New implementation of library API.

This commit is contained in:
Sean Bowe 2018-02-14 12:31:43 -07:00
parent 7211d98c1e
commit cb53708767
17 changed files with 2424 additions and 1994 deletions

View File

@ -13,7 +13,7 @@ rand = "0.3"
bit-vec = "0.4.4"
futures = "0.1"
futures-cpupool = "0.1"
num_cpus = "1.6"
num_cpus = "1"
crossbeam = "0.3"
pairing = "0.13"

239
examples/mimc.rs Normal file
View File

@ -0,0 +1,239 @@
extern crate bellman;
extern crate pairing;
extern crate rand;
// For randomness (during paramgen and proof generation)
use rand::{thread_rng, Rng};
// For benchmarking
use std::time::{Duration, Instant};
// Bring in some tools for using pairing-friendly curves
use pairing::{
Engine,
Field
};
// We're going to use the BLS12-381 pairing-friendly elliptic curve.
use pairing::bls12_381::{
Bls12
};
// We'll use these interfaces to construct our circuit.
use bellman::{
Circuit,
ConstraintSystem,
SynthesisError
};
// We're going to use the Groth16 proving system.
use bellman::groth16::{
generate_random_parameters,
prepare_verifying_key,
create_random_proof,
verify_proof,
};
const MIMC_ROUNDS: usize = 322;
/// This is an implementation of MiMC, specifically a
/// variant named `LongsightF322p3` for BLS12-381.
/// See http://eprint.iacr.org/2016/492 for more
/// information about this construction.
///
/// ```
/// function LongsightF322p3(xL ⦂ Fp, xR ⦂ Fp) {
/// for i from 0 up to 321 {
/// xL, xR := xR + (xL + Ci)^3, xL
/// }
/// return xL
/// }
/// ```
fn mimc<E: Engine>(
mut xl: E::Fr,
mut xr: E::Fr,
constants: &[E::Fr]
) -> E::Fr
{
assert_eq!(constants.len(), MIMC_ROUNDS);
for i in 0..MIMC_ROUNDS {
let mut tmp1 = xl;
tmp1.add_assign(&constants[i]);
let mut tmp2 = tmp1;
tmp2.square();
tmp2.mul_assign(&tmp1);
tmp2.add_assign(&xr);
xr = xl;
xl = tmp2;
}
xl
}
/// This is our demo circuit for proving knowledge of the
/// preimage of a MiMC hash invocation.
struct MiMCDemo<'a, E: Engine> {
xl: Option<E::Fr>,
xr: Option<E::Fr>,
constants: &'a [E::Fr]
}
/// Our demo circuit implements this `Circuit` trait which
/// is used during paramgen and proving in order to
/// synthesize the constraint system.
impl<'a, E: Engine> Circuit<E> for MiMCDemo<'a, E> {
fn synthesize<CS: ConstraintSystem<E>>(
self,
cs: &mut CS
) -> Result<(), SynthesisError>
{
assert_eq!(self.constants.len(), MIMC_ROUNDS);
// Allocate the first component of the preimage.
let mut xl_value = self.xl;
let mut xl = cs.alloc(|| "preimage xl", || {
xl_value.ok_or(SynthesisError::AssignmentMissing)
})?;
// Allocate the second component of the preimage.
let mut xr_value = self.xr;
let mut xr = cs.alloc(|| "preimage xr", || {
xr_value.ok_or(SynthesisError::AssignmentMissing)
})?;
for i in 0..MIMC_ROUNDS {
// xL, xR := xR + (xL + Ci)^3, xL
let cs = &mut cs.namespace(|| format!("round {}", i));
// tmp = (xL + Ci)^2
let mut tmp_value = xl_value.map(|mut e| {
e.add_assign(&self.constants[i]);
e.square();
e
});
let mut tmp = cs.alloc(|| "tmp", || {
tmp_value.ok_or(SynthesisError::AssignmentMissing)
})?;
cs.enforce(
|| "tmp = (xL + Ci)^2",
|lc| lc + xl + (self.constants[i], CS::one()),
|lc| lc + xl + (self.constants[i], CS::one()),
|lc| lc + tmp
);
// new_xL = xR + (xL + Ci)^3
// new_xL = xR + tmp * (xL + Ci)
// new_xL - xR = tmp * (xL + Ci)
let mut new_xl_value = xl_value.map(|mut e| {
e.add_assign(&self.constants[i]);
e.mul_assign(&tmp_value.unwrap());
e.add_assign(&xr_value.unwrap());
e
});
let mut new_xl = if i == (MIMC_ROUNDS-1) {
// This is the last round, xL is our image and so
// we allocate a public input.
cs.alloc_input(|| "image", || {
new_xl_value.ok_or(SynthesisError::AssignmentMissing)
})?
} else {
cs.alloc(|| "new_xl", || {
new_xl_value.ok_or(SynthesisError::AssignmentMissing)
})?
};
cs.enforce(
|| "new_xL = xR + (xL + Ci)^3",
|lc| lc + tmp,
|lc| lc + xl + (self.constants[i], CS::one()),
|lc| lc + new_xl - xr
);
// xR = xL
xr = xl;
xr_value = xl_value;
// xL = new_xL
xl = new_xl;
xl_value = new_xl_value;
}
Ok(())
}
}
fn main() {
// This may not be cryptographically safe, use
// `OsRng` (for example) in production software.
let rng = &mut thread_rng();
// Generate the MiMC round constants
let constants = (0..MIMC_ROUNDS).map(|_| rng.gen()).collect::<Vec<_>>();
println!("Creating parameters...");
// Create parameters for our circuit
let params = {
let c = MiMCDemo::<Bls12> {
xl: None,
xr: None,
constants: &constants
};
generate_random_parameters(c, rng).unwrap()
};
// Prepare the verification key (for proof verification)
let pvk = prepare_verifying_key(&params.vk);
println!("Creating proofs...");
// Let's benchmark stuff!
const SAMPLES: u32 = 50;
let mut total_proving = Duration::new(0, 0);
let mut total_verifying = Duration::new(0, 0);
for _ in 0..SAMPLES {
// Generate a random preimage and compute the image
let xl = rng.gen();
let xr = rng.gen();
let image = mimc::<Bls12>(xl, xr, &constants);
let start = Instant::now();
let proof = {
// Create an instance of our circuit (with the
// witness)
let c = MiMCDemo {
xl: Some(xl),
xr: Some(xr),
constants: &constants
};
// Create a groth16 proof with our parameters.
create_random_proof(c, &params, rng).unwrap()
};
total_proving += start.elapsed();
let start = Instant::now();
// Check the proof
assert!(verify_proof(
&pvk,
&proof,
&[image]
).unwrap());
total_verifying += start.elapsed();
}
let proving_avg = total_proving / SAMPLES;
let proving_avg = proving_avg.subsec_nanos() as f64 / 1_000_000_000f64
+ (proving_avg.as_secs() as f64);
let verifying_avg = total_verifying / SAMPLES;
let verifying_avg = verifying_avg.subsec_nanos() as f64 / 1_000_000_000f64
+ (verifying_avg.as_secs() as f64);
println!("Average proving time: {:?} seconds", proving_avg);
println!("Average verifying time: {:?} seconds", verifying_avg);
}

View File

@ -1,424 +0,0 @@
use pairing::*;
use std::sync::Arc;
mod generator;
pub use self::generator::*;
mod prover;
pub use self::prover::*;
mod verifier;
pub use self::verifier::*;
use ::Error;
use std::io::{self, Write, Read};
use multiexp::{Source, SourceBuilder};
pub struct Proof<E: Engine> {
a: E::G1Affine,
b: E::G2Affine,
c: E::G1Affine
}
pub struct PreparedVerifyingKey<E: Engine> {
alpha_g1_beta_g2: E::Fqk,
neg_gamma_g2: <E::G2Affine as CurveAffine>::Prepared,
neg_delta_g2: <E::G2Affine as CurveAffine>::Prepared,
ic: Vec<E::G1Affine>
}
pub struct VerifyingKey<E: Engine> {
// alpha in g1 for verifying and for creating A/C elements of
// proof. Never the point at infinity.
alpha_g1: E::G1Affine,
// beta in g1 and g2 for verifying and for creating B/C elements
// of proof. Never the point at infinity.
beta_g1: E::G1Affine,
beta_g2: E::G2Affine,
// gamma in g2 for verifying. Never the point at infinity.
gamma_g2: E::G2Affine,
// delta in g1/g2 for verifying and proving, essentially the magic
// trapdoor that forces the prover to evaluate the C element of the
// proof with only components from the CRS. Never the point at
// infinity.
delta_g1: E::G1Affine,
delta_g2: E::G2Affine,
// Elements of the form (beta * u_i(tau) + alpha v_i(tau) + w_i(tau)) / gamma
// for all public inputs. Because all public inputs have a "soundness
// of input consistency" constraint, this is the same size as the
// number of inputs, and never contains points at infinity.
ic: Vec<E::G1Affine>
}
impl<E: Engine> Clone for VerifyingKey<E> {
fn clone(&self) -> VerifyingKey<E> {
VerifyingKey {
alpha_g1: self.alpha_g1.clone(),
beta_g1: self.beta_g1.clone(),
beta_g2: self.beta_g2.clone(),
gamma_g2: self.gamma_g2.clone(),
delta_g1: self.delta_g1.clone(),
delta_g2: self.delta_g2.clone(),
ic: self.ic.clone()
}
}
}
impl<E: Engine> PartialEq for VerifyingKey<E> {
fn eq(&self, other: &VerifyingKey<E>) -> bool {
self.alpha_g1 == other.alpha_g1 &&
self.beta_g1 == other.beta_g1 &&
self.beta_g2 == other.beta_g2 &&
self.gamma_g2 == other.gamma_g2 &&
self.delta_g1 == other.delta_g1 &&
self.delta_g2 == other.delta_g2 &&
self.ic == other.ic
}
}
fn read_nonzero<R: Read, G: CurveAffine>(reader: &mut R) -> Result<G, Error> {
let mut repr = G::Uncompressed::empty();
reader.read_exact(repr.as_mut())?;
let affine = repr.into_affine_unchecked(); // TODO
match affine {
Ok(affine) => {
if affine.is_zero() {
Err(Error::UnexpectedIdentity)
} else {
Ok(affine)
}
},
Err(e) => Err(io::Error::new(io::ErrorKind::InvalidData, e).into())
}
}
impl<E: Engine> VerifyingKey<E> {
fn size(num_ic: usize) -> usize {
let mut acc = 0;
acc += <E::G1Affine as CurveAffine>::Uncompressed::size(); // alpha_g1
acc += <E::G1Affine as CurveAffine>::Uncompressed::size(); // beta_g1
acc += <E::G1Affine as CurveAffine>::Uncompressed::size(); // delta_g1
acc += <E::G1Affine as CurveAffine>::Uncompressed::size() * num_ic; // IC
acc += <E::G2Affine as CurveAffine>::Uncompressed::size(); // beta_g2
acc += <E::G2Affine as CurveAffine>::Uncompressed::size(); // gamma_g2
acc += <E::G2Affine as CurveAffine>::Uncompressed::size(); // delta_g2
acc
}
pub fn write<W: Write>(&self, writer: &mut W) -> Result<(), io::Error> {
writer.write_all(self.alpha_g1.into_uncompressed().as_ref())?;
writer.write_all(self.beta_g1.into_uncompressed().as_ref())?;
writer.write_all(self.beta_g2.into_uncompressed().as_ref())?;
writer.write_all(self.gamma_g2.into_uncompressed().as_ref())?;
writer.write_all(self.delta_g1.into_uncompressed().as_ref())?;
writer.write_all(self.delta_g2.into_uncompressed().as_ref())?;
for ic in &self.ic {
writer.write_all(ic.into_uncompressed().as_ref())?;
}
Ok(())
}
pub fn read<R: Read>(reader: &mut R, num_ic: usize) -> Result<VerifyingKey<E>, Error> {
let alpha_g1 = read_nonzero(reader)?;
let beta_g1 = read_nonzero(reader)?;
let beta_g2 = read_nonzero(reader)?;
let gamma_g2 = read_nonzero(reader)?;
let delta_g1 = read_nonzero(reader)?;
let delta_g2 = read_nonzero(reader)?;
let mut ic = vec![];
for _ in 0..num_ic {
ic.push(read_nonzero(reader)?);
}
Ok(VerifyingKey {
alpha_g1: alpha_g1,
beta_g1: beta_g1,
beta_g2: beta_g2,
gamma_g2: gamma_g2,
delta_g1: delta_g1,
delta_g2: delta_g2,
ic: ic
})
}
}
pub struct Parameters<E: Engine> {
pub vk: VerifyingKey<E>,
// Elements of the form ((tau^i * t(tau)) / delta) for i between 0 and
// m-2 inclusive. Never contains points at infinity.
h: Arc<Vec<E::G1Affine>>,
// Elements of the form (beta * u_i(tau) + alpha v_i(tau) + w_i(tau)) / delta
// for all auxillary inputs. Variables can never be unconstrained, so this
// never contains points at infinity.
l: Arc<Vec<E::G1Affine>>,
// QAP "A" polynomials evaluated at tau in the Lagrange basis. Never contains
// points at infinity: polynomials that evaluate to zero are omitted from
// the CRS and the prover can deterministically skip their evaluation.
a: Arc<Vec<E::G1Affine>>,
// QAP "B" polynomials evaluated at tau in the Lagrange basis. Needed in
// G1 and G2 for C/B queries, respectively. Never contains points at
// infinity for the same reason as the "A" polynomials.
b_g1: Arc<Vec<E::G1Affine>>,
b_g2: Arc<Vec<E::G2Affine>>
}
impl<E: Engine> Parameters<E> {
pub fn write<W: Write>(&self, writer: &mut W) -> Result<(), io::Error> {
self.vk.write(writer)?;
for e in &*self.h {
writer.write_all(e.into_uncompressed().as_ref())?;
}
for e in &*self.l {
writer.write_all(e.into_uncompressed().as_ref())?;
}
for e in &*self.a {
writer.write_all(e.into_uncompressed().as_ref())?;
}
for e in &*self.b_g1 {
writer.write_all(e.into_uncompressed().as_ref())?;
}
for e in &*self.b_g2 {
writer.write_all(e.into_uncompressed().as_ref())?;
}
Ok(())
}
}
pub trait ParameterSource<E: Engine> {
type G1Builder: SourceBuilder<E::G1Affine>;
type G2Builder: SourceBuilder<E::G2Affine>;
fn get_vk(&mut self, num_ic: usize) -> Result<VerifyingKey<E>, Error>;
fn get_h(&mut self, num_h: usize) -> Result<Self::G1Builder, Error>;
fn get_l(&mut self, num_l: usize) -> Result<Self::G1Builder, Error>;
fn get_a(&mut self, num_inputs: usize, num_aux: usize) -> Result<(Self::G1Builder, Self::G1Builder), Error>;
fn get_b_g1(&mut self, num_inputs: usize, num_aux: usize) -> Result<(Self::G1Builder, Self::G1Builder), Error>;
fn get_b_g2(&mut self, num_inputs: usize, num_aux: usize) -> Result<(Self::G2Builder, Self::G2Builder), Error>;
}
impl<'a, E: Engine> ParameterSource<E> for &'a Parameters<E> {
type G1Builder = (Arc<Vec<E::G1Affine>>, usize);
type G2Builder = (Arc<Vec<E::G2Affine>>, usize);
fn get_vk(&mut self, num_ic: usize) -> Result<VerifyingKey<E>, Error> {
assert_eq!(self.vk.ic.len(), num_ic);
Ok(self.vk.clone())
}
fn get_h(&mut self, num_h: usize) -> Result<Self::G1Builder, Error> {
assert_eq!(self.h.len(), num_h);
Ok((self.h.clone(), 0))
}
fn get_l(&mut self, num_l: usize) -> Result<Self::G1Builder, Error> {
assert_eq!(self.l.len(), num_l);
Ok((self.l.clone(), 0))
}
fn get_a(&mut self, num_inputs: usize, num_aux: usize) -> Result<(Self::G1Builder, Self::G1Builder), Error> {
assert_eq!(self.a.len(), num_inputs + num_aux);
Ok(((self.a.clone(), 0), (self.a.clone(), num_inputs)))
}
fn get_b_g1(&mut self, num_inputs: usize, num_aux: usize) -> Result<(Self::G1Builder, Self::G1Builder), Error> {
assert_eq!(self.b_g1.len(), num_inputs + num_aux);
Ok(((self.b_g1.clone(), 0), (self.b_g1.clone(), num_inputs)))
}
fn get_b_g2(&mut self, num_inputs: usize, num_aux: usize) -> Result<(Self::G2Builder, Self::G2Builder), Error> {
assert_eq!(self.b_g2.len(), num_inputs + num_aux);
Ok(((self.b_g2.clone(), 0), (self.b_g2.clone(), num_inputs)))
}
}
use std::fs::File;
use std::io::{Seek, SeekFrom};
pub struct ProverStream {
path: String,
cursor: u64,
fh: Option<File>
}
impl Clone for ProverStream {
fn clone(&self) -> ProverStream {
ProverStream {
path: self.path.clone(),
cursor: self.cursor,
fh: None
}
}
}
impl ProverStream {
pub fn new(path: &str) -> Result<ProverStream, io::Error> {
Ok(ProverStream {
path: path.to_string(),
cursor: 0,
fh: None
})
}
fn open_if_needed(&mut self) -> Result<(), Error> {
if self.fh.is_none() {
let mut fh = File::open(&self.path)?;
fh.seek(SeekFrom::Start(self.cursor))?;
self.fh = Some(fh);
}
Ok(())
}
}
impl<G: CurveAffine> Source<G> for ProverStream {
fn add_assign_mixed(&mut self, to: &mut <G as CurveAffine>::Projective) -> Result<(), Error> {
self.open_if_needed()?;
let r: G = read_nonzero(self.fh.as_mut().unwrap())?;
self.cursor += G::Uncompressed::size() as u64;
to.add_assign_mixed(&r);
Ok(())
}
fn skip(&mut self, amt: usize) -> Result<(), Error> {
self.open_if_needed()?;
let size_to_skip = amt * G::Uncompressed::size();
self.cursor += size_to_skip as u64;
self.fh.as_mut().unwrap().seek(SeekFrom::Current(size_to_skip as i64))?;
Ok(())
}
}
impl<G: CurveAffine> SourceBuilder<G> for ProverStream {
type Source = Self;
fn new(self) -> Self::Source {
self
}
}
impl<E: Engine> ParameterSource<E> for ProverStream {
type G1Builder = ProverStream;
type G2Builder = ProverStream;
fn get_vk(&mut self, num_ic: usize) -> Result<VerifyingKey<E>, Error> {
self.open_if_needed()?;
let vk = VerifyingKey::read(self.fh.as_mut().unwrap(), num_ic)?;
self.cursor += VerifyingKey::<E>::size(num_ic) as u64;
Ok(vk)
}
fn get_h(&mut self, num_h: usize) -> Result<Self::G1Builder, Error> {
self.open_if_needed()?;
let res = self.clone();
let amount_to_seek = num_h * <E::G1Affine as CurveAffine>::Uncompressed::size();
self.fh.as_mut().unwrap().seek(SeekFrom::Current(amount_to_seek as i64))?;
self.cursor += amount_to_seek as u64;
Ok(res)
}
fn get_l(&mut self, num_l: usize) -> Result<Self::G1Builder, Error> {
self.open_if_needed()?;
let res = self.clone();
let amount_to_seek = num_l * <E::G1Affine as CurveAffine>::Uncompressed::size();
self.fh.as_mut().unwrap().seek(SeekFrom::Current(amount_to_seek as i64))?;
self.cursor += amount_to_seek as u64;
Ok(res)
}
fn get_a(&mut self, num_inputs: usize, num_aux: usize) -> Result<(Self::G1Builder, Self::G1Builder), Error> {
self.open_if_needed()?;
let res1 = self.clone();
let amount_to_seek = num_inputs * <E::G1Affine as CurveAffine>::Uncompressed::size();
self.fh.as_mut().unwrap().seek(SeekFrom::Current(amount_to_seek as i64))?;
self.cursor += amount_to_seek as u64;
let res2 = self.clone();
let amount_to_seek = num_aux * <E::G1Affine as CurveAffine>::Uncompressed::size();
self.fh.as_mut().unwrap().seek(SeekFrom::Current(amount_to_seek as i64))?;
self.cursor += amount_to_seek as u64;
Ok((res1, res2))
}
fn get_b_g1(&mut self, num_inputs: usize, num_aux: usize) -> Result<(Self::G1Builder, Self::G1Builder), Error> {
self.open_if_needed()?;
let res1 = self.clone();
let amount_to_seek = num_inputs * <E::G1Affine as CurveAffine>::Uncompressed::size();
self.fh.as_mut().unwrap().seek(SeekFrom::Current(amount_to_seek as i64))?;
self.cursor += amount_to_seek as u64;
let res2 = self.clone();
let amount_to_seek = num_aux * <E::G1Affine as CurveAffine>::Uncompressed::size();
self.fh.as_mut().unwrap().seek(SeekFrom::Current(amount_to_seek as i64))?;
self.cursor += amount_to_seek as u64;
Ok((res1, res2))
}
fn get_b_g2(&mut self, num_inputs: usize, num_aux: usize) -> Result<(Self::G2Builder, Self::G2Builder), Error> {
self.open_if_needed()?;
let res1 = self.clone();
let amount_to_seek = num_inputs * <E::G2Affine as CurveAffine>::Uncompressed::size();
self.fh.as_mut().unwrap().seek(SeekFrom::Current(amount_to_seek as i64))?;
self.cursor += amount_to_seek as u64;
let res2 = self.clone();
let amount_to_seek = num_aux * <E::G2Affine as CurveAffine>::Uncompressed::size();
self.fh.as_mut().unwrap().seek(SeekFrom::Current(amount_to_seek as i64))?;
self.cursor += amount_to_seek as u64;
Ok((res1, res2))
}
}

View File

@ -1,233 +0,0 @@
use pairing::*;
use domain::{Scalar, EvaluationDomain};
use ::{
ConstraintSystem,
PublicConstraintSystem,
Circuit,
Input,
Index,
Error,
Variable,
LinearCombination,
Namespace
};
use std::marker::PhantomData;
use multiexp::*;
use super::{ParameterSource, Proof};
use rand::Rng;
use std::sync::Arc;
use futures::Future;
use futures_cpupool::CpuPool;
pub fn create_random_proof<E, C, R, P: ParameterSource<E>>(
circuit: C,
params: P,
rng: &mut R
) -> Result<Proof<E>, Error>
where E: Engine, C: Circuit<E>, R: Rng
{
let r = rng.gen();
let s = rng.gen();
create_proof::<E, C, P>(circuit, params, r, s)
}
pub fn create_proof<E, C, P: ParameterSource<E>>(
circuit: C,
mut params: P,
r: E::Fr,
s: E::Fr
) -> Result<Proof<E>, Error>
where E: Engine, C: Circuit<E>
{
struct ProvingAssignment<E: Engine> {
// Density of queries
a_aux_density: DensityTracker,
b_input_density: DensityTracker,
b_aux_density: DensityTracker,
// Evaluations of A, B, C polynomials
a: Vec<Scalar<E>>,
b: Vec<Scalar<E>>,
c: Vec<Scalar<E>>,
// Assignments of variables
input_assignment: Vec<E::Fr>,
aux_assignment: Vec<E::Fr>
}
impl<E: Engine> PublicConstraintSystem<E> for ProvingAssignment<E> {
fn alloc_input<NR, N, F>(
&mut self,
_: N,
f: F
) -> Result<Variable, Error>
where NR: Into<String>, N: FnOnce() -> NR, F: FnOnce() -> Result<E::Fr, Error>
{
self.input_assignment.push(f()?);
self.b_input_density.add_element();
Ok(Variable(Index::Input(self.input_assignment.len() - 1)))
}
}
impl<E: Engine> ConstraintSystem<E> for ProvingAssignment<E> {
type Root = Self;
fn alloc<NR, N, F>(
&mut self,
_: N,
f: F
) -> Result<Variable, Error>
where NR: Into<String>, N: FnOnce() -> NR, F: FnOnce() -> Result<E::Fr, Error>
{
self.aux_assignment.push(f()?);
self.a_aux_density.add_element();
self.b_aux_density.add_element();
Ok(Variable(Index::Aux(self.aux_assignment.len() - 1)))
}
fn enforce<NR: Into<String>, N: FnOnce() -> NR>(
&mut self,
_: N,
a: LinearCombination<E>,
b: LinearCombination<E>,
c: LinearCombination<E>
)
{
self.a.push(Scalar(a.eval(None, Some(&mut self.a_aux_density), &self.input_assignment, &self.aux_assignment)));
self.b.push(Scalar(b.eval(Some(&mut self.b_input_density), Some(&mut self.b_aux_density), &self.input_assignment, &self.aux_assignment)));
self.c.push(Scalar(c.eval(None, None, &self.input_assignment, &self.aux_assignment)));
}
/// Begin a namespace for the constraint system
fn namespace<'a, NR, N>(
&'a mut self,
_: N
) -> Namespace<'a, E, Self::Root>
where NR: Into<String>, N: FnOnce() -> NR
{
Namespace(self, PhantomData)
}
}
let mut prover = ProvingAssignment {
a_aux_density: DensityTracker::new(),
b_input_density: DensityTracker::new(),
b_aux_density: DensityTracker::new(),
a: vec![],
b: vec![],
c: vec![],
input_assignment: vec![],
aux_assignment: vec![]
};
prover.alloc_input(|| "", || Ok(E::Fr::one()))?;
circuit.synthesize(&mut prover)?.synthesize(&mut prover)?;
// Input consistency constraints: x * 0 = 0
for i in 0..prover.input_assignment.len() {
prover.enforce(|| "",
LinearCombination::zero() + Variable(Index::Input(i)),
LinearCombination::zero(),
LinearCombination::zero());
}
let cpupool = CpuPool::new_num_cpus();
let vk = params.get_vk(prover.input_assignment.len())?;
let h = {
let mut a = EvaluationDomain::from_coeffs(prover.a)?;
let mut b = EvaluationDomain::from_coeffs(prover.b)?;
let mut c = EvaluationDomain::from_coeffs(prover.c)?;
a.ifft();
a.coset_fft();
b.ifft();
b.coset_fft();
c.ifft();
c.coset_fft();
a.mul_assign(&b);
drop(b);
a.sub_assign(&c);
drop(c);
a.divide_by_z_on_coset();
a.icoset_fft();
let mut a = a.into_coeffs();
let a_len = a.len() - 1;
a.truncate(a_len);
// TODO: parallelize if it's even helpful
let a = Arc::new(a.into_iter().map(|s| s.0.into_repr()).collect::<Vec<_>>());
multiexp(&cpupool, params.get_h(a.len())?, FullDensity, a)
};
// TODO: parallelize if it's even helpful
let input_assignment = Arc::new(prover.input_assignment.into_iter().map(|s| s.into_repr()).collect::<Vec<_>>());
let aux_assignment = Arc::new(prover.aux_assignment.into_iter().map(|s| s.into_repr()).collect::<Vec<_>>());
let l = multiexp(&cpupool, params.get_l(aux_assignment.len())?, FullDensity, aux_assignment.clone());
let a_aux_density_total = prover.a_aux_density.get_total_density();
let (a_inputs_source, a_aux_source) = params.get_a(input_assignment.len(), a_aux_density_total)?;
let a_inputs = multiexp(&cpupool, a_inputs_source, FullDensity, input_assignment.clone());
let a_aux = multiexp(&cpupool, a_aux_source, Arc::new(prover.a_aux_density), aux_assignment.clone());
let b_input_density = Arc::new(prover.b_input_density);
let b_input_density_total = b_input_density.get_total_density();
let b_aux_density = Arc::new(prover.b_aux_density);
let b_aux_density_total = b_aux_density.get_total_density();
let (b_g1_inputs_source, b_g1_aux_source) = params.get_b_g1(b_input_density_total, b_aux_density_total)?;
let b_g1_inputs = multiexp(&cpupool, b_g1_inputs_source, b_input_density.clone(), input_assignment.clone());
let b_g1_aux = multiexp(&cpupool, b_g1_aux_source, b_aux_density.clone(), aux_assignment.clone());
let (b_g2_inputs_source, b_g2_aux_source) = params.get_b_g2(b_input_density_total, b_aux_density_total)?;
let b_g2_inputs = multiexp(&cpupool, b_g2_inputs_source, b_input_density, input_assignment.clone());
let b_g2_aux = multiexp(&cpupool, b_g2_aux_source, b_aux_density, aux_assignment);
drop(input_assignment);
let mut g_a = vk.delta_g1.mul(r);
g_a.add_assign_mixed(&vk.alpha_g1);
let mut g_b = vk.delta_g2.mul(s);
g_b.add_assign_mixed(&vk.beta_g2);
let mut g_c;
{
let mut rs = r;
rs.mul_assign(&s);
g_c = vk.delta_g1.mul(rs);
g_c.add_assign(&vk.alpha_g1.mul(s));
g_c.add_assign(&vk.beta_g1.mul(r));
}
let mut a_answer = a_inputs.wait()?;
a_answer.add_assign(&a_aux.wait()?);
g_a.add_assign(&a_answer);
a_answer.mul_assign(s);
g_c.add_assign(&a_answer);
let mut b1_answer = b_g1_inputs.wait()?;
b1_answer.add_assign(&b_g1_aux.wait()?);
let mut b2_answer = b_g2_inputs.wait()?;
b2_answer.add_assign(&b_g2_aux.wait()?);
g_b.add_assign(&b2_answer);
b1_answer.mul_assign(r);
g_c.add_assign(&b1_answer);
g_c.add_assign(&h.wait()?);
g_c.add_assign(&l.wait()?);
Ok(Proof {
a: g_a.into_affine(),
b: g_b.into_affine(),
c: g_c.into_affine()
})
}

View File

@ -1,185 +0,0 @@
use pairing::*;
use ::{
Input,
Error,
LinearCombination,
Index,
Variable,
ConstraintSystem,
PublicConstraintSystem,
Namespace
};
use super::{Proof, VerifyingKey, PreparedVerifyingKey};
use std::marker::PhantomData;
/// This is the constraint system synthesizer that is made available to
/// callers of the verification function when they wish to perform
/// allocations. In that context, allocation of inputs is not allowed.
pub struct VerifierInput<'a, E: Engine> {
acc: E::G1,
ic: &'a [E::G1Affine],
insufficient_inputs: bool,
num_inputs: usize,
num_aux: usize
}
impl<'cs, E: Engine> ConstraintSystem<E> for VerifierInput<'cs, E> {
type Root = Self;
fn alloc<NR, N, F>(
&mut self,
_: N,
f: F
) -> Result<Variable, Error>
where NR: Into<String>, N: FnOnce() -> NR, F: FnOnce() -> Result<E::Fr, Error>
{
// Run the function for calculating the allocation but ignore the output,
// since we don't care about the assignment of auxillary variables during
// verification.
let _ = f();
let index = self.num_aux;
self.num_aux += 1;
Ok(Variable(Index::Aux(index)))
}
fn enforce<NR: Into<String>, N: FnOnce() -> NR>(
&mut self,
_: N,
_: LinearCombination<E>,
_: LinearCombination<E>,
_: LinearCombination<E>
)
{
// Do nothing; we don't care about the constraint system
// in this context.
}
/// Begin a namespace for the constraint system
fn namespace<'a, NR, N>(
&'a mut self,
_: N
) -> Namespace<'a, E, Self::Root>
where NR: Into<String>, N: FnOnce() -> NR
{
Namespace(self, PhantomData)
}
}
/// This is intended to be a wrapper around VerifierInput that is kept
/// private and used for input allocation.
struct InputAllocator<T>(T);
impl<'cs, 'b, E: Engine> ConstraintSystem<E> for InputAllocator<&'cs mut VerifierInput<'b, E>> {
type Root = Self;
fn alloc<NR, N, F>(
&mut self,
name_fn: N,
f: F
) -> Result<Variable, Error>
where NR: Into<String>, N: FnOnce() -> NR, F: FnOnce() -> Result<E::Fr, Error>
{
self.0.alloc(name_fn, f)
}
fn enforce<NR: Into<String>, N: FnOnce() -> NR>(
&mut self,
_: N,
_: LinearCombination<E>,
_: LinearCombination<E>,
_: LinearCombination<E>
)
{
// Do nothing; we don't care about the constraint system
// in this context.
}
/// Begin a namespace for the constraint system
fn namespace<'a, NR, N>(
&'a mut self,
_: N
) -> Namespace<'a, E, Self::Root>
where NR: Into<String>, N: FnOnce() -> NR
{
Namespace(self, PhantomData)
}
}
impl<'a, 'b, E: Engine> PublicConstraintSystem<E> for InputAllocator<&'a mut VerifierInput<'b, E>> {
fn alloc_input<NR, N, F>(
&mut self,
_: N,
f: F
) -> Result<Variable, Error>
where NR: Into<String>, N: FnOnce() -> NR, F: FnOnce() -> Result<E::Fr, Error>
{
if self.0.ic.len() == 0 {
self.0.insufficient_inputs = true;
} else {
self.0.acc.add_assign(&self.0.ic[0].mul(f()?));
self.0.ic = &self.0.ic[1..];
}
let index = self.0.num_inputs;
self.0.num_inputs += 1;
Ok(Variable(Index::Input(index)))
}
}
pub fn verify_proof<'a, E, C, F>(
pvk: &'a PreparedVerifyingKey<E>,
proof: &Proof<E>,
circuit: F
) -> Result<bool, Error>
where E: Engine, C: Input<E>, F: FnOnce(&mut VerifierInput<'a, E>) -> Result<C, Error>
{
let mut witness = VerifierInput::<E> {
acc: pvk.ic[0].into_projective(),
ic: &pvk.ic[1..],
insufficient_inputs: false,
num_inputs: 1,
num_aux: 0
};
circuit(&mut witness)?.synthesize(&mut InputAllocator(&mut witness))?;
if witness.ic.len() != 0 || witness.insufficient_inputs {
return Err(Error::MalformedVerifyingKey);
}
// The original verification equation is:
// A * B = alpha * beta + inputs * gamma + C * delta
// ... however, we rearrange it so that it is:
// A * B - inputs * gamma - C * delta = alpha * beta
// or equivalently:
// A * B + inputs * (-gamma) + C * (-delta) = alpha * beta
// which allows us to do a single final exponentiation.
Ok(E::final_exponentiation(
&E::miller_loop([
(&proof.a.prepare(), &proof.b.prepare()),
(&witness.acc.into_affine().prepare(), &pvk.neg_gamma_g2),
(&proof.c.prepare(), &pvk.neg_delta_g2)
].into_iter())
).unwrap() == pvk.alpha_g1_beta_g2)
}
pub fn prepare_verifying_key<E: Engine>(
vk: &VerifyingKey<E>
) -> PreparedVerifyingKey<E>
{
let mut gamma = vk.gamma_g2;
gamma.negate();
let mut delta = vk.delta_g2;
delta.negate();
PreparedVerifyingKey {
alpha_g1_beta_g2: E::pairing(vk.alpha_g1, vk.beta_g2),
neg_gamma_g2: gamma.prepare(),
neg_delta_g2: delta.prepare(),
ic: vk.ic.clone()
}
}

View File

@ -1,534 +0,0 @@
extern crate pairing;
extern crate rand;
extern crate bit_vec;
extern crate futures;
extern crate futures_cpupool;
extern crate num_cpus;
extern crate crossbeam;
use pairing::{Engine, Field};
use std::ops::{Add, Sub};
use std::io;
pub mod multicore;
pub mod domain;
pub mod groth16;
pub mod multiexp;
#[derive(Debug)]
pub enum Error {
PolynomialDegreeTooLarge,
MalformedVerifyingKey,
AssignmentMissing,
UnexpectedIdentity,
UnconstrainedVariable(Variable),
IoError(io::Error)
}
impl From<io::Error> for Error {
fn from(e: io::Error) -> Error {
Error::IoError(e)
}
}
#[derive(Copy, Clone, Debug)]
pub struct Variable(Index);
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
enum Index {
Input(usize),
Aux(usize)
}
pub struct LinearCombination<E: Engine>(Vec<(Index, E::Fr)>);
impl<E: Engine> Clone for LinearCombination<E> {
fn clone(&self) -> LinearCombination<E> {
LinearCombination(self.0.clone())
}
}
impl<E: Engine> LinearCombination<E> {
pub fn zero() -> LinearCombination<E> {
LinearCombination(vec![])
}
pub fn eval(
&self,
mut input_density: Option<&mut multiexp::DensityTracker>,
mut aux_density: Option<&mut multiexp::DensityTracker>,
input_assignment: &[E::Fr],
aux_assignment: &[E::Fr]
) -> E::Fr
{
let mut acc = E::Fr::zero();
for &(index, coeff) in self.0.iter() {
let mut tmp;
match index {
Index::Input(i) => {
tmp = input_assignment[i];
if let Some(ref mut v) = input_density {
v.inc(i);
}
},
Index::Aux(i) => {
tmp = aux_assignment[i];
if let Some(ref mut v) = aux_density {
v.inc(i);
}
}
}
if coeff == E::Fr::one() {
acc.add_assign(&tmp);
} else {
tmp.mul_assign(&coeff);
acc.add_assign(&tmp);
}
}
acc
}
}
impl<E: Engine> Add<Variable> for LinearCombination<E> {
type Output = LinearCombination<E>;
fn add(self, other: Variable) -> LinearCombination<E> {
self + (E::Fr::one(), other)
}
}
impl<E: Engine> Sub<Variable> for LinearCombination<E> {
type Output = LinearCombination<E>;
fn sub(self, other: Variable) -> LinearCombination<E> {
self - (E::Fr::one(), other)
}
}
impl<E: Engine> Add<(E::Fr, Variable)> for LinearCombination<E> {
type Output = LinearCombination<E>;
fn add(mut self, (coeff, var): (E::Fr, Variable)) -> LinearCombination<E> {
let mut must_insert = true;
for &mut (ref index, ref mut fr) in &mut self.0 {
if *index == var.0 {
fr.add_assign(&coeff);
must_insert = false;
break;
}
}
if must_insert {
self.0.push((var.0, coeff));
}
self
}
}
impl<E: Engine> Sub<(E::Fr, Variable)> for LinearCombination<E> {
type Output = LinearCombination<E>;
fn sub(self, (mut coeff, var): (E::Fr, Variable)) -> LinearCombination<E> {
coeff.negate();
self + (coeff, var)
}
}
impl<'a, E: Engine> Add<&'a LinearCombination<E>> for LinearCombination<E> {
type Output = LinearCombination<E>;
fn add(mut self, other: &'a LinearCombination<E>) -> LinearCombination<E> {
for &(k, v) in other.0.iter() {
self = self + (v, Variable(k));
}
self
}
}
impl<'a, E: Engine> Sub<&'a LinearCombination<E>> for LinearCombination<E> {
type Output = LinearCombination<E>;
fn sub(mut self, other: &'a LinearCombination<E>) -> LinearCombination<E> {
for &(k, v) in other.0.iter() {
self = self - (v, Variable(k));
}
self
}
}
pub trait Circuit<E: Engine> {
type InputMap: Input<E>;
/// Synthesize the circuit into a rank-1 quadratic constraint system
#[must_use]
fn synthesize<CS: ConstraintSystem<E>>(self, cs: &mut CS) -> Result<Self::InputMap, Error>;
}
pub trait Input<E: Engine> {
/// Synthesize the circuit, except with additional access to public input
/// variables
fn synthesize<CS: PublicConstraintSystem<E>>(self, cs: &mut CS) -> Result<(), Error>;
}
pub trait PublicConstraintSystem<E: Engine>: ConstraintSystem<E> {
/// Allocate a public input that the verifier knows. The provided function is used to
/// determine the assignment of the variable.
fn alloc_input<NR, N, F>(
&mut self,
name_fn: N,
f: F
) -> Result<Variable, Error>
where NR: Into<String>, N: FnOnce() -> NR, F: FnOnce() -> Result<E::Fr, Error>;
}
pub trait ConstraintSystem<E: Engine>: Sized {
type Root: ConstraintSystem<E>;
/// Return the "one" input variable
fn one() -> Variable {
Variable(Index::Input(0))
}
/// Allocate a private variable in the constraint system. The provided function is used to
/// determine the assignment of the variable.
fn alloc<NR, N, F>(
&mut self,
name_fn: N,
f: F
) -> Result<Variable, Error>
where NR: Into<String>, N: FnOnce() -> NR, F: FnOnce() -> Result<E::Fr, Error>;
/// Enforce that `A` * `B` = `C`.
fn enforce<NR: Into<String>, N: FnOnce() -> NR>(
&mut self,
name_fn: N,
a: LinearCombination<E>,
b: LinearCombination<E>,
c: LinearCombination<E>
);
fn push_namespace<NR, N>(&mut self, _: N)
where NR: Into<String>, N: FnOnce() -> NR
{
// Default is to do nothing.
}
fn pop_namespace(&mut self)
{
// Default is to do nothing.
}
/// Begin a namespace for the constraint system
fn namespace<'a, NR, N>(
&'a mut self,
name_fn: N
) -> Namespace<'a, E, Self::Root>
where NR: Into<String>, N: FnOnce() -> NR;
}
impl<'cs, E: Engine, CS: ConstraintSystem<E>> ConstraintSystem<E> for &'cs mut CS {
type Root = CS::Root;
/// Allocate a private variable in the constraint system. The provided function is used to
/// determine the assignment of the variable.
fn alloc<NR, N, F>(
&mut self,
name_fn: N,
f: F
) -> Result<Variable, Error>
where NR: Into<String>, N: FnOnce() -> NR, F: FnOnce() -> Result<E::Fr, Error>
{
(*self).alloc(name_fn, f)
}
/// Enforce that `A` * `B` = `C`.
fn enforce<NR: Into<String>, N: FnOnce() -> NR>(
&mut self,
name_fn: N,
a: LinearCombination<E>,
b: LinearCombination<E>,
c: LinearCombination<E>
)
{
(*self).enforce(name_fn, a, b, c)
}
fn push_namespace<NR, N>(&mut self, name_fn: N)
where NR: Into<String>, N: FnOnce() -> NR
{
(*self).push_namespace(name_fn)
}
fn pop_namespace(&mut self)
{
(*self).pop_namespace()
}
/// Begin a namespace for the constraint system
fn namespace<'a, NR, N>(
&'a mut self,
name_fn: N
) -> Namespace<'a, E, Self::Root>
where NR: Into<String>, N: FnOnce() -> NR
{
(*self).namespace(name_fn)
}
}
use std::marker::PhantomData;
pub struct Namespace<'a, E: Engine, CS: ConstraintSystem<E> + 'a>(&'a mut CS, PhantomData<E>);
impl<'cs, E: Engine, CS: ConstraintSystem<E>> ConstraintSystem<E> for Namespace<'cs, E, CS> {
type Root = CS;
fn alloc<NR, N, F>(
&mut self,
name_fn: N,
f: F
) -> Result<Variable, Error>
where NR: Into<String>, N: FnOnce() -> NR, F: FnOnce() -> Result<E::Fr, Error>
{
self.0.alloc(name_fn, f)
}
fn enforce<NR: Into<String>, N: FnOnce() -> NR>(
&mut self,
name_fn: N,
a: LinearCombination<E>,
b: LinearCombination<E>,
c: LinearCombination<E>
)
{
self.0.enforce(name_fn, a, b, c)
}
fn push_namespace<NR, N>(&mut self, name_fn: N)
where NR: Into<String>, N: FnOnce() -> NR
{
self.0.push_namespace(name_fn);
}
fn pop_namespace(&mut self)
{
self.0.pop_namespace();
}
/// Begin a namespace for the constraint system
fn namespace<'a, NR, N>(
&'a mut self,
name_fn: N
) -> Namespace<'a, E, Self::Root>
where NR: Into<String>, N: FnOnce() -> NR
{
self.0.push_namespace(name_fn);
Namespace(self.0, PhantomData)
}
}
impl<'a, E: Engine, CS: ConstraintSystem<E>> Drop for Namespace<'a, E, CS> {
fn drop(&mut self) {
self.0.pop_namespace()
}
}
use std::collections::HashMap;
#[derive(Debug)]
enum NamedObject {
Constraint(usize),
Input(usize),
Aux(usize),
Namespace
}
/// Constraint system for testing purposes.
pub struct TestConstraintSystem<E: Engine> {
named_objects: HashMap<String, NamedObject>,
current_namespace: Vec<String>,
constraints: Vec<(LinearCombination<E>, LinearCombination<E>, LinearCombination<E>, String)>,
inputs: Vec<E::Fr>,
aux: Vec<E::Fr>
}
impl<E: Engine> TestConstraintSystem<E> {
pub fn new() -> TestConstraintSystem<E> {
TestConstraintSystem {
named_objects: HashMap::new(),
current_namespace: vec![],
constraints: vec![],
inputs: vec![E::Fr::one()],
aux: vec![]
}
}
pub fn which_is_unsatisfied(&self) -> Option<&str> {
for &(ref a, ref b, ref c, ref path) in &self.constraints {
let mut a = a.eval(None, None, &self.inputs, &self.aux);
let b = b.eval(None, None, &self.inputs, &self.aux);
let c = c.eval(None, None, &self.inputs, &self.aux);
a.mul_assign(&b);
if a != c {
return Some(&*path)
}
}
None
}
pub fn is_satisfied(&self) -> bool
{
self.which_is_unsatisfied().is_none()
}
pub fn num_constraints(&self) -> usize
{
self.constraints.len()
}
pub fn assign(&mut self, path: &str, to: E::Fr)
{
match self.named_objects.get(path) {
Some(&NamedObject::Input(index)) => self.inputs[index] = to,
Some(&NamedObject::Aux(index)) => self.aux[index] = to,
Some(e) => panic!("tried to assign `{:?}` a value at path: {}", e, path),
_ => panic!("no variable exists at path: {}", path)
}
}
pub fn get(&mut self, path: &str) -> E::Fr
{
match self.named_objects.get(path) {
Some(&NamedObject::Input(index)) => self.inputs[index],
Some(&NamedObject::Aux(index)) => self.aux[index],
Some(e) => panic!("tried to get value of `{:?}` at path: {}", e, path),
_ => panic!("no variable exists at path: {}", path)
}
}
fn set_named_obj(&mut self, path: String, to: NamedObject) {
if self.named_objects.contains_key(&path) {
panic!("tried to create object at existing path: {}", path);
}
self.named_objects.insert(path, to);
}
}
fn compute_path(ns: &[String], this: String) -> String {
if this.chars().any(|a| a == '/') {
panic!("'/' is not allowed in names");
}
let mut name = String::new();
let mut needs_separation = false;
for ns in ns.iter().chain(Some(&this).into_iter())
{
if needs_separation {
name += "/";
}
name += ns;
needs_separation = true;
}
name
}
impl<E: Engine> PublicConstraintSystem<E> for TestConstraintSystem<E> {
fn alloc_input<NR, N, F>(
&mut self,
name_fn: N,
f: F
) -> Result<Variable, Error>
where NR: Into<String>, N: FnOnce() -> NR, F: FnOnce() -> Result<E::Fr, Error>
{
let this_path = compute_path(&self.current_namespace, name_fn().into());
let this_obj = NamedObject::Input(self.inputs.len());
self.set_named_obj(this_path, this_obj);
let var = Variable(Index::Input(self.inputs.len()));
self.inputs.push(f()?);
Ok(var)
}
}
impl<E: Engine> ConstraintSystem<E> for TestConstraintSystem<E> {
type Root = Self;
fn alloc<NR, N, F>(
&mut self,
name_fn: N,
f: F
) -> Result<Variable, Error>
where NR: Into<String>, N: FnOnce() -> NR, F: FnOnce() -> Result<E::Fr, Error>
{
let this_path = compute_path(&self.current_namespace, name_fn().into());
let this_obj = NamedObject::Aux(self.aux.len());
self.set_named_obj(this_path, this_obj);
let var = Variable(Index::Aux(self.aux.len()));
self.aux.push(f()?);
Ok(var)
}
fn enforce<NR: Into<String>, N: FnOnce() -> NR>(
&mut self,
name_fn: N,
a: LinearCombination<E>,
b: LinearCombination<E>,
c: LinearCombination<E>
)
{
let this_path = compute_path(&self.current_namespace, name_fn().into());
let this_obj = NamedObject::Constraint(self.constraints.len());
self.set_named_obj(this_path.clone(), this_obj);
self.constraints.push((a, b, c, this_path));
}
fn push_namespace<NR, N>(&mut self, name_fn: N)
where NR: Into<String>, N: FnOnce() -> NR
{
let name = name_fn().into();
let this_path = compute_path(&self.current_namespace, name.clone());
self.set_named_obj(this_path, NamedObject::Namespace);
self.current_namespace.push(name);
}
fn pop_namespace(&mut self)
{
self.current_namespace.pop();
}
/// Begin a namespace for the constraint system
fn namespace<'a, NR, N>(
&'a mut self,
name_fn: N
) -> Namespace<'a, E, Self::Root>
where NR: Into<String>, N: FnOnce() -> NR
{
self.push_namespace(name_fn);
Namespace(self, PhantomData)
}
}

View File

@ -1,53 +0,0 @@
use crossbeam::{self, Scope, ScopedJoinHandle};
use num_cpus;
pub enum MaybeJoinHandle<T> {
MultiThreaded(ScopedJoinHandle<T>),
SingleThreaded(T)
}
impl<T> MaybeJoinHandle<T> {
pub fn join(self) -> T {
match self {
MaybeJoinHandle::MultiThreaded(scope) => scope.join(),
MaybeJoinHandle::SingleThreaded(t) => t
}
}
}
#[derive(Clone, Copy)]
pub enum MaybeScope<'a, 'b: 'a> {
MultiThreaded(&'a Scope<'b>),
SingleThreaded
}
impl<'a, 'b> MaybeScope<'a, 'b> {
pub fn spawn<F, T>(&self, f: F) -> MaybeJoinHandle<T>
where F: FnOnce() -> T + Send + 'b, T: Send + 'b
{
match self {
&MaybeScope::MultiThreaded(scope) => MaybeJoinHandle::MultiThreaded(scope.spawn(f)),
&MaybeScope::SingleThreaded => MaybeJoinHandle::SingleThreaded(f())
}
}
}
pub fn scope<'a, F, R>(
elements: usize,
f: F
) -> R where F: for<'b> FnOnce(MaybeScope<'b, 'a>, usize) -> R
{
let num_cpus = num_cpus::get();
if elements <= num_cpus {
if elements == 0 {
f(MaybeScope::SingleThreaded, 1)
} else {
f(MaybeScope::SingleThreaded, elements)
}
} else {
crossbeam::scope(|scope| {
f(MaybeScope::MultiThreaded(scope), elements / num_cpus)
})
}
}

View File

@ -1,10 +1,14 @@
use pairing::*;
use super::{
Error
use pairing::{
Engine,
Field,
PrimeField
};
use crossbeam;
use num_cpus;
use multicore;
use super::{
SynthesisError
};
use super::multicore::Worker;
const LARGEST_POLYNOMIAL_DEGREE: usize = 1 << 28;
@ -22,36 +26,43 @@ impl<E: Engine, G: Group<E>> EvaluationDomain<E, G> {
&self.coeffs
}
pub fn into_coeffs(self) -> Vec<G> {
self.coeffs
}
pub fn as_mut(&mut self) -> &mut [G] {
&mut self.coeffs
}
pub fn from_coeffs(mut coeffs: Vec<G>) -> Result<EvaluationDomain<E, G>, Error>
pub fn into_coeffs(self) -> Vec<G> {
self.coeffs
}
pub fn from_coeffs(mut coeffs: Vec<G>) -> Result<EvaluationDomain<E, G>, SynthesisError>
{
// For platform compatibility, we expect not to
// deal with these kinds of large polynomials.
if coeffs.len() > LARGEST_POLYNOMIAL_DEGREE {
return Err(Error::PolynomialDegreeTooLarge)
return Err(SynthesisError::PolynomialDegreeTooLarge)
}
// Compute the size of our evaluation domain
let mut m = 1;
let mut exp = 0;
while m < coeffs.len() {
m *= 2;
exp += 1;
// The pairing-friendly curve may not be able to support
// large enough (radix2) evaluation domains.
if exp >= E::Fr::S {
return Err(Error::PolynomialDegreeTooLarge)
return Err(SynthesisError::PolynomialDegreeTooLarge)
}
}
// Compute omega, the 2^exp primitive root of unity
let mut omega = E::Fr::root_of_unity();
for _ in exp..E::Fr::S {
omega.square();
}
// Extend the coeffs vector with zeroes if necessary
coeffs.resize(m, G::group_zero());
Ok(EvaluationDomain {
@ -64,16 +75,16 @@ impl<E: Engine, G: Group<E>> EvaluationDomain<E, G> {
})
}
pub fn fft(&mut self)
pub fn fft(&mut self, worker: &Worker)
{
best_fft(&mut self.coeffs, &self.omega, self.exp);
best_fft(&mut self.coeffs, worker, &self.omega, self.exp);
}
pub fn ifft(&mut self)
pub fn ifft(&mut self, worker: &Worker)
{
best_fft(&mut self.coeffs, &self.omegainv, self.exp);
best_fft(&mut self.coeffs, worker, &self.omegainv, self.exp);
multicore::scope(self.coeffs.len(), |scope, chunk| {
worker.scope(self.coeffs.len(), |scope, chunk| {
let minv = self.minv;
for v in self.coeffs.chunks_mut(chunk) {
@ -86,9 +97,9 @@ impl<E: Engine, G: Group<E>> EvaluationDomain<E, G> {
});
}
fn mul_coset(&mut self, g: E::Fr)
pub fn distribute_powers(&mut self, worker: &Worker, g: E::Fr)
{
multicore::scope(self.coeffs.len(), |scope, chunk| {
worker.scope(self.coeffs.len(), |scope, chunk| {
for (i, v) in self.coeffs.chunks_mut(chunk).enumerate() {
scope.spawn(move || {
let mut u = g.pow(&[(i * chunk) as u64]);
@ -101,18 +112,18 @@ impl<E: Engine, G: Group<E>> EvaluationDomain<E, G> {
});
}
pub fn coset_fft(&mut self)
pub fn coset_fft(&mut self, worker: &Worker)
{
self.mul_coset(E::Fr::multiplicative_generator());
self.fft();
self.distribute_powers(worker, E::Fr::multiplicative_generator());
self.fft(worker);
}
pub fn icoset_fft(&mut self)
pub fn icoset_fft(&mut self, worker: &Worker)
{
let geninv = self.geninv;
self.ifft();
self.mul_coset(geninv);
self.ifft(worker);
self.distribute_powers(worker, geninv);
}
pub fn z(&self, tau: &E::Fr) -> E::Fr {
@ -122,11 +133,11 @@ impl<E: Engine, G: Group<E>> EvaluationDomain<E, G> {
tmp
}
pub fn divide_by_z_on_coset(&mut self)
pub fn divide_by_z_on_coset(&mut self, worker: &Worker)
{
let i = self.z(&E::Fr::multiplicative_generator()).inverse().unwrap();
multicore::scope(self.coeffs.len(), |scope, chunk| {
worker.scope(self.coeffs.len(), |scope, chunk| {
for v in self.coeffs.chunks_mut(chunk) {
scope.spawn(move || {
for v in v {
@ -137,10 +148,10 @@ impl<E: Engine, G: Group<E>> EvaluationDomain<E, G> {
});
}
pub fn mul_assign(&mut self, other: &EvaluationDomain<E, Scalar<E>>) {
pub fn mul_assign(&mut self, worker: &Worker, other: &EvaluationDomain<E, Scalar<E>>) {
assert_eq!(self.coeffs.len(), other.coeffs.len());
multicore::scope(self.coeffs.len(), |scope, chunk| {
worker.scope(self.coeffs.len(), |scope, chunk| {
for (a, b) in self.coeffs.chunks_mut(chunk).zip(other.coeffs.chunks(chunk)) {
scope.spawn(move || {
for (a, b) in a.iter_mut().zip(b.iter()) {
@ -151,10 +162,10 @@ impl<E: Engine, G: Group<E>> EvaluationDomain<E, G> {
});
}
pub fn sub_assign(&mut self, other: &EvaluationDomain<E, G>) {
pub fn sub_assign(&mut self, worker: &Worker, other: &EvaluationDomain<E, G>) {
assert_eq!(self.coeffs.len(), other.coeffs.len());
multicore::scope(self.coeffs.len(), |scope, chunk| {
worker.scope(self.coeffs.len(), |scope, chunk| {
for (a, b) in self.coeffs.chunks_mut(chunk).zip(other.coeffs.chunks(chunk)) {
scope.spawn(move || {
for (a, b) in a.iter_mut().zip(b.iter()) {
@ -204,43 +215,14 @@ impl<E: Engine> Group<E> for Scalar<E> {
}
}
fn get_log_cpus() -> u32 {
let num = num_cpus::get();
log2_floor(num)
}
fn log2_floor(num: usize) -> u32 {
assert!(num > 0);
let mut pow = 0;
while (1 << (pow+1)) <= num {
pow += 1;
}
pow
}
#[test]
fn test_log2_floor() {
assert_eq!(log2_floor(1), 0);
assert_eq!(log2_floor(2), 1);
assert_eq!(log2_floor(3), 1);
assert_eq!(log2_floor(4), 2);
assert_eq!(log2_floor(5), 2);
assert_eq!(log2_floor(6), 2);
assert_eq!(log2_floor(7), 2);
assert_eq!(log2_floor(8), 3);
}
fn best_fft<E: Engine, T: Group<E>>(a: &mut [T], omega: &E::Fr, log_n: u32)
fn best_fft<E: Engine, T: Group<E>>(a: &mut [T], worker: &Worker, omega: &E::Fr, log_n: u32)
{
let log_cpus = get_log_cpus();
let log_cpus = worker.log_num_cpus();
if log_n < log_cpus {
if log_n <= log_cpus {
serial_fft(a, omega, log_n);
} else {
parallel_fft(a, omega, log_n, log_cpus);
parallel_fft(a, worker, omega, log_n, log_cpus);
}
}
@ -289,7 +271,13 @@ fn serial_fft<E: Engine, T: Group<E>>(a: &mut [T], omega: &E::Fr, log_n: u32)
}
}
fn parallel_fft<E: Engine, T: Group<E>>(a: &mut [T], omega: &E::Fr, log_n: u32, log_cpus: u32)
fn parallel_fft<E: Engine, T: Group<E>>(
a: &mut [T],
worker: &Worker,
omega: &E::Fr,
log_n: u32,
log_cpus: u32
)
{
assert!(log_n >= log_cpus);
@ -298,7 +286,7 @@ fn parallel_fft<E: Engine, T: Group<E>>(a: &mut [T], omega: &E::Fr, log_n: u32,
let mut tmp = vec![vec![T::group_zero(); 1 << log_new_n]; num_cpus];
let new_omega = omega.pow(&[num_cpus as u64]);
crossbeam::scope(|scope| {
worker.scope(0, |scope, _| {
let a = &*a;
for (j, tmp) in tmp.iter_mut().enumerate() {
@ -326,7 +314,7 @@ fn parallel_fft<E: Engine, T: Group<E>>(a: &mut [T], omega: &E::Fr, log_n: u32,
});
// TODO: does this hurt or help?
multicore::scope(a.len(), |scope, chunk| {
worker.scope(a.len(), |scope, chunk| {
let tmp = &tmp;
for (idx, a) in a.chunks_mut(chunk).enumerate() {
@ -351,6 +339,8 @@ fn polynomial_arith() {
fn test_mul<E: Engine, R: rand::Rng>(rng: &mut R)
{
let worker = Worker::new();
for coeffs_a in 0..70 {
for coeffs_b in 0..70 {
let mut a: Vec<_> = (0..coeffs_a).map(|_| Scalar::<E>(E::Fr::rand(rng))).collect();
@ -372,10 +362,10 @@ fn polynomial_arith() {
let mut a = EvaluationDomain::from_coeffs(a).unwrap();
let mut b = EvaluationDomain::from_coeffs(b).unwrap();
a.fft();
b.fft();
a.mul_assign(&b);
a.ifft();
a.fft(&worker);
b.fft(&worker);
a.mul_assign(&worker, &b);
a.ifft(&worker);
for (naive, fft) in naive.iter().zip(a.coeffs.iter()) {
assert!(naive == fft);
@ -396,6 +386,8 @@ fn fft_composition() {
fn test_comp<E: Engine, R: rand::Rng>(rng: &mut R)
{
let worker = Worker::new();
for coeffs in 0..10 {
let coeffs = 1 << coeffs;
@ -405,17 +397,17 @@ fn fft_composition() {
}
let mut domain = EvaluationDomain::from_coeffs(v.clone()).unwrap();
domain.ifft();
domain.fft();
domain.ifft(&worker);
domain.fft(&worker);
assert!(v == domain.coeffs);
domain.fft();
domain.ifft();
domain.fft(&worker);
domain.ifft(&worker);
assert!(v == domain.coeffs);
domain.icoset_fft();
domain.coset_fft();
domain.icoset_fft(&worker);
domain.coset_fft(&worker);
assert!(v == domain.coeffs);
domain.coset_fft();
domain.icoset_fft();
domain.coset_fft(&worker);
domain.icoset_fft(&worker);
assert!(v == domain.coeffs);
}
}
@ -433,6 +425,8 @@ fn parallel_fft_consistency() {
fn test_consistency<E: Engine, R: rand::Rng>(rng: &mut R)
{
let worker = Worker::new();
for _ in 0..5 {
for log_d in 0..10 {
let d = 1 << log_d;
@ -441,8 +435,8 @@ fn parallel_fft_consistency() {
let mut v1 = EvaluationDomain::from_coeffs(v1).unwrap();
let mut v2 = EvaluationDomain::from_coeffs(v1.coeffs.clone()).unwrap();
for log_cpus in 0..min(log_d, 3) {
parallel_fft(&mut v1.coeffs, &v1.omega, log_d, log_cpus);
for log_cpus in log_d..min(log_d+1, 3) {
parallel_fft(&mut v1.coeffs, &worker, &v1.omega, log_d, log_cpus);
serial_fft(&mut v2.coeffs, &v2.omega, log_d);
assert!(v1.coeffs == v2.coeffs);

View File

@ -1,26 +1,45 @@
use pairing::*;
use ::{
Input,
Error,
LinearCombination,
Index,
Circuit,
Variable,
ConstraintSystem,
PublicConstraintSystem,
Namespace
};
use std::marker::PhantomData;
use super::{VerifyingKey, Parameters};
use domain::{Scalar, EvaluationDomain};
use rand::Rng;
use multicore;
use std::sync::Arc;
use pairing::{
Engine,
PrimeField,
Field,
Wnaf,
CurveProjective,
CurveAffine
};
use super::{
Parameters,
VerifyingKey
};
use ::{
SynthesisError,
Circuit,
ConstraintSystem,
LinearCombination,
Variable,
Index
};
use ::domain::{
EvaluationDomain,
Scalar
};
use ::multicore::{
Worker
};
/// Generates a random common reference string for
/// a circuit.
pub fn generate_random_parameters<E, C, R>(
circuit: C,
rng: &mut R
) -> Result<Parameters<E>, Error>
) -> Result<Parameters<E>, SynthesisError>
where E: Engine, C: Circuit<E>, R: Rng
{
let g1 = rng.gen();
@ -43,7 +62,114 @@ pub fn generate_random_parameters<E, C, R>(
)
}
/// Create parameters for a circuit, given some trapdoors.
/// This is our assembly structure that we'll use to synthesize the
/// circuit into a QAP.
struct KeypairAssembly<E: Engine> {
num_inputs: usize,
num_aux: usize,
num_constraints: usize,
at_inputs: Vec<Vec<(E::Fr, usize)>>,
bt_inputs: Vec<Vec<(E::Fr, usize)>>,
ct_inputs: Vec<Vec<(E::Fr, usize)>>,
at_aux: Vec<Vec<(E::Fr, usize)>>,
bt_aux: Vec<Vec<(E::Fr, usize)>>,
ct_aux: Vec<Vec<(E::Fr, usize)>>
}
impl<E: Engine> ConstraintSystem<E> for KeypairAssembly<E> {
type Root = Self;
fn alloc<F, A, AR>(
&mut self,
_: A,
_: F
) -> Result<Variable, SynthesisError>
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{
// There is no assignment, so we don't even invoke the
// function for obtaining one.
let index = self.num_aux;
self.num_aux += 1;
self.at_aux.push(vec![]);
self.bt_aux.push(vec![]);
self.ct_aux.push(vec![]);
Ok(Variable(Index::Aux(index)))
}
fn alloc_input<F, A, AR>(
&mut self,
_: A,
_: F
) -> Result<Variable, SynthesisError>
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{
// There is no assignment, so we don't even invoke the
// function for obtaining one.
let index = self.num_inputs;
self.num_inputs += 1;
self.at_inputs.push(vec![]);
self.bt_inputs.push(vec![]);
self.ct_inputs.push(vec![]);
Ok(Variable(Index::Input(index)))
}
fn enforce<A, AR, LA, LB, LC>(
&mut self,
_: A,
a: LA,
b: LB,
c: LC
)
where A: FnOnce() -> AR, AR: Into<String>,
LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>
{
fn eval<E: Engine>(
l: LinearCombination<E>,
inputs: &mut [Vec<(E::Fr, usize)>],
aux: &mut [Vec<(E::Fr, usize)>],
this_constraint: usize
)
{
for (index, coeff) in l.0 {
match index {
Variable(Index::Input(id)) => inputs[id].push((coeff, this_constraint)),
Variable(Index::Aux(id)) => aux[id].push((coeff, this_constraint))
}
}
}
eval(a(LinearCombination::zero()), &mut self.at_inputs, &mut self.at_aux, self.num_constraints);
eval(b(LinearCombination::zero()), &mut self.bt_inputs, &mut self.bt_aux, self.num_constraints);
eval(c(LinearCombination::zero()), &mut self.ct_inputs, &mut self.ct_aux, self.num_constraints);
self.num_constraints += 1;
}
fn push_namespace<NR, N>(&mut self, _: N)
where NR: Into<String>, N: FnOnce() -> NR
{
// Do nothing; we don't care about namespaces in this context.
}
fn pop_namespace(&mut self)
{
// Do nothing; we don't care about namespaces in this context.
}
fn get_root(&mut self) -> &mut Self::Root {
self
}
}
/// Create parameters for a circuit, given some toxic waste.
pub fn generate_parameters<E, C>(
circuit: C,
g1: E::G1,
@ -53,109 +179,9 @@ pub fn generate_parameters<E, C>(
gamma: E::Fr,
delta: E::Fr,
tau: E::Fr
) -> Result<Parameters<E>, Error>
) -> Result<Parameters<E>, SynthesisError>
where E: Engine, C: Circuit<E>
{
// This is our assembly structure that we'll use to synthesize the
// circuit into a QAP.
struct KeypairAssembly<E: Engine> {
num_inputs: usize,
num_aux: usize,
num_constraints: usize,
at_inputs: Vec<Vec<(E::Fr, usize)>>,
bt_inputs: Vec<Vec<(E::Fr, usize)>>,
ct_inputs: Vec<Vec<(E::Fr, usize)>>,
at_aux: Vec<Vec<(E::Fr, usize)>>,
bt_aux: Vec<Vec<(E::Fr, usize)>>,
ct_aux: Vec<Vec<(E::Fr, usize)>>
}
impl<E: Engine> PublicConstraintSystem<E> for KeypairAssembly<E> {
fn alloc_input<NR, N, F>(
&mut self,
_: N,
f: F
) -> Result<Variable, Error>
where NR: Into<String>, N: FnOnce() -> NR, F: FnOnce() -> Result<E::Fr, Error>
{
// In this context, we don't have an assignment.
let _ = f();
let index = self.num_inputs;
self.num_inputs += 1;
self.at_inputs.push(vec![]);
self.bt_inputs.push(vec![]);
self.ct_inputs.push(vec![]);
Ok(Variable(Index::Input(index)))
}
}
impl<E: Engine> ConstraintSystem<E> for KeypairAssembly<E> {
type Root = Self;
fn alloc<NR, N, F>(
&mut self,
_: N,
f: F
) -> Result<Variable, Error>
where NR: Into<String>, N: FnOnce() -> NR, F: FnOnce() -> Result<E::Fr, Error>
{
// In this context, we don't have an assignment.
let _ = f();
let index = self.num_aux;
self.num_aux += 1;
self.at_aux.push(vec![]);
self.bt_aux.push(vec![]);
self.ct_aux.push(vec![]);
Ok(Variable(Index::Aux(index)))
}
fn enforce<NR: Into<String>, N: FnOnce() -> NR>(
&mut self,
_: N,
a: LinearCombination<E>,
b: LinearCombination<E>,
c: LinearCombination<E>
)
{
fn qap_eval<E: Engine>(
l: LinearCombination<E>,
inputs: &mut [Vec<(E::Fr, usize)>],
aux: &mut [Vec<(E::Fr, usize)>],
this_constraint: usize
)
{
for (index, coeff) in l.0 {
match index {
Index::Input(id) => inputs[id].push((coeff, this_constraint)),
Index::Aux(id) => aux[id].push((coeff, this_constraint))
}
}
}
qap_eval(a, &mut self.at_inputs, &mut self.at_aux, self.num_constraints);
qap_eval(b, &mut self.bt_inputs, &mut self.bt_aux, self.num_constraints);
qap_eval(c, &mut self.ct_inputs, &mut self.ct_aux, self.num_constraints);
self.num_constraints += 1;
}
/// Begin a namespace for the constraint system
fn namespace<'a, NR, N>(
&'a mut self,
_: N
) -> Namespace<'a, E, Self::Root>
where NR: Into<String>, N: FnOnce() -> NR
{
Namespace(self, PhantomData)
}
}
let mut assembly = KeypairAssembly {
num_inputs: 0,
num_aux: 0,
@ -172,27 +198,18 @@ pub fn generate_parameters<E, C>(
assembly.alloc_input(|| "", || Ok(E::Fr::one()))?;
// Synthesize the circuit.
circuit.synthesize(&mut assembly)?.synthesize(&mut assembly)?;
circuit.synthesize(&mut assembly)?;
// Input consistency constraints: x * 0 = 0
for i in 0..assembly.num_inputs {
assembly.enforce(|| "",
LinearCombination::zero() + Variable(Index::Input(i)),
LinearCombination::zero(),
LinearCombination::zero());
|lc| lc + Variable(Index::Input(i)),
|lc| lc,
|lc| lc,
);
}
// Ensure that all auxillary variables are constrained
for i in 0..assembly.num_aux {
if assembly.at_aux[i].len() == 0 &&
assembly.bt_aux[i].len() == 0 &&
assembly.ct_aux[i].len() == 0
{
return Err(Error::UnconstrainedVariable(Variable(Index::Aux(i))));
}
}
// Create evaluation domain for the QAP
// Create bases for blind evaluation of polynomials at tau
let powers_of_tau = vec![Scalar::<E>(E::Fr::zero()); assembly.num_constraints];
let mut powers_of_tau = EvaluationDomain::from_coeffs(powers_of_tau)?;
@ -216,16 +233,17 @@ pub fn generate_parameters<E, C>(
assembly.num_inputs + assembly.num_aux
});
let gamma_inverse = gamma.inverse().ok_or(Error::UnexpectedIdentity)?;
let delta_inverse = delta.inverse().ok_or(Error::UnexpectedIdentity)?;
let gamma_inverse = gamma.inverse().ok_or(SynthesisError::UnexpectedIdentity)?;
let delta_inverse = delta.inverse().ok_or(SynthesisError::UnexpectedIdentity)?;
let worker = Worker::new();
// Compute the H query
let mut h = vec![E::G1::zero(); powers_of_tau.as_ref().len() - 1];
{
// Compute the powers of tau
// Compute powers of tau
{
let powers_of_tau = powers_of_tau.as_mut();
multicore::scope(powers_of_tau.len(), |scope, chunk| {
worker.scope(powers_of_tau.len(), |scope, chunk| {
for (i, powers_of_tau) in powers_of_tau.chunks_mut(chunk).enumerate()
{
scope.spawn(move || {
@ -245,7 +263,7 @@ pub fn generate_parameters<E, C>(
coeff.mul_assign(&delta_inverse);
// Compute the H query with multiple threads
multicore::scope(h.len(), |scope, chunk| {
worker.scope(h.len(), |scope, chunk| {
for (h, p) in h.chunks_mut(chunk).zip(powers_of_tau.as_ref().chunks(chunk))
{
let mut g1_wnaf = g1_wnaf.shared();
@ -270,7 +288,7 @@ pub fn generate_parameters<E, C>(
}
// Use inverse FFT to convert powers of tau to Lagrange coefficients
powers_of_tau.ifft();
powers_of_tau.ifft(&worker);
let powers_of_tau = powers_of_tau.into_coeffs();
let mut a = vec![E::G1::zero(); assembly.num_inputs + assembly.num_aux];
@ -303,7 +321,10 @@ pub fn generate_parameters<E, C>(
// Trapdoors
alpha: &E::Fr,
beta: &E::Fr
beta: &E::Fr,
// Worker
worker: &Worker
)
{
// Sanity check
@ -315,7 +336,7 @@ pub fn generate_parameters<E, C>(
assert_eq!(a.len(), ext.len());
// Evaluate polynomials in multiple threads
multicore::scope(a.len(), |scope, chunk| {
worker.scope(a.len(), |scope, chunk| {
for ((((((a, b_g1), b_g2), ext), at), bt), ct) in a.chunks_mut(chunk)
.zip(b_g1.chunks_mut(chunk))
.zip(b_g2.chunks_mut(chunk))
@ -404,7 +425,8 @@ pub fn generate_parameters<E, C>(
&mut ic,
&gamma_inverse,
&alpha,
&beta
&beta,
&worker
);
// Evaluate for auxillary variables.
@ -421,9 +443,18 @@ pub fn generate_parameters<E, C>(
&mut l,
&delta_inverse,
&alpha,
&beta
&beta,
&worker
);
// Don't allow any elements be unconstrained, so that
// the L query is always fully dense.
for e in l.iter() {
if e.is_zero() {
return Err(SynthesisError::UnconstrainedVariable);
}
}
let g1 = g1.into_affine();
let g2 = g2.into_affine();

183
src/groth16/mod.rs Normal file
View File

@ -0,0 +1,183 @@
use pairing::{
Engine,
CurveAffine
};
use ::{
SynthesisError
};
use multiexp::SourceBuilder;
use std::sync::Arc;
#[cfg(test)]
mod tests;
mod generator;
mod prover;
mod verifier;
pub use self::generator::*;
pub use self::prover::*;
pub use self::verifier::*;
#[derive(Clone)]
pub struct Proof<E: Engine> {
a: E::G1Affine,
b: E::G2Affine,
c: E::G1Affine
}
#[derive(Clone)]
pub struct VerifyingKey<E: Engine> {
// alpha in g1 for verifying and for creating A/C elements of
// proof. Never the point at infinity.
alpha_g1: E::G1Affine,
// beta in g1 and g2 for verifying and for creating B/C elements
// of proof. Never the point at infinity.
beta_g1: E::G1Affine,
beta_g2: E::G2Affine,
// gamma in g2 for verifying. Never the point at infinity.
gamma_g2: E::G2Affine,
// delta in g1/g2 for verifying and proving, essentially the magic
// trapdoor that forces the prover to evaluate the C element of the
// proof with only components from the CRS. Never the point at
// infinity.
delta_g1: E::G1Affine,
delta_g2: E::G2Affine,
// Elements of the form (beta * u_i(tau) + alpha v_i(tau) + w_i(tau)) / gamma
// for all public inputs. Because all public inputs have a "soundness
// of input consistency" constraint, this is the same size as the
// number of inputs, and never contains points at infinity.
ic: Vec<E::G1Affine>
}
#[derive(Clone)]
pub struct Parameters<E: Engine> {
pub vk: VerifyingKey<E>,
// Elements of the form ((tau^i * t(tau)) / delta) for i between 0 and
// m-2 inclusive. Never contains points at infinity.
h: Arc<Vec<E::G1Affine>>,
// Elements of the form (beta * u_i(tau) + alpha v_i(tau) + w_i(tau)) / delta
// for all auxillary inputs. Variables can never be unconstrained, so this
// never contains points at infinity.
l: Arc<Vec<E::G1Affine>>,
// QAP "A" polynomials evaluated at tau in the Lagrange basis. Never contains
// points at infinity: polynomials that evaluate to zero are omitted from
// the CRS and the prover can deterministically skip their evaluation.
a: Arc<Vec<E::G1Affine>>,
// QAP "B" polynomials evaluated at tau in the Lagrange basis. Needed in
// G1 and G2 for C/B queries, respectively. Never contains points at
// infinity for the same reason as the "A" polynomials.
b_g1: Arc<Vec<E::G1Affine>>,
b_g2: Arc<Vec<E::G2Affine>>
}
pub struct PreparedVerifyingKey<E: Engine> {
/// Pairing result of alpha*beta
alpha_g1_beta_g2: E::Fqk,
/// -gamma in G2
neg_gamma_g2: <E::G2Affine as CurveAffine>::Prepared,
/// -delta in G2
neg_delta_g2: <E::G2Affine as CurveAffine>::Prepared,
/// Copy of IC from `VerifiyingKey`.
ic: Vec<E::G1Affine>
}
pub trait ParameterSource<E: Engine> {
type G1Builder: SourceBuilder<E::G1Affine>;
type G2Builder: SourceBuilder<E::G2Affine>;
fn get_vk(
&mut self,
num_ic: usize
) -> Result<VerifyingKey<E>, SynthesisError>;
fn get_h(
&mut self,
num_h: usize
) -> Result<Self::G1Builder, SynthesisError>;
fn get_l(
&mut self,
num_l: usize
) -> Result<Self::G1Builder, SynthesisError>;
fn get_a(
&mut self,
num_inputs: usize,
num_aux: usize
) -> Result<(Self::G1Builder, Self::G1Builder), SynthesisError>;
fn get_b_g1(
&mut self,
num_inputs: usize,
num_aux: usize
) -> Result<(Self::G1Builder, Self::G1Builder), SynthesisError>;
fn get_b_g2(
&mut self,
num_inputs: usize,
num_aux: usize
) -> Result<(Self::G2Builder, Self::G2Builder), SynthesisError>;
}
impl<'a, E: Engine> ParameterSource<E> for &'a Parameters<E> {
type G1Builder = (Arc<Vec<E::G1Affine>>, usize);
type G2Builder = (Arc<Vec<E::G2Affine>>, usize);
fn get_vk(
&mut self,
_: usize
) -> Result<VerifyingKey<E>, SynthesisError>
{
Ok(self.vk.clone())
}
fn get_h(
&mut self,
_: usize
) -> Result<Self::G1Builder, SynthesisError>
{
Ok((self.h.clone(), 0))
}
fn get_l(
&mut self,
_: usize
) -> Result<Self::G1Builder, SynthesisError>
{
Ok((self.l.clone(), 0))
}
fn get_a(
&mut self,
num_inputs: usize,
_: usize
) -> Result<(Self::G1Builder, Self::G1Builder), SynthesisError>
{
Ok(((self.a.clone(), 0), (self.a.clone(), num_inputs)))
}
fn get_b_g1(
&mut self,
num_inputs: usize,
_: usize
) -> Result<(Self::G1Builder, Self::G1Builder), SynthesisError>
{
Ok(((self.b_g1.clone(), 0), (self.b_g1.clone(), num_inputs)))
}
fn get_b_g2(
&mut self,
num_inputs: usize,
_: usize
) -> Result<(Self::G2Builder, Self::G2Builder), SynthesisError>
{
Ok(((self.b_g2.clone(), 0), (self.b_g2.clone(), num_inputs)))
}
}

328
src/groth16/prover.rs Normal file
View File

@ -0,0 +1,328 @@
use rand::Rng;
use std::sync::Arc;
use futures::Future;
use pairing::{
Engine,
PrimeField,
Field,
CurveProjective,
CurveAffine
};
use super::{
ParameterSource,
Proof
};
use ::{
SynthesisError,
Circuit,
ConstraintSystem,
LinearCombination,
Variable,
Index
};
use ::domain::{
EvaluationDomain,
Scalar
};
use ::multiexp::{
DensityTracker,
FullDensity,
multiexp
};
use ::multicore::{
Worker
};
fn eval<E: Engine>(
lc: &LinearCombination<E>,
mut input_density: Option<&mut DensityTracker>,
mut aux_density: Option<&mut DensityTracker>,
input_assignment: &[E::Fr],
aux_assignment: &[E::Fr]
) -> E::Fr
{
let mut acc = E::Fr::zero();
for &(index, coeff) in lc.0.iter() {
let mut tmp;
match index {
Variable(Index::Input(i)) => {
tmp = input_assignment[i];
if let Some(ref mut v) = input_density {
v.inc(i);
}
},
Variable(Index::Aux(i)) => {
tmp = aux_assignment[i];
if let Some(ref mut v) = aux_density {
v.inc(i);
}
}
}
if coeff == E::Fr::one() {
acc.add_assign(&tmp);
} else {
tmp.mul_assign(&coeff);
acc.add_assign(&tmp);
}
}
acc
}
struct ProvingAssignment<E: Engine> {
// Density of queries
a_aux_density: DensityTracker,
b_input_density: DensityTracker,
b_aux_density: DensityTracker,
// Evaluations of A, B, C polynomials
a: Vec<Scalar<E>>,
b: Vec<Scalar<E>>,
c: Vec<Scalar<E>>,
// Assignments of variables
input_assignment: Vec<E::Fr>,
aux_assignment: Vec<E::Fr>
}
impl<E: Engine> ConstraintSystem<E> for ProvingAssignment<E> {
type Root = Self;
fn alloc<F, A, AR>(
&mut self,
_: A,
f: F
) -> Result<Variable, SynthesisError>
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{
self.aux_assignment.push(f()?);
self.a_aux_density.add_element();
self.b_aux_density.add_element();
Ok(Variable(Index::Aux(self.aux_assignment.len() - 1)))
}
fn alloc_input<F, A, AR>(
&mut self,
_: A,
f: F
) -> Result<Variable, SynthesisError>
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{
self.input_assignment.push(f()?);
self.b_input_density.add_element();
Ok(Variable(Index::Input(self.input_assignment.len() - 1)))
}
fn enforce<A, AR, LA, LB, LC>(
&mut self,
_: A,
a: LA,
b: LB,
c: LC
)
where A: FnOnce() -> AR, AR: Into<String>,
LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>
{
let a = a(LinearCombination::zero());
let b = b(LinearCombination::zero());
let c = c(LinearCombination::zero());
self.a.push(Scalar(eval(
&a,
// Inputs have full density in the A query
// because there are constraints of the
// form x * 0 = 0 for each input.
None,
Some(&mut self.a_aux_density),
&self.input_assignment,
&self.aux_assignment
)));
self.b.push(Scalar(eval(
&b,
Some(&mut self.b_input_density),
Some(&mut self.b_aux_density),
&self.input_assignment,
&self.aux_assignment
)));
self.c.push(Scalar(eval(
&c,
// There is no C polynomial query,
// though there is an (beta)A + (alpha)B + C
// query for all aux variables.
// However, that query has full density.
None,
None,
&self.input_assignment,
&self.aux_assignment
)));
}
fn push_namespace<NR, N>(&mut self, _: N)
where NR: Into<String>, N: FnOnce() -> NR
{
// Do nothing; we don't care about namespaces in this context.
}
fn pop_namespace(&mut self)
{
// Do nothing; we don't care about namespaces in this context.
}
fn get_root(&mut self) -> &mut Self::Root {
self
}
}
pub fn create_random_proof<E, C, R, P: ParameterSource<E>>(
circuit: C,
params: P,
rng: &mut R
) -> Result<Proof<E>, SynthesisError>
where E: Engine, C: Circuit<E>, R: Rng
{
let r = rng.gen();
let s = rng.gen();
create_proof::<E, C, P>(circuit, params, r, s)
}
pub fn create_proof<E, C, P: ParameterSource<E>>(
circuit: C,
mut params: P,
r: E::Fr,
s: E::Fr
) -> Result<Proof<E>, SynthesisError>
where E: Engine, C: Circuit<E>
{
let mut prover = ProvingAssignment {
a_aux_density: DensityTracker::new(),
b_input_density: DensityTracker::new(),
b_aux_density: DensityTracker::new(),
a: vec![],
b: vec![],
c: vec![],
input_assignment: vec![],
aux_assignment: vec![]
};
prover.alloc_input(|| "", || Ok(E::Fr::one()))?;
circuit.synthesize(&mut prover)?;
for i in 0..prover.input_assignment.len() {
prover.enforce(|| "",
|lc| lc + Variable(Index::Input(i)),
|lc| lc,
|lc| lc,
);
}
let worker = Worker::new();
let vk = params.get_vk(prover.input_assignment.len())?;
let h = {
let mut a = EvaluationDomain::from_coeffs(prover.a)?;
let mut b = EvaluationDomain::from_coeffs(prover.b)?;
let mut c = EvaluationDomain::from_coeffs(prover.c)?;
a.ifft(&worker);
a.coset_fft(&worker);
b.ifft(&worker);
b.coset_fft(&worker);
c.ifft(&worker);
c.coset_fft(&worker);
a.mul_assign(&worker, &b);
drop(b);
a.sub_assign(&worker, &c);
drop(c);
a.divide_by_z_on_coset(&worker);
a.icoset_fft(&worker);
let mut a = a.into_coeffs();
let a_len = a.len() - 1;
a.truncate(a_len);
// TODO: parallelize if it's even helpful
let a = Arc::new(a.into_iter().map(|s| s.0.into_repr()).collect::<Vec<_>>());
multiexp(&worker, params.get_h(a.len())?, FullDensity, a)
};
// TODO: parallelize if it's even helpful
let input_assignment = Arc::new(prover.input_assignment.into_iter().map(|s| s.into_repr()).collect::<Vec<_>>());
let aux_assignment = Arc::new(prover.aux_assignment.into_iter().map(|s| s.into_repr()).collect::<Vec<_>>());
let l = multiexp(&worker, params.get_l(aux_assignment.len())?, FullDensity, aux_assignment.clone());
let a_aux_density_total = prover.a_aux_density.get_total_density();
let (a_inputs_source, a_aux_source) = params.get_a(input_assignment.len(), a_aux_density_total)?;
let a_inputs = multiexp(&worker, a_inputs_source, FullDensity, input_assignment.clone());
let a_aux = multiexp(&worker, a_aux_source, Arc::new(prover.a_aux_density), aux_assignment.clone());
let b_input_density = Arc::new(prover.b_input_density);
let b_input_density_total = b_input_density.get_total_density();
let b_aux_density = Arc::new(prover.b_aux_density);
let b_aux_density_total = b_aux_density.get_total_density();
let (b_g1_inputs_source, b_g1_aux_source) = params.get_b_g1(b_input_density_total, b_aux_density_total)?;
let b_g1_inputs = multiexp(&worker, b_g1_inputs_source, b_input_density.clone(), input_assignment.clone());
let b_g1_aux = multiexp(&worker, b_g1_aux_source, b_aux_density.clone(), aux_assignment.clone());
let (b_g2_inputs_source, b_g2_aux_source) = params.get_b_g2(b_input_density_total, b_aux_density_total)?;
let b_g2_inputs = multiexp(&worker, b_g2_inputs_source, b_input_density, input_assignment);
let b_g2_aux = multiexp(&worker, b_g2_aux_source, b_aux_density, aux_assignment);
let mut g_a = vk.delta_g1.mul(r);
g_a.add_assign_mixed(&vk.alpha_g1);
let mut g_b = vk.delta_g2.mul(s);
g_b.add_assign_mixed(&vk.beta_g2);
let mut g_c;
{
let mut rs = r;
rs.mul_assign(&s);
g_c = vk.delta_g1.mul(rs);
g_c.add_assign(&vk.alpha_g1.mul(s));
g_c.add_assign(&vk.beta_g1.mul(r));
}
let mut a_answer = a_inputs.wait()?;
a_answer.add_assign(&a_aux.wait()?);
g_a.add_assign(&a_answer);
a_answer.mul_assign(s);
g_c.add_assign(&a_answer);
let mut b1_answer = b_g1_inputs.wait()?;
b1_answer.add_assign(&b_g1_aux.wait()?);
let mut b2_answer = b_g2_inputs.wait()?;
b2_answer.add_assign(&b_g2_aux.wait()?);
g_b.add_assign(&b2_answer);
b1_answer.mul_assign(r);
g_c.add_assign(&b1_answer);
g_c.add_assign(&h.wait()?);
g_c.add_assign(&l.wait()?);
Ok(Proof {
a: g_a.into_affine(),
b: g_b.into_affine(),
c: g_c.into_affine()
})
}

View File

@ -0,0 +1,455 @@
use pairing::{
Engine,
PrimeField,
PrimeFieldRepr,
Field,
SqrtField,
LegendreSymbol,
CurveProjective,
CurveAffine,
PrimeFieldDecodingError,
GroupDecodingError,
EncodedPoint
};
use std::cmp::Ordering;
use std::fmt;
use rand::{Rand, Rng};
use std::num::Wrapping;
const MODULUS_R: Wrapping<u32> = Wrapping(64513);
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct Fr(Wrapping<u32>);
impl fmt::Display for Fr {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
write!(f, "{}", (self.0).0)
}
}
impl Rand for Fr {
fn rand<R: Rng>(rng: &mut R) -> Self {
Fr(Wrapping(rng.gen()) % MODULUS_R)
}
}
impl Field for Fr {
fn zero() -> Self {
Fr(Wrapping(0))
}
fn one() -> Self {
Fr(Wrapping(1))
}
fn is_zero(&self) -> bool {
(self.0).0 == 0
}
fn square(&mut self) {
self.0 = (self.0 * self.0) % MODULUS_R;
}
fn double(&mut self) {
self.0 = (self.0 << 1) % MODULUS_R;
}
fn negate(&mut self) {
if !<Fr as Field>::is_zero(self) {
self.0 = MODULUS_R - self.0;
}
}
fn add_assign(&mut self, other: &Self) {
self.0 = (self.0 + other.0) % MODULUS_R;
}
fn sub_assign(&mut self, other: &Self) {
self.0 = ((MODULUS_R + self.0) - other.0) % MODULUS_R;
}
fn mul_assign(&mut self, other: &Self) {
self.0 = (self.0 * other.0) % MODULUS_R;
}
fn inverse(&self) -> Option<Self> {
if <Fr as Field>::is_zero(self) {
None
} else {
Some(self.pow(&[(MODULUS_R.0 as u64) - 2]))
}
}
fn frobenius_map(&mut self, _: usize) {
// identity
}
}
impl SqrtField for Fr {
fn legendre(&self) -> LegendreSymbol {
// s = self^((r - 1) // 2)
let s = self.pow([32256]);
if s == <Fr as Field>::zero() { LegendreSymbol::Zero }
else if s == <Fr as Field>::one() { LegendreSymbol::QuadraticResidue }
else { LegendreSymbol::QuadraticNonResidue }
}
fn sqrt(&self) -> Option<Self> {
// Tonelli-Shank's algorithm for q mod 16 = 1
// https://eprint.iacr.org/2012/685.pdf (page 12, algorithm 5)
match self.legendre() {
LegendreSymbol::Zero => Some(*self),
LegendreSymbol::QuadraticNonResidue => None,
LegendreSymbol::QuadraticResidue => {
let mut c = Fr::root_of_unity();
// r = self^((t + 1) // 2)
let mut r = self.pow([32]);
// t = self^t
let mut t = self.pow([63]);
let mut m = Fr::S;
while t != <Fr as Field>::one() {
let mut i = 1;
{
let mut t2i = t;
t2i.square();
loop {
if t2i == <Fr as Field>::one() {
break;
}
t2i.square();
i += 1;
}
}
for _ in 0..(m - i - 1) {
c.square();
}
<Fr as Field>::mul_assign(&mut r, &c);
c.square();
<Fr as Field>::mul_assign(&mut t, &c);
m = i;
}
Some(r)
}
}
}
}
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct FrRepr([u64; 1]);
impl Ord for FrRepr {
fn cmp(&self, other: &FrRepr) -> Ordering {
(self.0)[0].cmp(&(other.0)[0])
}
}
impl PartialOrd for FrRepr {
fn partial_cmp(&self, other: &FrRepr) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Rand for FrRepr {
fn rand<R: Rng>(rng: &mut R) -> Self {
FrRepr([rng.gen()])
}
}
impl fmt::Display for FrRepr {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
write!(f, "{}", (self.0)[0])
}
}
impl From<u64> for FrRepr {
fn from(v: u64) -> FrRepr {
FrRepr([v])
}
}
impl From<Fr> for FrRepr {
fn from(v: Fr) -> FrRepr {
FrRepr([(v.0).0 as u64])
}
}
impl AsMut<[u64]> for FrRepr {
fn as_mut(&mut self) -> &mut [u64] {
&mut self.0[..]
}
}
impl AsRef<[u64]> for FrRepr {
fn as_ref(&self) -> &[u64] {
&self.0[..]
}
}
impl Default for FrRepr {
fn default() -> FrRepr {
FrRepr::from(0u64)
}
}
impl PrimeFieldRepr for FrRepr {
fn sub_noborrow(&mut self, other: &Self) -> bool {
self.0[0] = self.0[0].wrapping_sub(other.0[0]);
false
}
fn add_nocarry(&mut self, other: &Self) -> bool {
self.0[0] = self.0[0].wrapping_add(other.0[0]);
false
}
fn num_bits(&self) -> u32 {
64 - self.0[0].leading_zeros()
}
fn is_zero(&self) -> bool {
self.0[0] == 0
}
fn is_odd(&self) -> bool {
!self.is_even()
}
fn is_even(&self) -> bool {
self.0[0] % 2 == 0
}
fn div2(&mut self) {
self.divn(1)
}
fn divn(&mut self, amt: u32) {
self.0[0] >>= amt;
}
fn mul2(&mut self) {
self.muln(1)
}
fn muln(&mut self, amt: u32) {
self.0[0] <<= amt;
}
}
impl PrimeField for Fr {
type Repr = FrRepr;
const NUM_BITS: u32 = 16;
const CAPACITY: u32 = 15;
const S: u32 = 10;
fn from_repr(repr: FrRepr) -> Result<Self, PrimeFieldDecodingError> {
if repr.0[0] >= (MODULUS_R.0 as u64) {
Err(PrimeFieldDecodingError::NotInField(format!("{}", repr)))
} else {
Ok(Fr(Wrapping(repr.0[0] as u32)))
}
}
fn into_repr(&self) -> FrRepr {
FrRepr::from(*self)
}
fn char() -> FrRepr {
Fr(MODULUS_R).into()
}
fn multiplicative_generator() -> Fr {
Fr(Wrapping(5))
}
fn root_of_unity() -> Fr {
Fr(Wrapping(57751))
}
}
#[derive(Clone)]
pub struct DummyEngine;
impl Engine for DummyEngine {
type Fr = Fr;
type G1 = Fr;
type G1Affine = Fr;
type G2 = Fr;
type G2Affine = Fr;
type Fq = Fr;
type Fqe = Fr;
// TODO: This should be F_645131 or something. Doesn't matter for now.
type Fqk = Fr;
fn miller_loop<'a, I>(i: I) -> Self::Fqk
where I: IntoIterator<Item=&'a (
&'a <Self::G1Affine as CurveAffine>::Prepared,
&'a <Self::G2Affine as CurveAffine>::Prepared
)>
{
let mut acc = <Fr as Field>::zero();
for &(a, b) in i {
let mut tmp = *a;
<Fr as Field>::mul_assign(&mut tmp, b);
<Fr as Field>::add_assign(&mut acc, &tmp);
}
acc
}
/// Perform final exponentiation of the result of a miller loop.
fn final_exponentiation(this: &Self::Fqk) -> Option<Self::Fqk>
{
Some(*this)
}
}
impl CurveProjective for Fr {
type Affine = Fr;
type Base = Fr;
type Scalar = Fr;
type Engine = DummyEngine;
fn zero() -> Self {
<Fr as Field>::zero()
}
fn one() -> Self {
<Fr as Field>::one()
}
fn is_zero(&self) -> bool {
<Fr as Field>::is_zero(self)
}
fn batch_normalization(_: &mut [Self]) {
}
fn is_normalized(&self) -> bool {
true
}
fn double(&mut self) {
<Fr as Field>::double(self);
}
fn add_assign(&mut self, other: &Self) {
<Fr as Field>::add_assign(self, other);
}
fn add_assign_mixed(&mut self, other: &Self) {
<Fr as Field>::add_assign(self, other);
}
fn negate(&mut self) {
<Fr as Field>::negate(self);
}
fn mul_assign<S: Into<<Self::Scalar as PrimeField>::Repr>>(&mut self, other: S)
{
let tmp = Fr::from_repr(other.into()).unwrap();
<Fr as Field>::mul_assign(self, &tmp);
}
fn into_affine(&self) -> Fr {
*self
}
fn recommended_wnaf_for_scalar(_: <Self::Scalar as PrimeField>::Repr) -> usize {
3
}
fn recommended_wnaf_for_num_scalars(_: usize) -> usize {
3
}
}
#[derive(Copy, Clone)]
pub struct FakePoint;
impl AsMut<[u8]> for FakePoint {
fn as_mut(&mut self) -> &mut [u8] {
unimplemented!()
}
}
impl AsRef<[u8]> for FakePoint {
fn as_ref(&self) -> &[u8] {
unimplemented!()
}
}
impl EncodedPoint for FakePoint {
type Affine = Fr;
fn empty() -> Self {
unimplemented!()
}
fn size() -> usize {
unimplemented!()
}
fn into_affine(&self) -> Result<Self::Affine, GroupDecodingError> {
unimplemented!()
}
fn into_affine_unchecked(&self) -> Result<Self::Affine, GroupDecodingError> {
unimplemented!()
}
fn from_affine(_: Self::Affine) -> Self {
unimplemented!()
}
}
impl CurveAffine for Fr {
type Pair = Fr;
type PairingResult = Fr;
type Compressed = FakePoint;
type Uncompressed = FakePoint;
type Prepared = Fr;
type Projective = Fr;
type Base = Fr;
type Scalar = Fr;
type Engine = DummyEngine;
fn zero() -> Self {
<Fr as Field>::zero()
}
fn one() -> Self {
<Fr as Field>::one()
}
fn is_zero(&self) -> bool {
<Fr as Field>::is_zero(self)
}
fn negate(&mut self) {
<Fr as Field>::negate(self);
}
fn mul<S: Into<<Self::Scalar as PrimeField>::Repr>>(&self, other: S) -> Self::Projective
{
let mut res = *self;
let tmp = Fr::from_repr(other.into()).unwrap();
<Fr as Field>::mul_assign(&mut res, &tmp);
res
}
fn prepare(&self) -> Self::Prepared {
*self
}
fn pairing_with(&self, other: &Self::Pair) -> Self::PairingResult {
self.mul(*other)
}
fn into_projective(&self) -> Self::Projective {
*self
}
}

400
src/groth16/tests/mod.rs Normal file
View File

@ -0,0 +1,400 @@
use pairing::{
Engine,
Field,
PrimeField
};
mod dummy_engine;
use self::dummy_engine::*;
use std::marker::PhantomData;
use ::{
Circuit,
ConstraintSystem,
SynthesisError
};
use super::{
generate_parameters,
prepare_verifying_key,
create_proof,
verify_proof
};
struct XORDemo<E: Engine> {
a: Option<bool>,
b: Option<bool>,
_marker: PhantomData<E>
}
impl<E: Engine> Circuit<E> for XORDemo<E> {
fn synthesize<CS: ConstraintSystem<E>>(
self,
cs: &mut CS
) -> Result<(), SynthesisError>
{
let a_var = cs.alloc(|| "a", || {
if self.a.is_some() {
if self.a.unwrap() {
Ok(E::Fr::one())
} else {
Ok(E::Fr::zero())
}
} else {
Err(SynthesisError::AssignmentMissing)
}
})?;
cs.enforce(
|| "a_boolean_constraint",
|lc| lc + CS::one() - a_var,
|lc| lc + a_var,
|lc| lc
);
let b_var = cs.alloc(|| "b", || {
if self.b.is_some() {
if self.b.unwrap() {
Ok(E::Fr::one())
} else {
Ok(E::Fr::zero())
}
} else {
Err(SynthesisError::AssignmentMissing)
}
})?;
cs.enforce(
|| "b_boolean_constraint",
|lc| lc + CS::one() - b_var,
|lc| lc + b_var,
|lc| lc
);
let c_var = cs.alloc_input(|| "c", || {
if self.a.is_some() && self.b.is_some() {
if self.a.unwrap() ^ self.b.unwrap() {
Ok(E::Fr::one())
} else {
Ok(E::Fr::zero())
}
} else {
Err(SynthesisError::AssignmentMissing)
}
})?;
cs.enforce(
|| "c_xor_constraint",
|lc| lc + a_var + a_var,
|lc| lc + b_var,
|lc| lc + a_var + b_var - c_var
);
Ok(())
}
}
#[test]
fn test_xordemo() {
let g1 = Fr::one();
let g2 = Fr::one();
let alpha = Fr::from_str("48577").unwrap();
let beta = Fr::from_str("22580").unwrap();
let gamma = Fr::from_str("53332").unwrap();
let delta = Fr::from_str("5481").unwrap();
let tau = Fr::from_str("3673").unwrap();
let params = {
let c = XORDemo::<DummyEngine> {
a: None,
b: None,
_marker: PhantomData
};
generate_parameters(
c,
g1,
g2,
alpha,
beta,
gamma,
delta,
tau
).unwrap()
};
// This will synthesize the constraint system:
//
// public inputs: a_0 = 1, a_1 = c
// aux inputs: a_2 = a, a_3 = b
// constraints:
// (a_0 - a_2) * (a_2) = 0
// (a_0 - a_3) * (a_3) = 0
// (a_2 + a_2) * (a_3) = (a_2 + a_3 - a_1)
// (a_0) * 0 = 0
// (a_1) * 0 = 0
// The evaluation domain is 8. The H query should
// have 7 elements (it's a quotient polynomial)
assert_eq!(7, params.h.len());
let mut root_of_unity = Fr::root_of_unity();
// We expect this to be a 2^10 root of unity
assert_eq!(Fr::one(), root_of_unity.pow(&[1 << 10]));
// Let's turn it into a 2^3 root of unity.
root_of_unity = root_of_unity.pow(&[1 << 7]);
assert_eq!(Fr::one(), root_of_unity.pow(&[1 << 3]));
assert_eq!(Fr::from_str("20201").unwrap(), root_of_unity);
// Let's compute all the points in our evaluation domain.
let mut points = Vec::with_capacity(8);
for i in 0..8 {
points.push(root_of_unity.pow(&[i]));
}
// Let's compute t(tau) = (tau - p_0)(tau - p_1)...
// = tau^8 - 1
let mut t_at_tau = tau.pow(&[8]);
t_at_tau.sub_assign(&Fr::one());
{
let mut tmp = Fr::one();
for p in &points {
let mut term = tau;
term.sub_assign(p);
tmp.mul_assign(&term);
}
assert_eq!(tmp, t_at_tau);
}
// We expect our H query to be 7 elements of the form...
// {tau^i t(tau) / delta}
let delta_inverse = delta.inverse().unwrap();
let gamma_inverse = gamma.inverse().unwrap();
{
let mut coeff = delta_inverse;
coeff.mul_assign(&t_at_tau);
let mut cur = Fr::one();
for h in params.h.iter() {
let mut tmp = cur;
tmp.mul_assign(&coeff);
assert_eq!(*h, tmp);
cur.mul_assign(&tau);
}
}
// The density of the IC query is 2 (2 inputs)
assert_eq!(2, params.vk.ic.len());
// The density of the L query is 2 (2 aux variables)
assert_eq!(2, params.l.len());
// The density of the A query is 4 (each variable is in at least one A term)
assert_eq!(4, params.a.len());
// The density of the B query is 2 (two variables are in at least one B term)
assert_eq!(2, params.b_g1.len());
assert_eq!(2, params.b_g2.len());
/*
Lagrange interpolation polynomials in our evaluation domain:
,-------------------------------. ,-------------------------------. ,-------------------------------.
| A TERM | | B TERM | | C TERM |
`-------------------------------. `-------------------------------' `-------------------------------'
| a_0 | a_1 | a_2 | a_3 | | a_0 | a_1 | a_2 | a_3 | | a_0 | a_1 | a_2 | a_3 |
| 1 | 0 | 64512 | 0 | | 0 | 0 | 1 | 0 | | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 64512 | | 0 | 0 | 0 | 1 | | 0 | 0 | 0 | 0 |
| 0 | 0 | 2 | 0 | | 0 | 0 | 0 | 1 | | 0 | 64512 | 1 | 1 |
| 1 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 |
`-------'-------'-------'-------' `-------'-------'-------'-------' `-------'-------'-------'-------'
Example for u_0:
sage: r = 64513
sage: Fr = GF(r)
sage: omega = (Fr(5)^63)^(2^7)
sage: tau = Fr(3673)
sage: R.<x> = PolynomialRing(Fr, 'x')
sage: def eval(tau, c0, c1, c2, c3, c4):
....: p = R.lagrange_polynomial([(omega^0, c0), (omega^1, c1), (omega^2, c2), (omega^3, c3), (omega^4, c4), (omega^5, 0), (omega^6, 0), (omega^7, 0)])
....: return p.substitute(tau)
sage: eval(tau, 1, 1, 0, 1, 0)
59158
*/
let u_i = [59158, 48317, 21767, 10402].iter().map(|e| {
Fr::from_str(&format!("{}", e)).unwrap()
}).collect::<Vec<Fr>>();
let v_i = [0, 0, 60619, 30791].iter().map(|e| {
Fr::from_str(&format!("{}", e)).unwrap()
}).collect::<Vec<Fr>>();
let w_i = [0, 23320, 41193, 41193].iter().map(|e| {
Fr::from_str(&format!("{}", e)).unwrap()
}).collect::<Vec<Fr>>();
for (u, a) in u_i.iter()
.zip(&params.a[..])
{
assert_eq!(u, a);
}
for (v, b) in v_i.iter()
.filter(|&&e| e != Fr::zero())
.zip(&params.b_g1[..])
{
assert_eq!(v, b);
}
for (v, b) in v_i.iter()
.filter(|&&e| e != Fr::zero())
.zip(&params.b_g2[..])
{
assert_eq!(v, b);
}
for i in 0..4 {
let mut tmp1 = beta;
tmp1.mul_assign(&u_i[i]);
let mut tmp2 = alpha;
tmp2.mul_assign(&v_i[i]);
tmp1.add_assign(&tmp2);
tmp1.add_assign(&w_i[i]);
if i < 2 {
// Check the correctness of the IC query elements
tmp1.mul_assign(&gamma_inverse);
assert_eq!(tmp1, params.vk.ic[i]);
} else {
// Check the correctness of the L query elements
tmp1.mul_assign(&delta_inverse);
assert_eq!(tmp1, params.l[i - 2]);
}
}
// Check consistency of the other elements
assert_eq!(alpha, params.vk.alpha_g1);
assert_eq!(beta, params.vk.beta_g1);
assert_eq!(beta, params.vk.beta_g2);
assert_eq!(gamma, params.vk.gamma_g2);
assert_eq!(delta, params.vk.delta_g1);
assert_eq!(delta, params.vk.delta_g2);
let pvk = prepare_verifying_key(&params.vk);
let r = Fr::from_str("27134").unwrap();
let s = Fr::from_str("17146").unwrap();
let proof = {
let c = XORDemo {
a: Some(true),
b: Some(false),
_marker: PhantomData
};
create_proof(
c,
&params,
r,
s
).unwrap()
};
// A(x) =
// a_0 * (44865*x^7 + 56449*x^6 + 44865*x^5 + 8064*x^4 + 3520*x^3 + 56449*x^2 + 3520*x + 40321) +
// a_1 * (8064*x^7 + 56449*x^6 + 8064*x^5 + 56449*x^4 + 8064*x^3 + 56449*x^2 + 8064*x + 56449) +
// a_2 * (16983*x^7 + 24192*x^6 + 63658*x^5 + 56449*x^4 + 16983*x^3 + 24192*x^2 + 63658*x + 56449) +
// a_3 * (5539*x^7 + 27797*x^6 + 6045*x^5 + 56449*x^4 + 58974*x^3 + 36716*x^2 + 58468*x + 8064) +
{
// proof A = alpha + A(tau) + delta * r
let mut expected_a = delta;
expected_a.mul_assign(&r);
expected_a.add_assign(&alpha);
expected_a.add_assign(&u_i[0]); // a_0 = 1
expected_a.add_assign(&u_i[1]); // a_1 = 1
expected_a.add_assign(&u_i[2]); // a_2 = 1
// a_3 = 0
assert_eq!(proof.a, expected_a);
}
// B(x) =
// a_0 * (0) +
// a_1 * (0) +
// a_2 * (56449*x^7 + 56449*x^6 + 56449*x^5 + 56449*x^4 + 56449*x^3 + 56449*x^2 + 56449*x + 56449) +
// a_3 * (31177*x^7 + 44780*x^6 + 21752*x^5 + 42255*x^3 + 35861*x^2 + 33842*x + 48385)
{
// proof B = beta + B(tau) + delta * s
let mut expected_b = delta;
expected_b.mul_assign(&s);
expected_b.add_assign(&beta);
expected_b.add_assign(&v_i[0]); // a_0 = 1
expected_b.add_assign(&v_i[1]); // a_1 = 1
expected_b.add_assign(&v_i[2]); // a_2 = 1
// a_3 = 0
assert_eq!(proof.b, expected_b);
}
// C(x) =
// a_0 * (0) +
// a_1 * (27797*x^7 + 56449*x^6 + 36716*x^5 + 8064*x^4 + 27797*x^3 + 56449*x^2 + 36716*x + 8064) +
// a_2 * (36716*x^7 + 8064*x^6 + 27797*x^5 + 56449*x^4 + 36716*x^3 + 8064*x^2 + 27797*x + 56449) +
// a_3 * (36716*x^7 + 8064*x^6 + 27797*x^5 + 56449*x^4 + 36716*x^3 + 8064*x^2 + 27797*x + 56449)
//
// If A * B = C at each point in the domain, then the following polynomial...
// P(x) = A(x) * B(x) - C(x)
// = 49752*x^14 + 13914*x^13 + 29243*x^12 + 27227*x^11 + 62362*x^10 + 35703*x^9 + 4032*x^8 + 14761*x^6 + 50599*x^5 + 35270*x^4 + 37286*x^3 + 2151*x^2 + 28810*x + 60481
//
// ... should be divisible by t(x), producing the quotient polynomial:
// h(x) = P(x) / t(x)
// = 49752*x^6 + 13914*x^5 + 29243*x^4 + 27227*x^3 + 62362*x^2 + 35703*x + 4032
{
let mut expected_c = Fr::zero();
// A * s
let mut tmp = proof.a;
tmp.mul_assign(&s);
expected_c.add_assign(&tmp);
// B * r
let mut tmp = proof.b;
tmp.mul_assign(&r);
expected_c.add_assign(&tmp);
// delta * r * s
let mut tmp = delta;
tmp.mul_assign(&r);
tmp.mul_assign(&s);
expected_c.sub_assign(&tmp);
// L query answer
// a_2 = 1, a_3 = 0
expected_c.add_assign(&params.l[0]);
// H query answer
for (i, coeff) in [5040, 11763, 10755, 63633, 128, 9747, 8739].iter().enumerate() {
let coeff = Fr::from_str(&format!("{}", coeff)).unwrap();
let mut tmp = params.h[i];
tmp.mul_assign(&coeff);
expected_c.add_assign(&tmp);
}
assert_eq!(expected_c, proof.c);
}
assert!(verify_proof(
&pvk,
&proof,
&[Fr::one()]
).unwrap());
}

66
src/groth16/verifier.rs Normal file
View File

@ -0,0 +1,66 @@
use pairing::{
Engine,
CurveProjective,
CurveAffine,
PrimeField
};
use super::{
Proof,
VerifyingKey,
PreparedVerifyingKey
};
use ::{
SynthesisError
};
pub fn prepare_verifying_key<E: Engine>(
vk: &VerifyingKey<E>
) -> PreparedVerifyingKey<E>
{
let mut gamma = vk.gamma_g2;
gamma.negate();
let mut delta = vk.delta_g2;
delta.negate();
PreparedVerifyingKey {
alpha_g1_beta_g2: E::pairing(vk.alpha_g1, vk.beta_g2),
neg_gamma_g2: gamma.prepare(),
neg_delta_g2: delta.prepare(),
ic: vk.ic.clone()
}
}
pub fn verify_proof<'a, E: Engine>(
pvk: &'a PreparedVerifyingKey<E>,
proof: &Proof<E>,
public_inputs: &[E::Fr]
) -> Result<bool, SynthesisError>
{
if (public_inputs.len() + 1) != pvk.ic.len() {
return Err(SynthesisError::MalformedVerifyingKey);
}
let mut acc = pvk.ic[0].into_projective();
for (i, b) in public_inputs.iter().zip(pvk.ic.iter().skip(1)) {
acc.add_assign(&b.mul(i.into_repr()));
}
// The original verification equation is:
// A * B = alpha * beta + inputs * gamma + C * delta
// ... however, we rearrange it so that it is:
// A * B - inputs * gamma - C * delta = alpha * beta
// or equivalently:
// A * B + inputs * (-gamma) + C * (-delta) = alpha * beta
// which allows us to do a single final exponentiation.
Ok(E::final_exponentiation(
&E::miller_loop([
(&proof.a.prepare(), &proof.b.prepare()),
(&acc.into_affine().prepare(), &pvk.neg_gamma_g2),
(&proof.c.prepare(), &pvk.neg_delta_g2)
].into_iter())
).unwrap() == pvk.alpha_g1_beta_g2)
}

View File

@ -1,67 +1,119 @@
extern crate pairing;
extern crate rand;
extern crate num_cpus;
extern crate futures;
extern crate futures_cpupool;
extern crate bit_vec;
extern crate crossbeam;
pub mod multicore;
pub mod multiexp;
pub mod domain;
pub mod groth16;
use pairing::{Engine, Field};
use std::ops::{Add, Sub};
use std::fmt;
use std::error::Error;
use std::io;
use std::marker::PhantomData;
/// Computations are expressed in terms of arithmetic circuits, in particular
/// rank-1 quadratic constraint systems. The `Circuit` trait represents a
/// circuit that can be synthesized. The `synthesize` method is called during
/// CRS generation and during proving.
pub trait Circuit<E: Engine> {
/// Synthesize the circuit into a rank-1 quadratic constraint system
fn synthesize<CS: ConstraintSystem<E>>(
self,
cs: &mut CS
) -> Result<(), SynthesisError>;
}
/// Represents a variable in our constraint system.
#[derive(Copy, Clone, Debug)]
pub struct Variable(Index);
impl Variable {
/// This constructs a variable with an arbitrary index.
/// Circuit implementations are not recommended to use this.
pub fn new_unchecked(idx: Index) -> Variable {
Variable(idx)
}
/// This returns the index underlying the variable.
/// Circuit implementations are not recommended to use this.
pub fn get_unchecked(&self) -> Index {
self.0
}
}
/// Represents the index of either an input variable or
/// auxillary variable.
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum Index {
Input(usize),
Aux(usize)
}
/// This represents a linear combination of some variables, with coefficients
/// in the scalar field of a pairing-friendly elliptic curve group.
#[derive(Clone)]
pub struct LinearCombination<T: Copy, E: Engine>(Vec<(T, E::Fr)>);
pub struct LinearCombination<E: Engine>(Vec<(Variable, E::Fr)>);
impl<T: Copy, E: Engine> AsRef<[(T, E::Fr)]> for LinearCombination<T, E> {
fn as_ref(&self) -> &[(T, E::Fr)] {
impl<E: Engine> AsRef<[(Variable, E::Fr)]> for LinearCombination<E> {
fn as_ref(&self) -> &[(Variable, E::Fr)] {
&self.0
}
}
impl<T: Copy, E: Engine> LinearCombination<T, E> {
pub fn zero() -> LinearCombination<T, E> {
impl<E: Engine> LinearCombination<E> {
pub fn zero() -> LinearCombination<E> {
LinearCombination(vec![])
}
}
impl<T: Copy, E: Engine> Add<(E::Fr, T)> for LinearCombination<T, E> {
type Output = LinearCombination<T, E>;
impl<E: Engine> Add<(E::Fr, Variable)> for LinearCombination<E> {
type Output = LinearCombination<E>;
fn add(mut self, (coeff, var): (E::Fr, T)) -> LinearCombination<T, E> {
fn add(mut self, (coeff, var): (E::Fr, Variable)) -> LinearCombination<E> {
self.0.push((var, coeff));
self
}
}
impl<T: Copy, E: Engine> Sub<(E::Fr, T)> for LinearCombination<T, E> {
type Output = LinearCombination<T, E>;
impl<E: Engine> Sub<(E::Fr, Variable)> for LinearCombination<E> {
type Output = LinearCombination<E>;
fn sub(self, (mut coeff, var): (E::Fr, T)) -> LinearCombination<T, E> {
fn sub(self, (mut coeff, var): (E::Fr, Variable)) -> LinearCombination<E> {
coeff.negate();
self + (coeff, var)
}
}
impl<T: Copy, E: Engine> Add<T> for LinearCombination<T, E> {
type Output = LinearCombination<T, E>;
impl<E: Engine> Add<Variable> for LinearCombination<E> {
type Output = LinearCombination<E>;
fn add(self, other: T) -> LinearCombination<T, E> {
fn add(self, other: Variable) -> LinearCombination<E> {
self + (E::Fr::one(), other)
}
}
impl<T: Copy, E: Engine> Sub<T> for LinearCombination<T, E> {
type Output = LinearCombination<T, E>;
impl<E: Engine> Sub<Variable> for LinearCombination<E> {
type Output = LinearCombination<E>;
fn sub(self, other: T) -> LinearCombination<T, E> {
fn sub(self, other: Variable) -> LinearCombination<E> {
self - (E::Fr::one(), other)
}
}
impl<'a, T: Copy, E: Engine> Add<&'a LinearCombination<T, E>> for LinearCombination<T, E> {
type Output = LinearCombination<T, E>;
impl<'a, E: Engine> Add<&'a LinearCombination<E>> for LinearCombination<E> {
type Output = LinearCombination<E>;
fn add(mut self, other: &'a LinearCombination<T, E>) -> LinearCombination<T, E> {
fn add(mut self, other: &'a LinearCombination<E>) -> LinearCombination<E> {
for s in &other.0 {
self = self + (s.1, s.0);
}
@ -70,10 +122,10 @@ impl<'a, T: Copy, E: Engine> Add<&'a LinearCombination<T, E>> for LinearCombinat
}
}
impl<'a, T: Copy, E: Engine> Sub<&'a LinearCombination<T, E>> for LinearCombination<T, E> {
type Output = LinearCombination<T, E>;
impl<'a, E: Engine> Sub<&'a LinearCombination<E>> for LinearCombination<E> {
type Output = LinearCombination<E>;
fn sub(mut self, other: &'a LinearCombination<T, E>) -> LinearCombination<T, E> {
fn sub(mut self, other: &'a LinearCombination<E>) -> LinearCombination<E> {
for s in &other.0 {
self = self - (s.1, s.0);
}
@ -82,10 +134,10 @@ impl<'a, T: Copy, E: Engine> Sub<&'a LinearCombination<T, E>> for LinearCombinat
}
}
impl<'a, T: Copy, E: Engine> Add<(E::Fr, &'a LinearCombination<T, E>)> for LinearCombination<T, E> {
type Output = LinearCombination<T, E>;
impl<'a, E: Engine> Add<(E::Fr, &'a LinearCombination<E>)> for LinearCombination<E> {
type Output = LinearCombination<E>;
fn add(mut self, (coeff, other): (E::Fr, &'a LinearCombination<T, E>)) -> LinearCombination<T, E> {
fn add(mut self, (coeff, other): (E::Fr, &'a LinearCombination<E>)) -> LinearCombination<E> {
for s in &other.0 {
let mut tmp = s.1;
tmp.mul_assign(&coeff);
@ -96,10 +148,10 @@ impl<'a, T: Copy, E: Engine> Add<(E::Fr, &'a LinearCombination<T, E>)> for Linea
}
}
impl<'a, T: Copy, E: Engine> Sub<(E::Fr, &'a LinearCombination<T, E>)> for LinearCombination<T, E> {
type Output = LinearCombination<T, E>;
impl<'a, E: Engine> Sub<(E::Fr, &'a LinearCombination<E>)> for LinearCombination<E> {
type Output = LinearCombination<E>;
fn sub(mut self, (coeff, other): (E::Fr, &'a LinearCombination<T, E>)) -> LinearCombination<T, E> {
fn sub(mut self, (coeff, other): (E::Fr, &'a LinearCombination<E>)) -> LinearCombination<E> {
for s in &other.0 {
let mut tmp = s.1;
tmp.mul_assign(&coeff);
@ -110,76 +162,71 @@ impl<'a, T: Copy, E: Engine> Sub<(E::Fr, &'a LinearCombination<T, E>)> for Linea
}
}
#[test]
fn test_lc() {
use pairing::bls12_381::{Bls12, Fr};
use pairing::PrimeField;
let a = LinearCombination::<usize, Bls12>::zero() + 0usize + 1usize + 2usize - 3usize;
let mut negone = Fr::one();
negone.negate();
assert_eq!(a.0, vec![(0usize, Fr::one()), (1usize, Fr::one()), (2usize, Fr::one()), (3usize, negone)]);
let x = LinearCombination::<usize, Bls12>::zero() + (Fr::one(), 0usize) - (Fr::one(), 1usize);
let y = LinearCombination::<usize, Bls12>::zero() + (Fr::one(), 2usize) - (Fr::one(), 3usize);
let z = x.clone() + &y - &y;
assert_eq!(z.0, vec![
(0usize, Fr::one()),
(1usize, negone),
(2usize, Fr::one()),
(3usize, negone),
(2usize, negone),
(3usize, Fr::one())
]);
let coeff = Fr::from_str("3").unwrap();
let mut neg_coeff = coeff;
neg_coeff.negate();
let z = x + (coeff, &y) - (coeff, &y);
assert_eq!(z.0, vec![
(0usize, Fr::one()),
(1usize, negone),
(2usize, Fr::from_str("3").unwrap()),
(3usize, neg_coeff),
(2usize, neg_coeff),
(3usize, Fr::from_str("3").unwrap())
]);
}
/// This is an error that could occur during circuit synthesis contexts,
/// such as CRS generation, proving or verification.
#[derive(Debug)]
pub enum SynthesisError {
AssignmentMissing
/// During synthesis, we lacked knowledge of a variable assignment.
AssignmentMissing,
/// During synthesis, we divided by zero.
DivisionByZero,
/// During synthesis, we constructed an unsatisfiable constraint system.
Unsatisfiable,
/// During synthesis, our polynomials ended up being too high of degree
PolynomialDegreeTooLarge,
/// During proof generation, we encountered an identity in the CRS
UnexpectedIdentity,
/// During proof generation, we encountered an I/O error with the CRS
IoError(io::Error),
/// During verification, our verifying key was malformed.
MalformedVerifyingKey,
/// During CRS generation, we observed an unconstrained auxillary variable
UnconstrainedVariable
}
impl From<io::Error> for SynthesisError {
fn from(e: io::Error) -> SynthesisError {
SynthesisError::IoError(e)
}
}
impl Error for SynthesisError {
fn description(&self) -> &str {
match *self {
SynthesisError::AssignmentMissing => "an assignment for a variable could not be computed"
SynthesisError::AssignmentMissing => "an assignment for a variable could not be computed",
SynthesisError::DivisionByZero => "division by zero",
SynthesisError::Unsatisfiable => "unsatisfiable constraint system",
SynthesisError::PolynomialDegreeTooLarge => "polynomial degree is too large",
SynthesisError::UnexpectedIdentity => "encountered an identity element in the CRS",
SynthesisError::IoError(_) => "encountered an I/O error",
SynthesisError::MalformedVerifyingKey => "malformed verifying key",
SynthesisError::UnconstrainedVariable => "auxillary variable was unconstrained"
}
}
}
impl fmt::Display for SynthesisError {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
write!(f, "{}", self.description())
if let &SynthesisError::IoError(ref e) = self {
write!(f, "I/O error: ")?;
e.fmt(f)
} else {
write!(f, "{}", self.description())
}
}
}
/// Represents a constraint system which can have new variables
/// allocated and constrains between them formed.
pub trait ConstraintSystem<E: Engine>: Sized {
type Variable: Sized + Copy + Clone;
/// Represents the type of the "root" of this constraint system
/// so that nested namespaces can minimize indirection.
type Root: ConstraintSystem<E, Variable=Self::Variable>;
type Root: ConstraintSystem<E>;
/// Return the "one" input variable
fn one(&self) -> Self::Variable;
fn one() -> Variable {
Variable::new_unchecked(Index::Input(0))
}
/// Allocate a private variable in the constraint system. The provided function is used to
/// determine the assignment of the variable. The given `annotation` function is invoked
@ -189,19 +236,31 @@ pub trait ConstraintSystem<E: Engine>: Sized {
&mut self,
annotation: A,
f: F
) -> Result<Self::Variable, SynthesisError>
) -> Result<Variable, SynthesisError>
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>;
/// Allocate a public variable in the constraint system. The provided function is used to
/// determine the assignment of the variable.
fn alloc_input<F, A, AR>(
&mut self,
annotation: A,
f: F
) -> Result<Variable, SynthesisError>
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>;
/// Enforce that `A` * `B` = `C`. The `annotation` function is invoked in testing contexts
/// in order to derive a unique name for the constraint in the current namespace.
fn enforce<A, AR>(
fn enforce<A, AR, LA, LB, LC>(
&mut self,
annotation: A,
a: LinearCombination<Self::Variable, E>,
b: LinearCombination<Self::Variable, E>,
c: LinearCombination<Self::Variable, E>
a: LA,
b: LB,
c: LC
)
where A: FnOnce() -> AR, AR: Into<String>;
where A: FnOnce() -> AR, AR: Into<String>,
LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>;
/// Create a new (sub)namespace and enter into it. Not intended
/// for downstream use; use `namespace` instead.
@ -229,89 +288,48 @@ pub trait ConstraintSystem<E: Engine>: Sized {
}
}
pub trait PublicConstraintSystem<E: Engine>: ConstraintSystem<E>
{
/// Represents the type of the "root" of this constraint system
/// so that nested namespaces can minimize indirection.
type PublicRoot: PublicConstraintSystem<E, Variable=Self::Variable>;
/// Allocate a public variable in the constraint system. The provided function is used to
/// determine the assignment of the variable.
fn alloc_input<F, A, AR>(
&mut self,
annotation: A,
f: F
) -> Result<Self::Variable, SynthesisError>
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>;
/// Gets the "root" constraint system, bypassing the namespacing.
/// Not intended for downstream use; use `namespace` instead.
fn get_public_root(&mut self) -> &mut Self::PublicRoot;
/// Begin a namespace for this constraint system.
fn namespace_public<'a, NR, N>(
&'a mut self,
name_fn: N
) -> Namespace<'a, E, Self::PublicRoot>
where NR: Into<String>, N: FnOnce() -> NR
{
self.get_root().push_namespace(name_fn);
Namespace(self.get_public_root(), PhantomData)
}
}
use std::marker::PhantomData;
/// This is a "namespaced" constraint system which borrows a constraint system (pushing
/// a namespace context) and, when dropped, pops out of the namespace context.
pub struct Namespace<'a, E: Engine, CS: ConstraintSystem<E> + 'a>(&'a mut CS, PhantomData<E>);
impl<'cs, E: Engine, CS: PublicConstraintSystem<E>> PublicConstraintSystem<E> for Namespace<'cs, E, CS> {
type PublicRoot = CS::PublicRoot;
fn alloc_input<F, A, AR>(
&mut self,
annotation: A,
f: F
) -> Result<Self::Variable, SynthesisError>
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{
self.0.alloc_input(annotation, f)
}
fn get_public_root(&mut self) -> &mut Self::PublicRoot
{
self.0.get_public_root()
}
}
impl<'cs, E: Engine, CS: ConstraintSystem<E>> ConstraintSystem<E> for Namespace<'cs, E, CS> {
type Variable = CS::Variable;
type Root = CS::Root;
fn one(&self) -> Self::Variable {
self.0.one()
fn one() -> Variable {
CS::one()
}
fn alloc<F, A, AR>(
&mut self,
annotation: A,
f: F
) -> Result<Self::Variable, SynthesisError>
) -> Result<Variable, SynthesisError>
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{
self.0.alloc(annotation, f)
}
fn enforce<A, AR>(
fn alloc_input<F, A, AR>(
&mut self,
annotation: A,
a: LinearCombination<Self::Variable, E>,
b: LinearCombination<Self::Variable, E>,
c: LinearCombination<Self::Variable, E>
f: F
) -> Result<Variable, SynthesisError>
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{
self.0.alloc_input(annotation, f)
}
fn enforce<A, AR, LA, LB, LC>(
&mut self,
annotation: A,
a: LA,
b: LB,
c: LC
)
where A: FnOnce() -> AR, AR: Into<String>
where A: FnOnce() -> AR, AR: Into<String>,
LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>
{
self.0.enforce(annotation, a, b, c)
}
@ -343,55 +361,46 @@ impl<'a, E: Engine, CS: ConstraintSystem<E>> Drop for Namespace<'a, E, CS> {
}
}
/// Convenience implementation of PublicConstraintSystem<E> for mutable references to
/// public constraint systems.
impl<'cs, E: Engine, CS: PublicConstraintSystem<E>> PublicConstraintSystem<E> for &'cs mut CS {
type PublicRoot = CS::PublicRoot;
fn alloc_input<F, A, AR>(
&mut self,
annotation: A,
f: F
) -> Result<Self::Variable, SynthesisError>
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{
(**self).alloc_input(annotation, f)
}
fn get_public_root(&mut self) -> &mut Self::PublicRoot
{
(**self).get_public_root()
}
}
/// Convenience implementation of ConstraintSystem<E> for mutable references to
/// constraint systems.
impl<'cs, E: Engine, CS: ConstraintSystem<E>> ConstraintSystem<E> for &'cs mut CS {
type Variable = CS::Variable;
type Root = CS::Root;
fn one(&self) -> Self::Variable {
(**self).one()
fn one() -> Variable {
CS::one()
}
fn alloc<F, A, AR>(
&mut self,
annotation: A,
f: F
) -> Result<Self::Variable, SynthesisError>
) -> Result<Variable, SynthesisError>
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{
(**self).alloc(annotation, f)
}
fn enforce<A, AR>(
fn alloc_input<F, A, AR>(
&mut self,
annotation: A,
a: LinearCombination<Self::Variable, E>,
b: LinearCombination<Self::Variable, E>,
c: LinearCombination<Self::Variable, E>
f: F
) -> Result<Variable, SynthesisError>
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{
(**self).alloc_input(annotation, f)
}
fn enforce<A, AR, LA, LB, LC>(
&mut self,
annotation: A,
a: LA,
b: LB,
c: LC
)
where A: FnOnce() -> AR, AR: Into<String>
where A: FnOnce() -> AR, AR: Into<String>,
LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>
{
(**self).enforce(annotation, a, b, c)
}
@ -413,180 +422,221 @@ impl<'cs, E: Engine, CS: ConstraintSystem<E>> ConstraintSystem<E> for &'cs mut C
}
}
#[test]
fn test_cs() {
use pairing::bls12_381::{Bls12, Fr};
// #[test]
// fn test_cs() {
// use pairing::bls12_381::{Bls12, Fr};
#[derive(PartialEq, Copy, Clone)]
enum Var {
Input(usize),
Aux(usize)
}
// struct MySillyConstraintSystem<E: Engine> {
// inputs: Vec<(E::Fr, String)>,
// aux: Vec<(E::Fr, String)>,
// constraints: Vec<(LinearCombination<E>, LinearCombination<E>, LinearCombination<E>, String)>,
// current_namespace: Vec<String>
// }
struct MySillyConstraintSystem<E: Engine> {
inputs: Vec<(E::Fr, String)>,
aux: Vec<(E::Fr, String)>,
constraints: Vec<(LinearCombination<Var, E>, LinearCombination<Var, E>, LinearCombination<Var, E>, String)>,
current_namespace: Vec<String>
}
// fn compute_path(ns: &[String], this: String) -> String {
// let mut name = String::new();
fn compute_path(ns: &[String], this: String) -> String {
let mut name = String::new();
// let mut needs_separation = false;
// for ns in ns.iter().chain(Some(&this).into_iter())
// {
// if needs_separation {
// name += "/";
// }
let mut needs_separation = false;
for ns in ns.iter().chain(Some(&this).into_iter())
{
if needs_separation {
name += "/";
}
// name += ns;
// needs_separation = true;
// }
name += ns;
needs_separation = true;
}
// name
// }
name
}
// impl<E: Engine> PublicConstraintSystem<E> for MySillyConstraintSystem<E> {
// type PublicRoot = Self;
impl<E: Engine> PublicConstraintSystem<E> for MySillyConstraintSystem<E> {
type PublicRoot = Self;
// fn alloc_input<F, A, AR>(
// &mut self,
// annotation: A,
// f: F
// ) -> Result<Variable, SynthesisError>
// where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
// {
// let index = self.inputs.len();
// let path = compute_path(&self.current_namespace, annotation().into());
// self.inputs.push((f()?, path));
fn alloc_input<F, A, AR>(
&mut self,
annotation: A,
f: F
) -> Result<Self::Variable, SynthesisError>
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{
let index = self.inputs.len();
let path = compute_path(&self.current_namespace, annotation().into());
self.inputs.push((f()?, path));
// Ok(Var::Input(index))
// }
Ok(Var::Input(index))
}
// fn get_public_root(&mut self) -> &mut Self::PublicRoot
// {
// self
// }
// }
fn get_public_root(&mut self) -> &mut Self::PublicRoot
{
self
}
}
// impl<E: Engine> ConstraintSystem<E> for MySillyConstraintSystem<E> {
// type Variable = Var;
// type Root = Self;
impl<E: Engine> ConstraintSystem<E> for MySillyConstraintSystem<E> {
type Variable = Var;
type Root = Self;
// fn one(&self) -> Variable {
// Var::Input(0)
// }
fn one(&self) -> Self::Variable {
Var::Input(0)
}
// fn alloc<F, A, AR>(
// &mut self,
// annotation: A,
// f: F
// ) -> Result<Variable, SynthesisError>
// where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
// {
// let index = self.aux.len();
// let path = compute_path(&self.current_namespace, annotation().into());
// self.aux.push((f()?, path));
fn alloc<F, A, AR>(
&mut self,
annotation: A,
f: F
) -> Result<Self::Variable, SynthesisError>
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{
let index = self.aux.len();
let path = compute_path(&self.current_namespace, annotation().into());
self.aux.push((f()?, path));
// Ok(Var::Aux(index))
// }
Ok(Var::Aux(index))
}
// fn enforce<A, AR, LA, LB, LC>(
// &mut self,
// annotation: A,
// a: LA,
// b: LB,
// c: LC
// )
// where A: FnOnce() -> AR, AR: Into<String>,
// LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
// LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
// LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>
// {
// let path = compute_path(&self.current_namespace, annotation().into());
fn enforce<A, AR>(
&mut self,
annotation: A,
a: LinearCombination<Self::Variable, E>,
b: LinearCombination<Self::Variable, E>,
c: LinearCombination<Self::Variable, E>
)
where A: FnOnce() -> AR, AR: Into<String>
{
let path = compute_path(&self.current_namespace, annotation().into());
// let a = a(LinearCombination::zero());
// let b = b(LinearCombination::zero());
// let c = c(LinearCombination::zero());
self.constraints.push((a, b, c, path));
}
// self.constraints.push((a, b, c, path));
// }
fn push_namespace<NR, N>(&mut self, name_fn: N)
where NR: Into<String>, N: FnOnce() -> NR
{
self.current_namespace.push(name_fn().into());
}
// fn push_namespace<NR, N>(&mut self, name_fn: N)
// where NR: Into<String>, N: FnOnce() -> NR
// {
// self.current_namespace.push(name_fn().into());
// }
fn pop_namespace(&mut self)
{
self.current_namespace.pop();
}
// fn pop_namespace(&mut self)
// {
// self.current_namespace.pop();
// }
fn get_root(&mut self) -> &mut Self::Root
{
self
}
}
// fn get_root(&mut self) -> &mut Self::Root
// {
// self
// }
// }
fn do_stuff_with_pcs<E: Engine, CS: PublicConstraintSystem<E>>(mut cs: CS, one_more: bool)
{
cs.alloc_input(|| "something", || Ok(E::Fr::zero())).unwrap();
// fn do_stuff_with_pcs<E: Engine, CS: PublicConstraintSystem<E>>(mut cs: CS, one_more: bool)
// {
// cs.alloc_input(|| "something", || Ok(E::Fr::zero())).unwrap();
if one_more {
do_stuff_with_pcs(cs.namespace_public(|| "cool namespace"), false);
}
}
// if one_more {
// do_stuff_with_pcs(cs.namespace_public(|| "cool namespace"), false);
// }
// }
let mut cs = MySillyConstraintSystem::<Bls12> {
inputs: vec![(Fr::one(), "ONE".into())],
aux: vec![],
constraints: vec![],
current_namespace: vec![]
};
cs.alloc(|| "something", || Ok(Fr::zero())).unwrap();
assert_eq!(cs.inputs, vec![(Fr::one(), "ONE".into())]);
assert_eq!(cs.aux, vec![(Fr::zero(), "something".into())]);
{
let mut cs = cs.namespace(|| "woohoo");
// let mut cs = MySillyConstraintSystem::<Bls12> {
// inputs: vec![(Fr::one(), "ONE".into())],
// aux: vec![],
// constraints: vec![],
// current_namespace: vec![]
// };
// cs.alloc(|| "something", || Ok(Fr::zero())).unwrap();
// assert_eq!(cs.inputs, vec![(Fr::one(), "ONE".into())]);
// assert_eq!(cs.aux, vec![(Fr::zero(), "something".into())]);
// {
// let mut cs = cs.namespace(|| "woohoo");
cs.alloc(|| "whatever", || Ok(Fr::one())).unwrap();
cs.alloc(|| "you", || Ok(Fr::zero())).unwrap();
cs.alloc(|| "say", || Ok(Fr::one())).unwrap();
// cs.alloc(|| "whatever", || Ok(Fr::one())).unwrap();
// cs.alloc(|| "you", || Ok(Fr::zero())).unwrap();
// cs.alloc(|| "say", || Ok(Fr::one())).unwrap();
{
let mut cs = cs.namespace(|| "hehe");
// {
// let mut cs = cs.namespace(|| "hehe");
let v1 = cs.alloc(|| "hehe, indeed", || Ok(Fr::one())).unwrap();
let v2 = cs.alloc_input(|| "works lol", || Ok(Fr::zero())).unwrap();
// let v1 = cs.alloc(|| "hehe, indeed", || Ok(Fr::one())).unwrap();
// let v2 = cs.alloc_input(|| "works lol", || Ok(Fr::zero())).unwrap();
let one = cs.one();
// let one = cs.one();
cs.enforce(
|| "great constraint",
LinearCombination::zero() + v1,
LinearCombination::zero() + one,
LinearCombination::zero() + v2
);
}
}
assert_eq!(cs.aux, vec![
(Fr::zero(), "something".into()),
(Fr::one(), "woohoo/whatever".into()),
(Fr::zero(), "woohoo/you".into()),
(Fr::one(), "woohoo/say".into()),
(Fr::one(), "woohoo/hehe/hehe, indeed".into()),
]);
assert_eq!(cs.inputs, vec![
(Fr::one(), "ONE".into()),
(Fr::zero(), "woohoo/hehe/works lol".into()),
]);
assert!(cs.constraints.len() == 1);
assert!((cs.constraints[0].0).0 == vec![(Var::Aux(4), Fr::one())]);
assert!((cs.constraints[0].1).0 == vec![(Var::Input(0), Fr::one())]);
assert!((cs.constraints[0].2).0 == vec![(Var::Input(1), Fr::one())]);
assert!(cs.constraints[0].3 == "woohoo/hehe/great constraint");
// cs.enforce(
// || "great constraint",
// |lc| lc + v1,
// |lc| lc + one,
// |lc| lc + v2
// );
// }
// }
// assert_eq!(cs.aux, vec![
// (Fr::zero(), "something".into()),
// (Fr::one(), "woohoo/whatever".into()),
// (Fr::zero(), "woohoo/you".into()),
// (Fr::one(), "woohoo/say".into()),
// (Fr::one(), "woohoo/hehe/hehe, indeed".into()),
// ]);
// assert_eq!(cs.inputs, vec![
// (Fr::one(), "ONE".into()),
// (Fr::zero(), "woohoo/hehe/works lol".into()),
// ]);
// assert!(cs.constraints.len() == 1);
// assert!((cs.constraints[0].0).0 == vec![(Var::Aux(4), Fr::one())]);
// assert!((cs.constraints[0].1).0 == vec![(Var::Input(0), Fr::one())]);
// assert!((cs.constraints[0].2).0 == vec![(Var::Input(1), Fr::one())]);
// assert!(cs.constraints[0].3 == "woohoo/hehe/great constraint");
do_stuff_with_pcs(cs.namespace(|| "namey"), true);
// do_stuff_with_pcs(cs.namespace(|| "namey"), true);
assert_eq!(cs.inputs, vec![
(Fr::one(), "ONE".into()),
(Fr::zero(), "woohoo/hehe/works lol".into()),
(Fr::zero(), "namey/something".into()),
(Fr::zero(), "namey/cool namespace/something".into()),
]);
}
// assert_eq!(cs.inputs, vec![
// (Fr::one(), "ONE".into()),
// (Fr::zero(), "woohoo/hehe/works lol".into()),
// (Fr::zero(), "namey/something".into()),
// (Fr::zero(), "namey/cool namespace/something".into()),
// ]);
// }
// #[test]
// fn test_lc() {
// use pairing::bls12_381::{Bls12, Fr};
// use pairing::PrimeField;
// let a = LinearCombination::<Bls12>::zero() + 0usize + 1usize + 2usize - 3usize;
// let mut negone = Fr::one();
// negone.negate();
// assert_eq!(a.0, vec![(0usize, Fr::one()), (1usize, Fr::one()), (2usize, Fr::one()), (3usize, negone)]);
// let x = LinearCombination::<Bls12>::zero() + (Fr::one(), 0usize) - (Fr::one(), 1usize);
// let y = LinearCombination::<Bls12>::zero() + (Fr::one(), 2usize) - (Fr::one(), 3usize);
// let z = x.clone() + &y - &y;
// assert_eq!(z.0, vec![
// (0usize, Fr::one()),
// (1usize, negone),
// (2usize, Fr::one()),
// (3usize, negone),
// (2usize, negone),
// (3usize, Fr::one())
// ]);
// let coeff = Fr::from_str("3").unwrap();
// let mut neg_coeff = coeff;
// neg_coeff.negate();
// let z = x + (coeff, &y) - (coeff, &y);
// assert_eq!(z.0, vec![
// (0usize, Fr::one()),
// (1usize, negone),
// (2usize, Fr::from_str("3").unwrap()),
// (3usize, neg_coeff),
// (2usize, neg_coeff),
// (3usize, Fr::from_str("3").unwrap())
// ]);
// }

106
src/multicore.rs Normal file
View File

@ -0,0 +1,106 @@
//! This is an interface for dealing with the kinds of
//! parallel computations involved in bellman. It's
//! currently just a thin wrapper around CpuPool and
//! crossbeam but may be extended in the future to
//! allow for various parallelism strategies.
use num_cpus;
use futures::{Future, IntoFuture, Poll};
use futures_cpupool::{CpuPool, CpuFuture};
use crossbeam::{self, Scope};
#[derive(Clone)]
pub struct Worker {
cpus: usize,
pool: CpuPool
}
impl Worker {
// We don't expose this outside the library so that
// all `Worker` instances have the same number of
// CPUs configured.
pub(crate) fn new_with_cpus(cpus: usize) -> Worker {
Worker {
cpus: cpus,
pool: CpuPool::new(cpus)
}
}
pub fn new() -> Worker {
Self::new_with_cpus(num_cpus::get())
}
pub fn log_num_cpus(&self) -> u32 {
log2_floor(self.cpus)
}
pub fn compute<F, R>(
&self, f: F
) -> WorkerFuture<R::Item, R::Error>
where F: FnOnce() -> R + Send + 'static,
R: IntoFuture + 'static,
R::Future: Send + 'static,
R::Item: Send + 'static,
R::Error: Send + 'static
{
WorkerFuture {
future: self.pool.spawn_fn(f)
}
}
pub fn scope<'a, F, R>(
&self,
elements: usize,
f: F
) -> R
where F: FnOnce(&Scope<'a>, usize) -> R
{
let chunk_size = if elements < self.cpus {
1
} else {
elements / self.cpus
};
crossbeam::scope(|scope| {
f(scope, chunk_size)
})
}
}
pub struct WorkerFuture<T, E> {
future: CpuFuture<T, E>
}
impl<T: Send + 'static, E: Send + 'static> Future for WorkerFuture<T, E> {
type Item = T;
type Error = E;
fn poll(&mut self) -> Poll<Self::Item, Self::Error>
{
self.future.poll()
}
}
fn log2_floor(num: usize) -> u32 {
assert!(num > 0);
let mut pow = 0;
while (1 << (pow+1)) <= num {
pow += 1;
}
pow
}
#[test]
fn test_log2_floor() {
assert_eq!(log2_floor(1), 0);
assert_eq!(log2_floor(2), 1);
assert_eq!(log2_floor(3), 1);
assert_eq!(log2_floor(4), 2);
assert_eq!(log2_floor(5), 2);
assert_eq!(log2_floor(6), 2);
assert_eq!(log2_floor(7), 2);
assert_eq!(log2_floor(8), 3);
}

View File

@ -1,12 +1,19 @@
use pairing::*;
use pairing::{
CurveAffine,
CurveProjective,
Engine,
PrimeField,
Field,
PrimeFieldRepr
};
use std::sync::Arc;
use std::io;
use bit_vec::{self, BitVec};
use std::iter;
use futures::{Future};
use futures_cpupool::CpuPool;
use super::multicore::Worker;
use super::Error;
use super::SynthesisError;
/// An object that builds a source of bases.
pub trait SourceBuilder<G: CurveAffine>: Send + Sync + 'static + Clone {
@ -18,10 +25,10 @@ pub trait SourceBuilder<G: CurveAffine>: Send + Sync + 'static + Clone {
/// A source of bases, like an iterator.
pub trait Source<G: CurveAffine> {
/// Parses the element from the source. Fails if the point is at infinity.
fn add_assign_mixed(&mut self, to: &mut <G as CurveAffine>::Projective) -> Result<(), Error>;
fn add_assign_mixed(&mut self, to: &mut <G as CurveAffine>::Projective) -> Result<(), SynthesisError>;
/// Skips `amt` elements from the source, avoiding deserialization.
fn skip(&mut self, amt: usize) -> Result<(), Error>;
fn skip(&mut self, amt: usize) -> Result<(), SynthesisError>;
}
impl<G: CurveAffine> SourceBuilder<G> for (Arc<Vec<G>>, usize) {
@ -33,13 +40,13 @@ impl<G: CurveAffine> SourceBuilder<G> for (Arc<Vec<G>>, usize) {
}
impl<G: CurveAffine> Source<G> for (Arc<Vec<G>>, usize) {
fn add_assign_mixed(&mut self, to: &mut <G as CurveAffine>::Projective) -> Result<(), Error> {
fn add_assign_mixed(&mut self, to: &mut <G as CurveAffine>::Projective) -> Result<(), SynthesisError> {
if self.0.len() <= self.1 {
return Err(io::Error::new(io::ErrorKind::UnexpectedEof, "expected more bases from source").into());
}
if self.0[self.1].is_zero() {
return Err(Error::UnexpectedIdentity)
return Err(SynthesisError::UnexpectedIdentity)
}
to.add_assign_mixed(&self.0[self.1]);
@ -49,7 +56,7 @@ impl<G: CurveAffine> Source<G> for (Arc<Vec<G>>, usize) {
Ok(())
}
fn skip(&mut self, amt: usize) -> Result<(), Error> {
fn skip(&mut self, amt: usize) -> Result<(), SynthesisError> {
if self.0.len() <= self.1 {
return Err(io::Error::new(io::ErrorKind::UnexpectedEof, "expected more bases from source").into());
}
@ -131,14 +138,14 @@ impl DensityTracker {
}
fn multiexp_inner<Q, D, G, S>(
pool: &CpuPool,
pool: &Worker,
bases: S,
density_map: D,
exponents: Arc<Vec<<<G::Engine as Engine>::Fr as PrimeField>::Repr>>,
mut skip: u32,
c: u32,
handle_trivial: bool
) -> Box<Future<Item=<G as CurveAffine>::Projective, Error=Error>>
) -> Box<Future<Item=<G as CurveAffine>::Projective, Error=SynthesisError>>
where for<'a> &'a Q: QueryDensity,
D: Send + Sync + 'static + Clone + AsRef<Q>,
G: CurveAffine,
@ -150,7 +157,7 @@ fn multiexp_inner<Q, D, G, S>(
let exponents = exponents.clone();
let density_map = density_map.clone();
pool.spawn_fn(move || {
pool.compute(move || {
// Accumulate the result
let mut acc = G::Projective::zero();
@ -228,11 +235,11 @@ fn multiexp_inner<Q, D, G, S>(
/// Perform multi-exponentiation. The caller is responsible for ensuring the
/// query size is the same as the number of exponents.
pub fn multiexp<Q, D, G, S>(
pool: &CpuPool,
pool: &Worker,
bases: S,
density_map: D,
exponents: Arc<Vec<<<G::Engine as Engine>::Fr as PrimeField>::Repr>>
) -> Box<Future<Item=<G as CurveAffine>::Projective, Error=Error>>
) -> Box<Future<Item=<G as CurveAffine>::Projective, Error=SynthesisError>>
where for<'a> &'a Q: QueryDensity,
D: Send + Sync + 'static + Clone + AsRef<Q>,
G: CurveAffine,
@ -275,7 +282,7 @@ fn test_with_bls12() {
use rand::{self, Rand};
use pairing::bls12_381::Bls12;
const SAMPLES: usize = 1 << 17;
const SAMPLES: usize = 1 << 14;
let rng = &mut rand::thread_rng();
let v = Arc::new((0..SAMPLES).map(|_| <Bls12 as Engine>::Fr::rand(rng).into_repr()).collect::<Vec<_>>());
@ -283,7 +290,7 @@ fn test_with_bls12() {
let naive = naive_multiexp(g.clone(), v.clone());
let pool = CpuPool::new_num_cpus();
let pool = Worker::new();
let fast = multiexp(
&pool,