,
|
||||
|lc| lc,
|
||||
|_| lc
|
||||
);
|
||||
|
||||
Ok(num)
|
||||
|
@ -204,7 +205,7 @@ impl<E: Engine, Var: Copy> AllocatedNum<E, Var> {
|
|||
mut cs: CS,
|
||||
other: &Self
|
||||
) -> Result<Self, SynthesisError>
|
||||
where CS: ConstraintSystem<E, Variable=Var>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
let mut value = None;
|
||||
|
||||
|
@ -220,9 +221,9 @@ impl<E: Engine, Var: Copy> AllocatedNum<E, Var> {
|
|||
// Constrain: a * b = ab
|
||||
cs.enforce(
|
||||
|| "multiplication constraint",
|
||||
LinearCombination::zero() + self.variable,
|
||||
LinearCombination::zero() + other.variable,
|
||||
LinearCombination::zero() + var
|
||||
|lc| lc + self.variable,
|
||||
|lc| lc + other.variable,
|
||||
|lc| lc + var
|
||||
);
|
||||
|
||||
Ok(AllocatedNum {
|
||||
|
@ -235,7 +236,7 @@ impl<E: Engine, Var: Copy> AllocatedNum<E, Var> {
|
|||
&self,
|
||||
mut cs: CS
|
||||
) -> Result<Self, SynthesisError>
|
||||
where CS: ConstraintSystem<E, Variable=Var>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
let mut value = None;
|
||||
|
||||
|
@ -251,9 +252,9 @@ impl<E: Engine, Var: Copy> AllocatedNum<E, Var> {
|
|||
// Constrain: a * a = aa
|
||||
cs.enforce(
|
||||
|| "squaring constraint",
|
||||
LinearCombination::zero() + self.variable,
|
||||
LinearCombination::zero() + self.variable,
|
||||
LinearCombination::zero() + var
|
||||
|lc| lc + self.variable,
|
||||
|lc| lc + self.variable,
|
||||
|lc| lc + var
|
||||
);
|
||||
|
||||
Ok(AllocatedNum {
|
||||
|
@ -266,13 +267,13 @@ impl<E: Engine, Var: Copy> AllocatedNum<E, Var> {
|
|||
&self,
|
||||
mut cs: CS
|
||||
) -> Result<(), SynthesisError>
|
||||
where CS: ConstraintSystem<E, Variable=Var>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
let inv = cs.alloc(|| "ephemeral inverse", || {
|
||||
let tmp = *self.value.get()?;
|
||||
|
||||
if tmp.is_zero() {
|
||||
Err(SynthesisError::AssignmentMissing)
|
||||
Err(SynthesisError::DivisionByZero)
|
||||
} else {
|
||||
Ok(tmp.inverse().unwrap())
|
||||
}
|
||||
|
@ -281,12 +282,11 @@ impl<E: Engine, Var: Copy> AllocatedNum<E, Var> {
|
|||
// Constrain a * inv = 1, which is only valid
|
||||
// iff a has a multiplicative inverse, untrue
|
||||
// for zero.
|
||||
let one = cs.one();
|
||||
cs.enforce(
|
||||
|| "nonzero assertion constraint",
|
||||
LinearCombination::zero() + self.variable,
|
||||
LinearCombination::zero() + inv,
|
||||
LinearCombination::zero() + one
|
||||
|lc| lc + self.variable,
|
||||
|lc| lc + inv,
|
||||
|lc| lc + CS::one()
|
||||
);
|
||||
|
||||
Ok(())
|
||||
|
@ -299,9 +299,9 @@ impl<E: Engine, Var: Copy> AllocatedNum<E, Var> {
|
|||
mut cs: CS,
|
||||
a: &Self,
|
||||
b: &Self,
|
||||
condition: &Boolean<Var>
|
||||
condition: &Boolean
|
||||
) -> Result<(Self, Self), SynthesisError>
|
||||
where CS: ConstraintSystem<E, Variable=Var>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
let c = Self::alloc(
|
||||
cs.namespace(|| "conditional reversal result 1"),
|
||||
|
@ -314,12 +314,11 @@ impl<E: Engine, Var: Copy> AllocatedNum<E, Var> {
|
|||
}
|
||||
)?;
|
||||
|
||||
let one = cs.one();
|
||||
cs.enforce(
|
||||
|| "first conditional reversal",
|
||||
LinearCombination::zero() + a.variable - b.variable,
|
||||
condition.lc(one, E::Fr::one()),
|
||||
LinearCombination::zero() + a.variable - c.variable
|
||||
|lc| lc + a.variable - b.variable,
|
||||
|_| condition.lc(CS::one(), E::Fr::one()),
|
||||
|lc| lc + a.variable - c.variable
|
||||
);
|
||||
|
||||
let d = Self::alloc(
|
||||
|
@ -335,9 +334,9 @@ impl<E: Engine, Var: Copy> AllocatedNum<E, Var> {
|
|||
|
||||
cs.enforce(
|
||||
|| "second conditional reversal",
|
||||
LinearCombination::zero() + b.variable - a.variable,
|
||||
condition.lc(one, E::Fr::one()),
|
||||
LinearCombination::zero() + b.variable - d.variable
|
||||
|lc| lc + b.variable - a.variable,
|
||||
|_| condition.lc(CS::one(), E::Fr::one()),
|
||||
|lc| lc + b.variable - d.variable
|
||||
);
|
||||
|
||||
Ok((c, d))
|
||||
|
@ -346,9 +345,9 @@ impl<E: Engine, Var: Copy> AllocatedNum<E, Var> {
|
|||
pub fn conditionally_negate<CS>(
|
||||
&self,
|
||||
mut cs: CS,
|
||||
condition: &Boolean<Var>
|
||||
condition: &Boolean
|
||||
) -> Result<Self, SynthesisError>
|
||||
where CS: ConstraintSystem<E, Variable=Var>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
let r = Self::alloc(
|
||||
cs.namespace(|| "conditional negation result"),
|
||||
|
@ -365,12 +364,11 @@ impl<E: Engine, Var: Copy> AllocatedNum<E, Var> {
|
|||
// x - 2cx = r
|
||||
// (2x) * (c) = x - r
|
||||
|
||||
let one = cs.one();
|
||||
cs.enforce(
|
||||
|| "conditional negation",
|
||||
LinearCombination::zero() + self.variable + self.variable,
|
||||
condition.lc(one, E::Fr::one()),
|
||||
LinearCombination::zero() + self.variable - r.variable
|
||||
|lc| lc + self.variable + self.variable,
|
||||
|_| condition.lc(CS::one(), E::Fr::one()),
|
||||
|lc| lc + self.variable - r.variable
|
||||
);
|
||||
|
||||
Ok(r)
|
||||
|
@ -380,7 +378,7 @@ impl<E: Engine, Var: Copy> AllocatedNum<E, Var> {
|
|||
self.value
|
||||
}
|
||||
|
||||
pub fn get_variable(&self) -> Var {
|
||||
pub fn get_variable(&self) -> Variable {
|
||||
self.variable
|
||||
}
|
||||
}
|
||||
|
|
|
@ -10,12 +10,12 @@ use bellman::{
|
|||
};
|
||||
use super::lookup::*;
|
||||
|
||||
pub fn pedersen_hash<E: JubjubEngine, CS, Var: Copy>(
|
||||
pub fn pedersen_hash<E: JubjubEngine, CS>(
|
||||
mut cs: CS,
|
||||
bits: &[Boolean<Var>],
|
||||
bits: &[Boolean],
|
||||
params: &E::Params
|
||||
) -> Result<EdwardsPoint<E, Var>, SynthesisError>
|
||||
where CS: ConstraintSystem<E, Variable=Var>
|
||||
) -> Result<EdwardsPoint<E>, SynthesisError>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
// Unnecessary if forced personalization is introduced
|
||||
assert!(bits.len() > 0);
|
||||
|
@ -116,7 +116,7 @@ mod test {
|
|||
|
||||
let input: Vec<bool> = (0..(Fr::NUM_BITS * 2)).map(|_| rng.gen()).collect();
|
||||
|
||||
let input_bools: Vec<Boolean<_>> = input.iter().enumerate().map(|(i, b)| {
|
||||
let input_bools: Vec<Boolean> = input.iter().enumerate().map(|(i, b)| {
|
||||
Boolean::from(
|
||||
AllocatedBit::alloc(cs.namespace(|| format!("input {}", i)), Some(*b)).unwrap()
|
||||
)
|
||||
|
@ -143,7 +143,7 @@ mod test {
|
|||
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let input_bools: Vec<Boolean<_>> = input.iter().enumerate().map(|(i, b)| {
|
||||
let input_bools: Vec<Boolean> = input.iter().enumerate().map(|(i, b)| {
|
||||
Boolean::from(
|
||||
AllocatedBit::alloc(cs.namespace(|| format!("input {}", i)), Some(*b)).unwrap()
|
||||
)
|
||||
|
|
|
@ -6,17 +6,13 @@ use pairing::{
|
|||
use bellman::{
|
||||
LinearCombination,
|
||||
SynthesisError,
|
||||
ConstraintSystem
|
||||
ConstraintSystem,
|
||||
Variable,
|
||||
Index
|
||||
};
|
||||
|
||||
use std::collections::HashMap;
|
||||
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub enum Variable {
|
||||
Input(usize),
|
||||
Aux(usize)
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
enum NamedObject {
|
||||
Constraint(usize),
|
||||
|
@ -28,7 +24,12 @@ enum NamedObject {
|
|||
pub struct TestConstraintSystem<E: Engine> {
|
||||
named_objects: HashMap<String, NamedObject>,
|
||||
current_namespace: Vec<String>,
|
||||
constraints: Vec<(LinearCombination<Variable, E>, LinearCombination<Variable, E>, LinearCombination<Variable, E>, String)>,
|
||||
constraints: Vec<(
|
||||
LinearCombination<E>,
|
||||
LinearCombination<E>,
|
||||
LinearCombination<E>,
|
||||
String
|
||||
)>,
|
||||
inputs: Vec<(E::Fr, String)>,
|
||||
aux: Vec<(E::Fr, String)>
|
||||
}
|
||||
|
@ -42,9 +43,9 @@ fn eval_lc<E: Engine>(
|
|||
let mut acc = E::Fr::zero();
|
||||
|
||||
for &(var, ref coeff) in terms {
|
||||
let mut tmp = match var {
|
||||
Variable::Input(index) => inputs[index].0,
|
||||
Variable::Aux(index) => aux[index].0
|
||||
let mut tmp = match var.get_unchecked() {
|
||||
Index::Input(index) => inputs[index].0,
|
||||
Index::Aux(index) => aux[index].0
|
||||
};
|
||||
|
||||
tmp.mul_assign(&coeff);
|
||||
|
@ -57,7 +58,7 @@ fn eval_lc<E: Engine>(
|
|||
impl<E: Engine> TestConstraintSystem<E> {
|
||||
pub fn new() -> TestConstraintSystem<E> {
|
||||
let mut map = HashMap::new();
|
||||
map.insert("ONE".into(), NamedObject::Var(Variable::Input(0)));
|
||||
map.insert("ONE".into(), NamedObject::Var(TestConstraintSystem::<E>::one()));
|
||||
|
||||
TestConstraintSystem {
|
||||
named_objects: map,
|
||||
|
@ -97,8 +98,12 @@ impl<E: Engine> TestConstraintSystem<E> {
|
|||
pub fn set(&mut self, path: &str, to: E::Fr)
|
||||
{
|
||||
match self.named_objects.get(path) {
|
||||
Some(&NamedObject::Var(Variable::Input(index))) => self.inputs[index].0 = to,
|
||||
Some(&NamedObject::Var(Variable::Aux(index))) => self.aux[index].0 = to,
|
||||
Some(&NamedObject::Var(ref v)) => {
|
||||
match v.get_unchecked() {
|
||||
Index::Input(index) => self.inputs[index].0 = to,
|
||||
Index::Aux(index) => self.aux[index].0 = to
|
||||
}
|
||||
}
|
||||
Some(e) => panic!("tried to set path `{}` to value, but `{:?}` already exists there.", path, e),
|
||||
_ => panic!("no variable exists at path: {}", path)
|
||||
}
|
||||
|
@ -107,8 +112,12 @@ impl<E: Engine> TestConstraintSystem<E> {
|
|||
pub fn get(&mut self, path: &str) -> E::Fr
|
||||
{
|
||||
match self.named_objects.get(path) {
|
||||
Some(&NamedObject::Var(Variable::Input(index))) => self.inputs[index].0,
|
||||
Some(&NamedObject::Var(Variable::Aux(index))) => self.aux[index].0,
|
||||
Some(&NamedObject::Var(ref v)) => {
|
||||
match v.get_unchecked() {
|
||||
Index::Input(index) => self.inputs[index].0,
|
||||
Index::Aux(index) => self.aux[index].0
|
||||
}
|
||||
}
|
||||
Some(e) => panic!("tried to get value of path `{}`, but `{:?}` exists there (not a variable)", path, e),
|
||||
_ => panic!("no variable exists at path: {}", path)
|
||||
}
|
||||
|
@ -145,42 +154,60 @@ fn compute_path(ns: &[String], this: String) -> String {
|
|||
}
|
||||
|
||||
impl<E: Engine> ConstraintSystem<E> for TestConstraintSystem<E> {
|
||||
type Variable = Variable;
|
||||
type Root = Self;
|
||||
|
||||
fn one(&self) -> Self::Variable {
|
||||
Variable::Input(0)
|
||||
}
|
||||
|
||||
fn alloc<F, A, AR>(
|
||||
&mut self,
|
||||
annotation: A,
|
||||
f: F
|
||||
) -> Result<Self::Variable, SynthesisError>
|
||||
) -> Result<Variable, SynthesisError>
|
||||
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
|
||||
{
|
||||
let index = self.aux.len();
|
||||
let path = compute_path(&self.current_namespace, annotation().into());
|
||||
self.aux.push((f()?, path.clone()));
|
||||
let var = Variable::Aux(index);
|
||||
let var = Variable::new_unchecked(Index::Aux(index));
|
||||
self.set_named_obj(path, NamedObject::Var(var));
|
||||
|
||||
Ok(var)
|
||||
}
|
||||
|
||||
fn enforce<A, AR>(
|
||||
fn alloc_input<F, A, AR>(
|
||||
&mut self,
|
||||
annotation: A,
|
||||
a: LinearCombination<Self::Variable, E>,
|
||||
b: LinearCombination<Self::Variable, E>,
|
||||
c: LinearCombination<Self::Variable, E>
|
||||
f: F
|
||||
) -> Result<Variable, SynthesisError>
|
||||
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
|
||||
{
|
||||
let index = self.inputs.len();
|
||||
let path = compute_path(&self.current_namespace, annotation().into());
|
||||
self.inputs.push((f()?, path.clone()));
|
||||
let var = Variable::new_unchecked(Index::Input(index));
|
||||
self.set_named_obj(path, NamedObject::Var(var));
|
||||
|
||||
Ok(var)
|
||||
}
|
||||
|
||||
fn enforce<A, AR, LA, LB, LC>(
|
||||
&mut self,
|
||||
annotation: A,
|
||||
a: LA,
|
||||
b: LB,
|
||||
c: LC
|
||||
)
|
||||
where A: FnOnce() -> AR, AR: Into<String>
|
||||
where A: FnOnce() -> AR, AR: Into<String>,
|
||||
LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
|
||||
LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
|
||||
LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>
|
||||
{
|
||||
let path = compute_path(&self.current_namespace, annotation().into());
|
||||
let index = self.constraints.len();
|
||||
self.set_named_obj(path.clone(), NamedObject::Constraint(index));
|
||||
|
||||
let a = a(LinearCombination::zero());
|
||||
let b = b(LinearCombination::zero());
|
||||
let c = c(LinearCombination::zero());
|
||||
|
||||
self.constraints.push((a, b, c, path));
|
||||
}
|
||||
|
||||
|
@ -218,21 +245,21 @@ fn test_cs() {
|
|||
|
||||
cs.enforce(
|
||||
|| "mult",
|
||||
LinearCombination::zero() + a,
|
||||
LinearCombination::zero() + b,
|
||||
LinearCombination::zero() + c
|
||||
|lc| lc + a,
|
||||
|lc| lc + b,
|
||||
|lc| lc + c
|
||||
);
|
||||
assert!(cs.is_satisfied());
|
||||
assert_eq!(cs.num_constraints(), 1);
|
||||
|
||||
cs.set("a/var", Fr::from_str("4").unwrap());
|
||||
|
||||
let one = cs.one();
|
||||
let one = TestConstraintSystem::<Bls12>::one();
|
||||
cs.enforce(
|
||||
|| "eq",
|
||||
LinearCombination::zero() + a,
|
||||
LinearCombination::zero() + one,
|
||||
LinearCombination::zero() + b
|
||||
|lc| lc + a,
|
||||
|lc| lc + one,
|
||||
|lc| lc + b
|
||||
);
|
||||
|
||||
assert!(!cs.is_satisfied());
|
||||
|
|
|
@ -18,13 +18,13 @@ use super::boolean::{
|
|||
/// Represents an interpretation of 32 `Boolean` objects as an
|
||||
/// unsigned integer.
|
||||
#[derive(Clone)]
|
||||
pub struct UInt32<Var> {
|
||||
pub struct UInt32 {
|
||||
// Least significant bit first
|
||||
bits: Vec<Boolean<Var>>,
|
||||
bits: Vec<Boolean>,
|
||||
value: Option<u32>
|
||||
}
|
||||
|
||||
impl<Var: Copy> UInt32<Var> {
|
||||
impl UInt32 {
|
||||
/// Construct a constant `UInt32` from a `u32`
|
||||
pub fn constant(value: u32) -> Self
|
||||
{
|
||||
|
@ -53,7 +53,7 @@ impl<Var: Copy> UInt32<Var> {
|
|||
value: Option<u32>
|
||||
) -> Result<Self, SynthesisError>
|
||||
where E: Engine,
|
||||
CS: ConstraintSystem<E, Variable=Var>
|
||||
CS: ConstraintSystem<E>
|
||||
{
|
||||
let values = match value {
|
||||
Some(mut val) => {
|
||||
|
@ -72,7 +72,10 @@ impl<Var: Copy> UInt32<Var> {
|
|||
let bits = values.into_iter()
|
||||
.enumerate()
|
||||
.map(|(i, v)| {
|
||||
Ok(Boolean::from(AllocatedBit::alloc(cs.namespace(|| format!("allocated bit {}", i)), v)?))
|
||||
Ok(Boolean::from(AllocatedBit::alloc(
|
||||
cs.namespace(|| format!("allocated bit {}", i)),
|
||||
v
|
||||
)?))
|
||||
})
|
||||
.collect::<Result<Vec<_>, SynthesisError>>()?;
|
||||
|
||||
|
@ -83,7 +86,7 @@ impl<Var: Copy> UInt32<Var> {
|
|||
}
|
||||
|
||||
/// Turns this `UInt32` into its little-endian byte order representation.
|
||||
pub fn into_bits(&self) -> Vec<Boolean<Var>> {
|
||||
pub fn into_bits(&self) -> Vec<Boolean> {
|
||||
self.bits.chunks(8)
|
||||
.flat_map(|v| v.iter().rev())
|
||||
.cloned()
|
||||
|
@ -92,7 +95,7 @@ impl<Var: Copy> UInt32<Var> {
|
|||
|
||||
/// Converts a little-endian byte order representation of bits into a
|
||||
/// `UInt32`.
|
||||
pub fn from_bits(bits: &[Boolean<Var>]) -> Self
|
||||
pub fn from_bits(bits: &[Boolean]) -> Self
|
||||
{
|
||||
assert_eq!(bits.len(), 32);
|
||||
|
||||
|
@ -157,7 +160,7 @@ impl<Var: Copy> UInt32<Var> {
|
|||
other: &Self
|
||||
) -> Result<Self, SynthesisError>
|
||||
where E: Engine,
|
||||
CS: ConstraintSystem<E, Variable=Var>
|
||||
CS: ConstraintSystem<E>
|
||||
{
|
||||
let new_value = match (self.value, other.value) {
|
||||
(Some(a), Some(b)) => {
|
||||
|
@ -170,7 +173,11 @@ impl<Var: Copy> UInt32<Var> {
|
|||
.zip(other.bits.iter())
|
||||
.enumerate()
|
||||
.map(|(i, (a, b))| {
|
||||
Boolean::xor(cs.namespace(|| format!("xor of bit {}", i)), a, b)
|
||||
Boolean::xor(
|
||||
cs.namespace(|| format!("xor of bit {}", i)),
|
||||
a,
|
||||
b
|
||||
)
|
||||
})
|
||||
.collect::<Result<_, _>>()?;
|
||||
|
||||
|
@ -186,7 +193,7 @@ impl<Var: Copy> UInt32<Var> {
|
|||
operands: &[Self]
|
||||
) -> Result<Self, SynthesisError>
|
||||
where E: Engine,
|
||||
CS: ConstraintSystem<E, Variable=Var>
|
||||
CS: ConstraintSystem<E>
|
||||
{
|
||||
// Make some arbitrary bounds for ourselves to avoid overflows
|
||||
// in the scalar field
|
||||
|
@ -235,11 +242,11 @@ impl<Var: Copy> UInt32<Var> {
|
|||
all_constants = false;
|
||||
|
||||
// Add coeff * (1 - bit) = coeff * ONE - coeff * bit
|
||||
lc = lc + (coeff, cs.one()) - (coeff, bit.get_variable());
|
||||
lc = lc + (coeff, CS::one()) - (coeff, bit.get_variable());
|
||||
},
|
||||
&Boolean::Constant(bit) => {
|
||||
if bit {
|
||||
lc = lc + (coeff, cs.one());
|
||||
lc = lc + (coeff, CS::one());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -266,7 +273,10 @@ impl<Var: Copy> UInt32<Var> {
|
|||
let mut i = 0;
|
||||
while max_value != 0 {
|
||||
// Allocate the bit
|
||||
let b = AllocatedBit::alloc(cs.namespace(|| format!("result bit {}", i)), result_value.map(|v| (v >> i) & 1 == 1))?;
|
||||
let b = AllocatedBit::alloc(
|
||||
cs.namespace(|| format!("result bit {}", i)),
|
||||
result_value.map(|v| (v >> i) & 1 == 1)
|
||||
)?;
|
||||
|
||||
// Subtract this bit from the linear combination to ensure the sums balance out
|
||||
lc = lc - (coeff, b.get_variable());
|
||||
|
@ -281,9 +291,9 @@ impl<Var: Copy> UInt32<Var> {
|
|||
// Enforce that the linear combination equals zero
|
||||
cs.enforce(
|
||||
|| "modular addition",
|
||||
LinearCombination::zero(),
|
||||
LinearCombination::zero(),
|
||||
lc
|
||||
|lc| lc,
|
||||
|lc| lc,
|
||||
|_| lc
|
||||
);
|
||||
|
||||
// Discard carry bits that we don't care about
|
||||
|
@ -311,7 +321,7 @@ mod test {
|
|||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0653]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let mut v = (0..32).map(|_| Boolean::<()>::constant(rng.gen())).collect::<Vec<_>>();
|
||||
let mut v = (0..32).map(|_| Boolean::constant(rng.gen())).collect::<Vec<_>>();
|
||||
|
||||
let b = UInt32::from_bits(&v);
|
||||
|
||||
|
@ -473,7 +483,7 @@ mod test {
|
|||
|
||||
let mut num = rng.gen();
|
||||
|
||||
let a = UInt32::<()>::constant(num);
|
||||
let a = UInt32::constant(num);
|
||||
|
||||
for i in 0..32 {
|
||||
let b = a.rotr(i);
|
||||
|
|
Loading…
Reference in New Issue