commit
dab44bc35e
|
@ -12,7 +12,7 @@
|
|||
//! [Groth16]: https://eprint.iacr.org/2016/260
|
||||
|
||||
use ff::PrimeField;
|
||||
use group::CurveProjective;
|
||||
use group::cofactor::CofactorCurve;
|
||||
|
||||
use super::SynthesisError;
|
||||
|
||||
|
@ -196,23 +196,23 @@ pub trait Group<Scalar: PrimeField>: Sized + Copy + Clone + Send + Sync {
|
|||
fn group_sub_assign(&mut self, other: &Self);
|
||||
}
|
||||
|
||||
pub struct Point<G: CurveProjective>(pub G);
|
||||
pub struct Point<G: CofactorCurve>(pub G);
|
||||
|
||||
impl<G: CurveProjective> PartialEq for Point<G> {
|
||||
impl<G: CofactorCurve> PartialEq for Point<G> {
|
||||
fn eq(&self, other: &Point<G>) -> bool {
|
||||
self.0 == other.0
|
||||
}
|
||||
}
|
||||
|
||||
impl<G: CurveProjective> Copy for Point<G> {}
|
||||
impl<G: CofactorCurve> Copy for Point<G> {}
|
||||
|
||||
impl<G: CurveProjective> Clone for Point<G> {
|
||||
impl<G: CofactorCurve> Clone for Point<G> {
|
||||
fn clone(&self) -> Point<G> {
|
||||
*self
|
||||
}
|
||||
}
|
||||
|
||||
impl<G: CurveProjective> Group<G::Scalar> for Point<G> {
|
||||
impl<G: CofactorCurve> Group<G::Scalar> for Point<G> {
|
||||
fn group_zero() -> Self {
|
||||
Point(G::identity())
|
||||
}
|
||||
|
|
|
@ -3,7 +3,7 @@ use std::ops::{AddAssign, MulAssign};
|
|||
use std::sync::Arc;
|
||||
|
||||
use ff::{Field, PrimeField};
|
||||
use group::{CurveAffine, CurveProjective, Group, Wnaf};
|
||||
use group::{cofactor::CofactorCurveAffine, Curve, Group, Wnaf, WnafGroup};
|
||||
use pairing::Engine;
|
||||
|
||||
use super::{Parameters, VerifyingKey};
|
||||
|
@ -22,6 +22,8 @@ pub fn generate_random_parameters<E, C, R>(
|
|||
) -> Result<Parameters<E>, SynthesisError>
|
||||
where
|
||||
E: Engine,
|
||||
E::G1: WnafGroup,
|
||||
E::G2: WnafGroup,
|
||||
C: Circuit<E::Fr>,
|
||||
R: RngCore,
|
||||
{
|
||||
|
@ -165,6 +167,8 @@ pub fn generate_parameters<E, C>(
|
|||
) -> Result<Parameters<E>, SynthesisError>
|
||||
where
|
||||
E: Engine,
|
||||
E::G1: WnafGroup,
|
||||
E::G2: WnafGroup,
|
||||
C: Circuit<E::Fr>,
|
||||
{
|
||||
let mut assembly = KeypairAssembly {
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
//!
|
||||
//! [Groth16]: https://eprint.iacr.org/2016/260
|
||||
|
||||
use group::CurveAffine;
|
||||
use group::{cofactor::CofactorCurveAffine, GroupEncoding, UncompressedEncoding};
|
||||
use pairing::{Engine, MultiMillerLoop};
|
||||
|
||||
use crate::SynthesisError;
|
||||
|
@ -38,19 +38,19 @@ impl<E: Engine> PartialEq for Proof<E> {
|
|||
|
||||
impl<E: Engine> Proof<E> {
|
||||
pub fn write<W: Write>(&self, mut writer: W) -> io::Result<()> {
|
||||
writer.write_all(self.a.to_compressed().as_ref())?;
|
||||
writer.write_all(self.b.to_compressed().as_ref())?;
|
||||
writer.write_all(self.c.to_compressed().as_ref())?;
|
||||
writer.write_all(self.a.to_bytes().as_ref())?;
|
||||
writer.write_all(self.b.to_bytes().as_ref())?;
|
||||
writer.write_all(self.c.to_bytes().as_ref())?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn read<R: Read>(mut reader: R) -> io::Result<Self> {
|
||||
let read_g1 = |reader: &mut R| -> io::Result<E::G1Affine> {
|
||||
let mut g1_repr = <E::G1Affine as CurveAffine>::Compressed::default();
|
||||
let mut g1_repr = <E::G1Affine as GroupEncoding>::Repr::default();
|
||||
reader.read_exact(g1_repr.as_mut())?;
|
||||
|
||||
let affine = E::G1Affine::from_compressed(&g1_repr);
|
||||
let affine = E::G1Affine::from_bytes(&g1_repr);
|
||||
let affine = if affine.is_some().into() {
|
||||
Ok(affine.unwrap())
|
||||
} else {
|
||||
|
@ -70,10 +70,10 @@ impl<E: Engine> Proof<E> {
|
|||
};
|
||||
|
||||
let read_g2 = |reader: &mut R| -> io::Result<E::G2Affine> {
|
||||
let mut g2_repr = <E::G2Affine as CurveAffine>::Compressed::default();
|
||||
let mut g2_repr = <E::G2Affine as GroupEncoding>::Repr::default();
|
||||
reader.read_exact(g2_repr.as_mut())?;
|
||||
|
||||
let affine = E::G2Affine::from_compressed(&g2_repr);
|
||||
let affine = E::G2Affine::from_bytes(&g2_repr);
|
||||
let affine = if affine.is_some().into() {
|
||||
Ok(affine.unwrap())
|
||||
} else {
|
||||
|
@ -158,7 +158,7 @@ impl<E: Engine> VerifyingKey<E> {
|
|||
|
||||
pub fn read<R: Read>(mut reader: R) -> io::Result<Self> {
|
||||
let read_g1 = |reader: &mut R| -> io::Result<E::G1Affine> {
|
||||
let mut g1_repr = <E::G1Affine as CurveAffine>::Uncompressed::default();
|
||||
let mut g1_repr = <E::G1Affine as UncompressedEncoding>::Uncompressed::default();
|
||||
reader.read_exact(g1_repr.as_mut())?;
|
||||
|
||||
let affine = E::G1Affine::from_uncompressed(&g1_repr);
|
||||
|
@ -170,7 +170,7 @@ impl<E: Engine> VerifyingKey<E> {
|
|||
};
|
||||
|
||||
let read_g2 = |reader: &mut R| -> io::Result<E::G2Affine> {
|
||||
let mut g2_repr = <E::G2Affine as CurveAffine>::Uncompressed::default();
|
||||
let mut g2_repr = <E::G2Affine as UncompressedEncoding>::Uncompressed::default();
|
||||
reader.read_exact(g2_repr.as_mut())?;
|
||||
|
||||
let affine = E::G2Affine::from_uncompressed(&g2_repr);
|
||||
|
@ -289,7 +289,7 @@ impl<E: Engine> Parameters<E> {
|
|||
|
||||
pub fn read<R: Read>(mut reader: R, checked: bool) -> io::Result<Self> {
|
||||
let read_g1 = |reader: &mut R| -> io::Result<E::G1Affine> {
|
||||
let mut repr = <E::G1Affine as CurveAffine>::Uncompressed::default();
|
||||
let mut repr = <E::G1Affine as UncompressedEncoding>::Uncompressed::default();
|
||||
reader.read_exact(repr.as_mut())?;
|
||||
|
||||
let affine = if checked {
|
||||
|
@ -317,7 +317,7 @@ impl<E: Engine> Parameters<E> {
|
|||
};
|
||||
|
||||
let read_g2 = |reader: &mut R| -> io::Result<E::G2Affine> {
|
||||
let mut repr = <E::G2Affine as CurveAffine>::Uncompressed::default();
|
||||
let mut repr = <E::G2Affine as UncompressedEncoding>::Uncompressed::default();
|
||||
reader.read_exact(repr.as_mut())?;
|
||||
|
||||
let affine = if checked {
|
||||
|
|
|
@ -5,7 +5,7 @@ use std::sync::Arc;
|
|||
use futures::Future;
|
||||
|
||||
use ff::{Field, PrimeField};
|
||||
use group::{CurveAffine, CurveProjective};
|
||||
use group::{cofactor::CofactorCurveAffine, Curve};
|
||||
use pairing::Engine;
|
||||
|
||||
use super::{ParameterSource, Proof};
|
||||
|
|
|
@ -1,5 +1,9 @@
|
|||
use ff::{Field, PrimeField};
|
||||
use group::{CurveAffine, CurveProjective, Group, PrimeGroup};
|
||||
use group::{
|
||||
cofactor::{CofactorCurve, CofactorCurveAffine, CofactorGroup},
|
||||
prime::PrimeGroup,
|
||||
Curve, Group, GroupEncoding, UncompressedEncoding, WnafGroup,
|
||||
};
|
||||
use pairing::{Engine, MillerLoopResult, MultiMillerLoop, PairingCurveAffine};
|
||||
|
||||
use rand_core::RngCore;
|
||||
|
@ -367,7 +371,6 @@ impl MillerLoopResult for Fr {
|
|||
}
|
||||
|
||||
impl Group for Fr {
|
||||
type Subgroup = Fr;
|
||||
type Scalar = Fr;
|
||||
|
||||
fn random<R: RngCore + ?Sized>(rng: &mut R) -> Self {
|
||||
|
@ -393,21 +396,27 @@ impl Group for Fr {
|
|||
|
||||
impl PrimeGroup for Fr {}
|
||||
|
||||
impl CurveProjective for Fr {
|
||||
type Affine = Fr;
|
||||
impl CofactorGroup for Fr {
|
||||
type Subgroup = Fr;
|
||||
|
||||
fn batch_normalize(p: &[Self], q: &mut [Self::Affine]) {
|
||||
assert_eq!(p.len(), q.len());
|
||||
fn mul_by_cofactor(&self) -> Self::Subgroup {
|
||||
*self
|
||||
}
|
||||
|
||||
for (p, q) in p.iter().zip(q.iter_mut()) {
|
||||
*q = p.to_affine();
|
||||
fn into_subgroup(self) -> CtOption<Self::Subgroup> {
|
||||
CtOption::new(self, Choice::from(1))
|
||||
}
|
||||
}
|
||||
|
||||
impl Curve for Fr {
|
||||
type AffineRepr = Fr;
|
||||
|
||||
fn to_affine(&self) -> Fr {
|
||||
*self
|
||||
}
|
||||
}
|
||||
|
||||
impl WnafGroup for Fr {
|
||||
fn recommended_wnaf_for_scalar(_: &Self::Scalar) -> usize {
|
||||
3
|
||||
}
|
||||
|
@ -417,6 +426,10 @@ impl CurveProjective for Fr {
|
|||
}
|
||||
}
|
||||
|
||||
impl CofactorCurve for Fr {
|
||||
type Affine = Fr;
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Default)]
|
||||
pub struct FakePoint;
|
||||
|
||||
|
@ -432,10 +445,8 @@ impl AsRef<[u8]> for FakePoint {
|
|||
}
|
||||
}
|
||||
|
||||
impl CurveAffine for Fr {
|
||||
type Compressed = FakePoint;
|
||||
type Uncompressed = FakePoint;
|
||||
type Projective = Fr;
|
||||
impl CofactorCurveAffine for Fr {
|
||||
type Curve = Fr;
|
||||
type Scalar = Fr;
|
||||
|
||||
fn identity() -> Self {
|
||||
|
@ -450,21 +461,29 @@ impl CurveAffine for Fr {
|
|||
Choice::from(if <Fr as Field>::is_zero(self) { 1 } else { 0 })
|
||||
}
|
||||
|
||||
fn to_projective(&self) -> Self::Projective {
|
||||
fn to_curve(&self) -> Self::Curve {
|
||||
*self
|
||||
}
|
||||
}
|
||||
|
||||
fn from_compressed(_bytes: &Self::Compressed) -> CtOption<Self> {
|
||||
impl GroupEncoding for Fr {
|
||||
type Repr = FakePoint;
|
||||
|
||||
fn from_bytes(_bytes: &Self::Repr) -> CtOption<Self> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
fn from_compressed_unchecked(_bytes: &Self::Compressed) -> CtOption<Self> {
|
||||
fn from_bytes_unchecked(_bytes: &Self::Repr) -> CtOption<Self> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
fn to_compressed(&self) -> Self::Compressed {
|
||||
fn to_bytes(&self) -> Self::Repr {
|
||||
unimplemented!()
|
||||
}
|
||||
}
|
||||
|
||||
impl UncompressedEncoding for Fr {
|
||||
type Uncompressed = FakePoint;
|
||||
|
||||
fn from_uncompressed(_bytes: &Self::Uncompressed) -> CtOption<Self> {
|
||||
unimplemented!()
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
use group::{CurveAffine, CurveProjective};
|
||||
use group::{cofactor::CofactorCurveAffine, Curve};
|
||||
use pairing::{MillerLoopResult, MultiMillerLoop};
|
||||
use std::ops::{AddAssign, Neg};
|
||||
|
||||
|
@ -27,7 +27,7 @@ pub fn verify_proof<'a, E: MultiMillerLoop>(
|
|||
return Err(SynthesisError::MalformedVerifyingKey);
|
||||
}
|
||||
|
||||
let mut acc = pvk.ic[0].to_projective();
|
||||
let mut acc = pvk.ic[0].to_curve();
|
||||
|
||||
for (i, b) in public_inputs.iter().zip(pvk.ic.iter().skip(1)) {
|
||||
AddAssign::<&E::G1>::add_assign(&mut acc, &(*b * i));
|
||||
|
|
|
@ -2,7 +2,7 @@ use super::multicore::Worker;
|
|||
use bit_vec::{self, BitVec};
|
||||
use ff::{Endianness, Field, PrimeField};
|
||||
use futures::Future;
|
||||
use group::{CurveAffine, CurveProjective};
|
||||
use group::cofactor::{CofactorCurve, CofactorCurveAffine};
|
||||
use std::io;
|
||||
use std::iter;
|
||||
use std::ops::AddAssign;
|
||||
|
@ -11,33 +11,33 @@ use std::sync::Arc;
|
|||
use super::SynthesisError;
|
||||
|
||||
/// An object that builds a source of bases.
|
||||
pub trait SourceBuilder<G: CurveAffine>: Send + Sync + 'static + Clone {
|
||||
pub trait SourceBuilder<G: CofactorCurveAffine>: Send + Sync + 'static + Clone {
|
||||
type Source: Source<G>;
|
||||
|
||||
fn new(self) -> Self::Source;
|
||||
}
|
||||
|
||||
/// A source of bases, like an iterator.
|
||||
pub trait Source<G: CurveAffine> {
|
||||
pub trait Source<G: CofactorCurveAffine> {
|
||||
fn next(&mut self) -> Result<&G, SynthesisError>;
|
||||
|
||||
/// Skips `amt` elements from the source, avoiding deserialization.
|
||||
fn skip(&mut self, amt: usize) -> Result<(), SynthesisError>;
|
||||
}
|
||||
|
||||
pub trait AddAssignFromSource: CurveProjective {
|
||||
pub trait AddAssignFromSource: CofactorCurve {
|
||||
/// Parses the element from the source. Fails if the point is at infinity.
|
||||
fn add_assign_from_source<S: Source<<Self as CurveProjective>::Affine>>(
|
||||
fn add_assign_from_source<S: Source<<Self as CofactorCurve>::Affine>>(
|
||||
&mut self,
|
||||
source: &mut S,
|
||||
) -> Result<(), SynthesisError> {
|
||||
AddAssign::<&<Self as CurveProjective>::Affine>::add_assign(self, source.next()?);
|
||||
AddAssign::<&<Self as CofactorCurve>::Affine>::add_assign(self, source.next()?);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
impl<G> AddAssignFromSource for G where G: CurveProjective {}
|
||||
impl<G> AddAssignFromSource for G where G: CofactorCurve {}
|
||||
|
||||
impl<G: CurveAffine> SourceBuilder<G> for (Arc<Vec<G>>, usize) {
|
||||
impl<G: CofactorCurveAffine> SourceBuilder<G> for (Arc<Vec<G>>, usize) {
|
||||
type Source = (Arc<Vec<G>>, usize);
|
||||
|
||||
fn new(self) -> (Arc<Vec<G>>, usize) {
|
||||
|
@ -45,7 +45,7 @@ impl<G: CurveAffine> SourceBuilder<G> for (Arc<Vec<G>>, usize) {
|
|||
}
|
||||
}
|
||||
|
||||
impl<G: CurveAffine> Source<G> for (Arc<Vec<G>>, usize) {
|
||||
impl<G: CofactorCurveAffine> Source<G> for (Arc<Vec<G>>, usize) {
|
||||
fn next(&mut self) -> Result<&G, SynthesisError> {
|
||||
if self.0.len() <= self.1 {
|
||||
return Err(io::Error::new(
|
||||
|
@ -162,8 +162,8 @@ fn multiexp_inner<Q, D, G, S>(
|
|||
where
|
||||
for<'a> &'a Q: QueryDensity,
|
||||
D: Send + Sync + 'static + Clone + AsRef<Q>,
|
||||
G: CurveProjective,
|
||||
S: SourceBuilder<<G as CurveProjective>::Affine>,
|
||||
G: CofactorCurve,
|
||||
S: SourceBuilder<<G as CofactorCurve>::Affine>,
|
||||
{
|
||||
// Perform this region of the multiexp
|
||||
let this = {
|
||||
|
@ -274,8 +274,8 @@ pub fn multiexp<Q, D, G, S>(
|
|||
where
|
||||
for<'a> &'a Q: QueryDensity,
|
||||
D: Send + Sync + 'static + Clone + AsRef<Q>,
|
||||
G: CurveProjective,
|
||||
S: SourceBuilder<<G as CurveProjective>::Affine>,
|
||||
G: CofactorCurve,
|
||||
S: SourceBuilder<<G as CofactorCurve>::Affine>,
|
||||
{
|
||||
let c = if exponents.len() < 32 {
|
||||
3u32
|
||||
|
@ -296,8 +296,8 @@ where
|
|||
#[cfg(feature = "pairing")]
|
||||
#[test]
|
||||
fn test_with_bls12() {
|
||||
fn naive_multiexp<G: CurveProjective>(
|
||||
bases: Arc<Vec<<G as CurveProjective>::Affine>>,
|
||||
fn naive_multiexp<G: CofactorCurve>(
|
||||
bases: Arc<Vec<<G as CofactorCurve>::Affine>>,
|
||||
exponents: Arc<Vec<G::Scalar>>,
|
||||
) -> G {
|
||||
assert_eq!(bases.len(), exponents.len());
|
||||
|
@ -311,7 +311,7 @@ fn test_with_bls12() {
|
|||
acc
|
||||
}
|
||||
|
||||
use group::Group;
|
||||
use group::{Curve, Group};
|
||||
use pairing::{
|
||||
bls12_381::{Bls12, Fr},
|
||||
Engine,
|
||||
|
|
|
@ -213,6 +213,8 @@ pub trait PrimeField: Field + From<u64> {
|
|||
fn root_of_unity() -> Self;
|
||||
}
|
||||
|
||||
/// Takes a little-endian representation of some value, and returns its bits in big-endian
|
||||
/// order.
|
||||
#[derive(Debug)]
|
||||
pub struct BitIterator<T, E: AsRef<[T]>> {
|
||||
t: E,
|
||||
|
|
|
@ -0,0 +1,113 @@
|
|||
use core::fmt;
|
||||
use core::ops::{Mul, Neg};
|
||||
use ff::{BitIterator, Endianness, PrimeField};
|
||||
use subtle::{Choice, CtOption};
|
||||
|
||||
use crate::{prime::PrimeGroup, Curve, Group, GroupEncoding, GroupOps, GroupOpsOwned};
|
||||
|
||||
/// This trait represents an element of a cryptographic group with a large prime-order
|
||||
/// subgroup and a comparatively-small cofactor.
|
||||
pub trait CofactorGroup:
|
||||
Group
|
||||
+ GroupEncoding
|
||||
+ GroupOps<<Self as CofactorGroup>::Subgroup>
|
||||
+ GroupOpsOwned<<Self as CofactorGroup>::Subgroup>
|
||||
{
|
||||
/// The large prime-order subgroup in which cryptographic operations are performed.
|
||||
/// If `Self` implements `PrimeGroup`, then `Self::Subgroup` may be `Self`.
|
||||
type Subgroup: PrimeGroup<Scalar = Self::Scalar> + Into<Self>;
|
||||
|
||||
/// Returns `[h] self`, where `h` is the cofactor of the group.
|
||||
///
|
||||
/// If `Self` implements [`PrimeGroup`], this returns `self`.
|
||||
fn mul_by_cofactor(&self) -> Self::Subgroup;
|
||||
|
||||
/// Returns `self` if it is contained in the prime-order subgroup.
|
||||
///
|
||||
/// If `Self` implements [`PrimeGroup`], this returns `Some(self)`.
|
||||
fn into_subgroup(self) -> CtOption<Self::Subgroup>;
|
||||
|
||||
/// Determines if this element is of small order.
|
||||
///
|
||||
/// Returns:
|
||||
/// - `true` if `self` is in the torsion subgroup.
|
||||
/// - `false` if `self` is not in the torsion subgroup.
|
||||
fn is_small_order(&self) -> Choice {
|
||||
self.mul_by_cofactor().is_identity()
|
||||
}
|
||||
|
||||
/// Determines if this element is "torsion free", i.e., is contained in the
|
||||
/// prime-order subgroup.
|
||||
///
|
||||
/// Returns:
|
||||
/// - `true` if `self` has zero torsion component and is in the prime-order subgroup.
|
||||
/// - `false` if `self` has non-zero torsion component and is not in the prime-order
|
||||
/// subgroup.
|
||||
fn is_torsion_free(&self) -> Choice {
|
||||
// Obtain the scalar field characteristic in little endian.
|
||||
let mut char = Self::Scalar::char();
|
||||
<Self::Scalar as PrimeField>::ReprEndianness::toggle_little_endian(&mut char);
|
||||
|
||||
// Multiply self by the characteristic to eliminate any prime-order subgroup
|
||||
// component.
|
||||
let bits = BitIterator::<u8, _>::new(char);
|
||||
let mut res = Self::identity();
|
||||
for i in bits {
|
||||
res = res.double();
|
||||
if i {
|
||||
res.add_assign(self)
|
||||
}
|
||||
}
|
||||
|
||||
// If the result is the identity, there was zero torsion component!
|
||||
res.is_identity()
|
||||
}
|
||||
}
|
||||
|
||||
/// Efficient representation of an elliptic curve point guaranteed to be
|
||||
/// in the correct prime order subgroup.
|
||||
pub trait CofactorCurve:
|
||||
Curve<AffineRepr = <Self as CofactorCurve>::Affine> + CofactorGroup
|
||||
{
|
||||
type Affine: CofactorCurveAffine<Curve = Self, Scalar = Self::Scalar>
|
||||
+ Mul<Self::Scalar, Output = Self>
|
||||
+ for<'r> Mul<Self::Scalar, Output = Self>;
|
||||
}
|
||||
|
||||
/// Affine representation of an elliptic curve point guaranteed to be
|
||||
/// in the correct prime order subgroup.
|
||||
pub trait CofactorCurveAffine:
|
||||
GroupEncoding
|
||||
+ Copy
|
||||
+ Clone
|
||||
+ Sized
|
||||
+ Send
|
||||
+ Sync
|
||||
+ fmt::Debug
|
||||
+ fmt::Display
|
||||
+ PartialEq
|
||||
+ Eq
|
||||
+ 'static
|
||||
+ Neg<Output = Self>
|
||||
+ Mul<<Self as CofactorCurveAffine>::Scalar, Output = <Self as CofactorCurveAffine>::Curve>
|
||||
+ for<'r> Mul<
|
||||
<Self as CofactorCurveAffine>::Scalar,
|
||||
Output = <Self as CofactorCurveAffine>::Curve,
|
||||
>
|
||||
{
|
||||
type Scalar: PrimeField;
|
||||
type Curve: CofactorCurve<Affine = Self, Scalar = Self::Scalar>;
|
||||
|
||||
/// Returns the additive identity.
|
||||
fn identity() -> Self;
|
||||
|
||||
/// Returns a fixed generator of unknown exponent.
|
||||
fn generator() -> Self;
|
||||
|
||||
/// Determines if this point represents the point at infinity; the
|
||||
/// additive identity.
|
||||
fn is_identity(&self) -> Choice;
|
||||
|
||||
/// Converts this element to its curve representation.
|
||||
fn to_curve(&self) -> Self::Curve;
|
||||
}
|
112
group/src/lib.rs
112
group/src/lib.rs
|
@ -8,10 +8,12 @@ use std::iter::Sum;
|
|||
use std::ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign};
|
||||
use subtle::{Choice, CtOption};
|
||||
|
||||
pub mod cofactor;
|
||||
pub mod prime;
|
||||
pub mod tests;
|
||||
|
||||
mod wnaf;
|
||||
pub use self::wnaf::Wnaf;
|
||||
pub use self::wnaf::{Wnaf, WnafGroup};
|
||||
|
||||
/// A helper trait for types with a group operation.
|
||||
pub trait GroupOps<Rhs = Self, Output = Self>:
|
||||
|
@ -54,16 +56,10 @@ pub trait Group:
|
|||
+ Neg<Output = Self>
|
||||
+ GroupOps
|
||||
+ GroupOpsOwned
|
||||
+ GroupOps<<Self as Group>::Subgroup>
|
||||
+ GroupOpsOwned<<Self as Group>::Subgroup>
|
||||
+ ScalarMul<<Self as Group>::Scalar>
|
||||
+ ScalarMulOwned<<Self as Group>::Scalar>
|
||||
{
|
||||
/// The large prime-order subgroup in which cryptographic operations are performed.
|
||||
/// If `Self` implements `PrimeGroup`, then `Self::Subgroup` may be `Self`.
|
||||
type Subgroup: PrimeGroup;
|
||||
|
||||
/// Scalars modulo the order of [`Group::Subgroup`].
|
||||
/// Scalars modulo the order of this group's scalar field.
|
||||
type Scalar: PrimeField;
|
||||
|
||||
/// Returns an element chosen uniformly at random using a user-provided RNG.
|
||||
|
@ -73,7 +69,7 @@ pub trait Group:
|
|||
fn identity() -> Self;
|
||||
|
||||
/// Returns a fixed generator of the prime-order subgroup.
|
||||
fn generator() -> Self::Subgroup;
|
||||
fn generator() -> Self;
|
||||
|
||||
/// Determines if this point is the identity.
|
||||
fn is_identity(&self) -> Choice;
|
||||
|
@ -83,85 +79,51 @@ pub trait Group:
|
|||
fn double(&self) -> Self;
|
||||
}
|
||||
|
||||
/// This trait represents an element of a prime-order cryptographic group.
|
||||
pub trait PrimeGroup: Group {}
|
||||
|
||||
/// Projective representation of an elliptic curve point guaranteed to be
|
||||
/// in the correct prime order subgroup.
|
||||
pub trait CurveProjective:
|
||||
Group
|
||||
+ GroupOps<<Self as CurveProjective>::Affine>
|
||||
+ GroupOpsOwned<<Self as CurveProjective>::Affine>
|
||||
/// Efficient representation of an elliptic curve point guaranteed.
|
||||
pub trait Curve:
|
||||
Group + GroupOps<<Self as Curve>::AffineRepr> + GroupOpsOwned<<Self as Curve>::AffineRepr>
|
||||
{
|
||||
type Affine: CurveAffine<Projective = Self, Scalar = Self::Scalar>
|
||||
+ Mul<Self::Scalar, Output = Self>
|
||||
+ for<'r> Mul<Self::Scalar, Output = Self>;
|
||||
/// The affine representation for this elliptic curve.
|
||||
type AffineRepr;
|
||||
|
||||
/// Converts a batch of projective elements into affine elements. This function will
|
||||
/// panic if `p.len() != q.len()`.
|
||||
fn batch_normalize(p: &[Self], q: &mut [Self::Affine]);
|
||||
fn batch_normalize(p: &[Self], q: &mut [Self::AffineRepr]) {
|
||||
assert_eq!(p.len(), q.len());
|
||||
|
||||
/// Converts this element into its affine representation.
|
||||
fn to_affine(&self) -> Self::Affine;
|
||||
|
||||
/// Recommends a wNAF window table size given a scalar. Always returns a number
|
||||
/// between 2 and 22, inclusive.
|
||||
fn recommended_wnaf_for_scalar(scalar: &Self::Scalar) -> usize;
|
||||
|
||||
/// Recommends a wNAF window size given the number of scalars you intend to multiply
|
||||
/// a base by. Always returns a number between 2 and 22, inclusive.
|
||||
fn recommended_wnaf_for_num_scalars(num_scalars: usize) -> usize;
|
||||
for (p, q) in p.iter().zip(q.iter_mut()) {
|
||||
*q = p.to_affine();
|
||||
}
|
||||
}
|
||||
|
||||
/// Affine representation of an elliptic curve point guaranteed to be
|
||||
/// in the correct prime order subgroup.
|
||||
pub trait CurveAffine:
|
||||
Copy
|
||||
+ Clone
|
||||
+ Sized
|
||||
+ Send
|
||||
+ Sync
|
||||
+ fmt::Debug
|
||||
+ fmt::Display
|
||||
+ PartialEq
|
||||
+ Eq
|
||||
+ 'static
|
||||
+ Neg<Output = Self>
|
||||
+ Mul<<Self as CurveAffine>::Scalar, Output = <Self as CurveAffine>::Projective>
|
||||
+ for<'r> Mul<<Self as CurveAffine>::Scalar, Output = <Self as CurveAffine>::Projective>
|
||||
{
|
||||
type Scalar: PrimeField;
|
||||
type Projective: CurveProjective<Affine = Self, Scalar = Self::Scalar>;
|
||||
type Uncompressed: Default + AsRef<[u8]> + AsMut<[u8]>;
|
||||
type Compressed: Default + AsRef<[u8]> + AsMut<[u8]>;
|
||||
|
||||
/// Returns the additive identity.
|
||||
fn identity() -> Self;
|
||||
|
||||
/// Returns a fixed generator of unknown exponent.
|
||||
fn generator() -> Self;
|
||||
|
||||
/// Determines if this point represents the point at infinity; the
|
||||
/// additive identity.
|
||||
fn is_identity(&self) -> Choice;
|
||||
|
||||
/// Converts this element into its affine representation.
|
||||
fn to_projective(&self) -> Self::Projective;
|
||||
fn to_affine(&self) -> Self::AffineRepr;
|
||||
}
|
||||
|
||||
/// Attempts to deserialize an element from its compressed encoding.
|
||||
fn from_compressed(bytes: &Self::Compressed) -> CtOption<Self>;
|
||||
pub trait GroupEncoding: Sized {
|
||||
/// The encoding of group elements.
|
||||
type Repr: Default + AsRef<[u8]> + AsMut<[u8]>;
|
||||
|
||||
/// Attempts to deserialize a compressed element, not checking if the element is in
|
||||
/// the correct subgroup.
|
||||
/// Attempts to deserialize a group element from its encoding.
|
||||
fn from_bytes(bytes: &Self::Repr) -> CtOption<Self>;
|
||||
|
||||
/// Attempts to deserialize a group element, not checking if the element is valid.
|
||||
///
|
||||
/// **This is dangerous to call unless you trust the bytes you are reading; otherwise,
|
||||
/// API invariants may be broken.** Please consider using
|
||||
/// [`CurveAffine::from_compressed`] instead.
|
||||
fn from_compressed_unchecked(bytes: &Self::Compressed) -> CtOption<Self>;
|
||||
/// [`GroupEncoding::from_bytes`] instead.
|
||||
fn from_bytes_unchecked(bytes: &Self::Repr) -> CtOption<Self>;
|
||||
|
||||
/// Converts this element into its compressed encoding, so long as it's not
|
||||
/// the point at infinity.
|
||||
fn to_compressed(&self) -> Self::Compressed;
|
||||
/// Converts this element into its byte encoding. This may or may not support
|
||||
/// encoding the identity.
|
||||
// TODO: Figure out how to handle identity encoding generically.
|
||||
fn to_bytes(&self) -> Self::Repr;
|
||||
}
|
||||
|
||||
/// Affine representation of a point on an elliptic curve that has a defined uncompressed
|
||||
/// encoding.
|
||||
pub trait UncompressedEncoding: Sized {
|
||||
type Uncompressed: Default + AsRef<[u8]> + AsMut<[u8]>;
|
||||
|
||||
/// Attempts to deserialize an element from its uncompressed encoding.
|
||||
fn from_uncompressed(bytes: &Self::Uncompressed) -> CtOption<Self>;
|
||||
|
@ -171,7 +133,7 @@ pub trait CurveAffine:
|
|||
///
|
||||
/// **This is dangerous to call unless you trust the bytes you are reading; otherwise,
|
||||
/// API invariants may be broken.** Please consider using
|
||||
/// [`CurveAffine::from_uncompressed`] instead.
|
||||
/// [`UncompressedEncoding::from_uncompressed`] instead.
|
||||
fn from_uncompressed_unchecked(bytes: &Self::Uncompressed) -> CtOption<Self>;
|
||||
|
||||
/// Converts this element into its uncompressed encoding, so long as it's not
|
||||
|
|
|
@ -0,0 +1,52 @@
|
|||
use core::fmt;
|
||||
use core::ops::{Mul, Neg};
|
||||
use ff::PrimeField;
|
||||
use subtle::Choice;
|
||||
|
||||
use crate::{Curve, Group, GroupEncoding};
|
||||
|
||||
/// This trait represents an element of a prime-order cryptographic group.
|
||||
pub trait PrimeGroup: Group + GroupEncoding {}
|
||||
|
||||
/// Efficient representation of an elliptic curve point guaranteed to be
|
||||
/// in the correct prime order subgroup.
|
||||
pub trait PrimeCurve: Curve<AffineRepr = <Self as PrimeCurve>::Affine> + PrimeGroup {
|
||||
type Affine: PrimeCurveAffine<Curve = Self, Scalar = Self::Scalar>
|
||||
+ Mul<Self::Scalar, Output = Self>
|
||||
+ for<'r> Mul<Self::Scalar, Output = Self>;
|
||||
}
|
||||
|
||||
/// Affine representation of an elliptic curve point guaranteed to be
|
||||
/// in the correct prime order subgroup.
|
||||
pub trait PrimeCurveAffine:
|
||||
GroupEncoding
|
||||
+ Copy
|
||||
+ Clone
|
||||
+ Sized
|
||||
+ Send
|
||||
+ Sync
|
||||
+ fmt::Debug
|
||||
+ fmt::Display
|
||||
+ PartialEq
|
||||
+ Eq
|
||||
+ 'static
|
||||
+ Neg<Output = Self>
|
||||
+ Mul<<Self as PrimeCurveAffine>::Scalar, Output = <Self as PrimeCurveAffine>::Curve>
|
||||
+ for<'r> Mul<<Self as PrimeCurveAffine>::Scalar, Output = <Self as PrimeCurveAffine>::Curve>
|
||||
{
|
||||
type Scalar: PrimeField;
|
||||
type Curve: PrimeCurve<Affine = Self, Scalar = Self::Scalar>;
|
||||
|
||||
/// Returns the additive identity.
|
||||
fn identity() -> Self;
|
||||
|
||||
/// Returns a fixed generator of unknown exponent.
|
||||
fn generator() -> Self;
|
||||
|
||||
/// Determines if this point represents the point at infinity; the
|
||||
/// additive identity.
|
||||
fn is_identity(&self) -> Choice;
|
||||
|
||||
/// Converts this element to its curve representation.
|
||||
fn to_curve(&self) -> Self::Curve;
|
||||
}
|
|
@ -3,9 +3,13 @@ use rand::SeedableRng;
|
|||
use rand_xorshift::XorShiftRng;
|
||||
use std::ops::{Mul, Neg};
|
||||
|
||||
use crate::{CurveAffine, CurveProjective};
|
||||
use crate::{
|
||||
cofactor::{CofactorCurve, CofactorCurveAffine},
|
||||
wnaf::WnafGroup,
|
||||
GroupEncoding, UncompressedEncoding,
|
||||
};
|
||||
|
||||
pub fn curve_tests<G: CurveProjective>() {
|
||||
pub fn curve_tests<G: CofactorCurve>() {
|
||||
let mut rng = XorShiftRng::from_seed([
|
||||
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
|
||||
0xe5,
|
||||
|
@ -50,8 +54,8 @@ pub fn curve_tests<G: CurveProjective>() {
|
|||
// Transformations
|
||||
{
|
||||
let a = G::random(&mut rng);
|
||||
let b = a.to_affine().to_projective();
|
||||
let c = a.to_affine().to_projective().to_affine().to_projective();
|
||||
let b = a.to_affine().to_curve();
|
||||
let c = a.to_affine().to_curve().to_affine().to_curve();
|
||||
assert_eq!(a, b);
|
||||
assert_eq!(b, c);
|
||||
}
|
||||
|
@ -61,11 +65,10 @@ pub fn curve_tests<G: CurveProjective>() {
|
|||
random_doubling_tests::<G>();
|
||||
random_negation_tests::<G>();
|
||||
random_transformation_tests::<G>();
|
||||
random_wnaf_tests::<G>();
|
||||
random_encoding_tests::<G>();
|
||||
random_compressed_encoding_tests::<G>();
|
||||
}
|
||||
|
||||
fn random_wnaf_tests<G: CurveProjective>() {
|
||||
pub fn random_wnaf_tests<G: WnafGroup>() {
|
||||
use crate::wnaf::*;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([
|
||||
|
@ -184,7 +187,7 @@ fn random_wnaf_tests<G: CurveProjective>() {
|
|||
}
|
||||
}
|
||||
|
||||
fn random_negation_tests<G: CurveProjective>() {
|
||||
fn random_negation_tests<G: CofactorCurve>() {
|
||||
let mut rng = XorShiftRng::from_seed([
|
||||
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
|
||||
0xe5,
|
||||
|
@ -214,7 +217,7 @@ fn random_negation_tests<G: CurveProjective>() {
|
|||
}
|
||||
}
|
||||
|
||||
fn random_doubling_tests<G: CurveProjective>() {
|
||||
fn random_doubling_tests<G: CofactorCurve>() {
|
||||
let mut rng = XorShiftRng::from_seed([
|
||||
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
|
||||
0xe5,
|
||||
|
@ -242,7 +245,7 @@ fn random_doubling_tests<G: CurveProjective>() {
|
|||
}
|
||||
}
|
||||
|
||||
fn random_multiplication_tests<G: CurveProjective>() {
|
||||
fn random_multiplication_tests<G: CofactorCurve>() {
|
||||
let mut rng = XorShiftRng::from_seed([
|
||||
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
|
||||
0xe5,
|
||||
|
@ -277,7 +280,7 @@ fn random_multiplication_tests<G: CurveProjective>() {
|
|||
}
|
||||
}
|
||||
|
||||
fn random_addition_tests<G: CurveProjective>() {
|
||||
fn random_addition_tests<G: CofactorCurve>() {
|
||||
let mut rng = XorShiftRng::from_seed([
|
||||
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
|
||||
0xe5,
|
||||
|
@ -325,17 +328,17 @@ fn random_addition_tests<G: CurveProjective>() {
|
|||
// Mixed addition
|
||||
|
||||
// (a + b) + c
|
||||
tmp[3] = a_affine.to_projective();
|
||||
tmp[3] = a_affine.to_curve();
|
||||
tmp[3].add_assign(&b_affine);
|
||||
tmp[3].add_assign(&c_affine);
|
||||
|
||||
// a + (b + c)
|
||||
tmp[4] = b_affine.to_projective();
|
||||
tmp[4] = b_affine.to_curve();
|
||||
tmp[4].add_assign(&c_affine);
|
||||
tmp[4].add_assign(&a_affine);
|
||||
|
||||
// (a + c) + b
|
||||
tmp[5] = a_affine.to_projective();
|
||||
tmp[5] = a_affine.to_curve();
|
||||
tmp[5].add_assign(&c_affine);
|
||||
tmp[5].add_assign(&b_affine);
|
||||
|
||||
|
@ -357,7 +360,7 @@ fn random_addition_tests<G: CurveProjective>() {
|
|||
}
|
||||
}
|
||||
|
||||
fn random_transformation_tests<G: CurveProjective>() {
|
||||
fn random_transformation_tests<G: CofactorCurve>() {
|
||||
let mut rng = XorShiftRng::from_seed([
|
||||
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
|
||||
0xe5,
|
||||
|
@ -366,7 +369,7 @@ fn random_transformation_tests<G: CurveProjective>() {
|
|||
for _ in 0..1000 {
|
||||
let g = G::random(&mut rng);
|
||||
let g_affine = g.to_affine();
|
||||
let g_projective = g_affine.to_projective();
|
||||
let g_projective = g_affine.to_curve();
|
||||
assert_eq!(g, g_projective);
|
||||
}
|
||||
|
||||
|
@ -382,7 +385,7 @@ fn random_transformation_tests<G: CurveProjective>() {
|
|||
}
|
||||
for _ in 0..5 {
|
||||
let s = between.sample(&mut rng);
|
||||
v[s] = v[s].to_affine().to_projective();
|
||||
v[s] = v[s].to_affine().to_curve();
|
||||
}
|
||||
|
||||
let expected_v = v.iter().map(|v| v.to_affine()).collect::<Vec<_>>();
|
||||
|
@ -394,7 +397,36 @@ fn random_transformation_tests<G: CurveProjective>() {
|
|||
}
|
||||
}
|
||||
|
||||
fn random_encoding_tests<G: CurveProjective>() {
|
||||
fn random_compressed_encoding_tests<G: CofactorCurve>() {
|
||||
let mut rng = XorShiftRng::from_seed([
|
||||
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
|
||||
0xe5,
|
||||
]);
|
||||
|
||||
assert_eq!(
|
||||
G::Affine::from_bytes(&G::Affine::identity().to_bytes()).unwrap(),
|
||||
G::Affine::identity()
|
||||
);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let mut r = G::random(&mut rng).to_affine();
|
||||
|
||||
let compressed = r.to_bytes();
|
||||
let de_compressed = G::Affine::from_bytes(&compressed).unwrap();
|
||||
assert_eq!(de_compressed, r);
|
||||
|
||||
r = r.neg();
|
||||
|
||||
let compressed = r.to_bytes();
|
||||
let de_compressed = G::Affine::from_bytes(&compressed).unwrap();
|
||||
assert_eq!(de_compressed, r);
|
||||
}
|
||||
}
|
||||
|
||||
pub fn random_uncompressed_encoding_tests<G: CofactorCurve>()
|
||||
where
|
||||
<G as CofactorCurve>::Affine: UncompressedEncoding,
|
||||
{
|
||||
let mut rng = XorShiftRng::from_seed([
|
||||
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc,
|
||||
0xe5,
|
||||
|
@ -405,26 +437,11 @@ fn random_encoding_tests<G: CurveProjective>() {
|
|||
G::Affine::identity()
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
G::Affine::from_compressed(&G::Affine::identity().to_compressed()).unwrap(),
|
||||
G::Affine::identity()
|
||||
);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let mut r = G::random(&mut rng).to_affine();
|
||||
let r = G::random(&mut rng).to_affine();
|
||||
|
||||
let uncompressed = r.to_uncompressed();
|
||||
let de_uncompressed = G::Affine::from_uncompressed(&uncompressed).unwrap();
|
||||
assert_eq!(de_uncompressed, r);
|
||||
|
||||
let compressed = r.to_compressed();
|
||||
let de_compressed = G::Affine::from_compressed(&compressed).unwrap();
|
||||
assert_eq!(de_compressed, r);
|
||||
|
||||
r = r.neg();
|
||||
|
||||
let compressed = r.to_compressed();
|
||||
let de_compressed = G::Affine::from_compressed(&compressed).unwrap();
|
||||
assert_eq!(de_compressed, r);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -2,10 +2,21 @@ use byteorder::{ByteOrder, LittleEndian};
|
|||
use ff::PrimeField;
|
||||
use std::iter;
|
||||
|
||||
use super::{CurveProjective, Group};
|
||||
use super::Group;
|
||||
|
||||
/// Extension trait on a [`Group`] that provides helpers used by [`Wnaf`].
|
||||
pub trait WnafGroup: Group {
|
||||
/// Recommends a wNAF window table size given a scalar. Always returns a number
|
||||
/// between 2 and 22, inclusive.
|
||||
fn recommended_wnaf_for_scalar(scalar: &Self::Scalar) -> usize;
|
||||
|
||||
/// Recommends a wNAF window size given the number of scalars you intend to multiply
|
||||
/// a base by. Always returns a number between 2 and 22, inclusive.
|
||||
fn recommended_wnaf_for_num_scalars(num_scalars: usize) -> usize;
|
||||
}
|
||||
|
||||
/// Replaces the contents of `table` with a w-NAF window table for the given window size.
|
||||
pub(crate) fn wnaf_table<G: CurveProjective>(table: &mut Vec<G>, mut base: G, window: usize) {
|
||||
pub(crate) fn wnaf_table<G: Group>(table: &mut Vec<G>, mut base: G, window: usize) {
|
||||
table.truncate(0);
|
||||
table.reserve(1 << (window - 1));
|
||||
|
||||
|
@ -78,7 +89,7 @@ pub(crate) fn wnaf_form<S: AsRef<[u8]>>(wnaf: &mut Vec<i64>, c: S, window: usize
|
|||
///
|
||||
/// This function must be provided a `table` and `wnaf` that were constructed with
|
||||
/// the same window size; otherwise, it may panic or produce invalid results.
|
||||
pub(crate) fn wnaf_exp<G: CurveProjective>(table: &[G], wnaf: &[i64]) -> G {
|
||||
pub(crate) fn wnaf_exp<G: Group>(table: &[G], wnaf: &[i64]) -> G {
|
||||
let mut result = G::identity();
|
||||
|
||||
let mut found_one = false;
|
||||
|
@ -92,9 +103,9 @@ pub(crate) fn wnaf_exp<G: CurveProjective>(table: &[G], wnaf: &[i64]) -> G {
|
|||
found_one = true;
|
||||
|
||||
if *n > 0 {
|
||||
result.add_assign(&table[(n / 2) as usize]);
|
||||
result += &table[(n / 2) as usize];
|
||||
} else {
|
||||
result.sub_assign(&table[((-n) / 2) as usize]);
|
||||
result -= &table[((-n) / 2) as usize];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -110,7 +121,7 @@ pub struct Wnaf<W, B, S> {
|
|||
window_size: W,
|
||||
}
|
||||
|
||||
impl<G: CurveProjective> Wnaf<(), Vec<G>, Vec<i64>> {
|
||||
impl<G: Group> Wnaf<(), Vec<G>, Vec<i64>> {
|
||||
/// Construct a new wNAF context without allocating.
|
||||
pub fn new() -> Self {
|
||||
Wnaf {
|
||||
|
@ -119,7 +130,9 @@ impl<G: CurveProjective> Wnaf<(), Vec<G>, Vec<i64>> {
|
|||
window_size: (),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<G: WnafGroup> Wnaf<(), Vec<G>, Vec<i64>> {
|
||||
/// Given a base and a number of scalars, compute a window table and return a `Wnaf` object that
|
||||
/// can perform exponentiations with `.scalar(..)`.
|
||||
pub fn base(&mut self, base: G, num_scalars: usize) -> Wnaf<usize, &[G], &mut Vec<i64>> {
|
||||
|
@ -157,7 +170,7 @@ impl<G: CurveProjective> Wnaf<(), Vec<G>, Vec<i64>> {
|
|||
}
|
||||
}
|
||||
|
||||
impl<'a, G: CurveProjective> Wnaf<usize, &'a [G], &'a mut Vec<i64>> {
|
||||
impl<'a, G: Group> Wnaf<usize, &'a [G], &'a mut Vec<i64>> {
|
||||
/// Constructs new space for the scalar representation while borrowing
|
||||
/// the computed window table, for sending the window table across threads.
|
||||
pub fn shared(&self) -> Wnaf<usize, &'a [G], Vec<i64>> {
|
||||
|
@ -169,7 +182,7 @@ impl<'a, G: CurveProjective> Wnaf<usize, &'a [G], &'a mut Vec<i64>> {
|
|||
}
|
||||
}
|
||||
|
||||
impl<'a, G: CurveProjective> Wnaf<usize, &'a mut Vec<G>, &'a [i64]> {
|
||||
impl<'a, G: Group> Wnaf<usize, &'a mut Vec<G>, &'a [i64]> {
|
||||
/// Constructs new space for the window table while borrowing
|
||||
/// the computed scalar representation, for sending the scalar representation
|
||||
/// across threads.
|
||||
|
@ -184,7 +197,7 @@ impl<'a, G: CurveProjective> Wnaf<usize, &'a mut Vec<G>, &'a [i64]> {
|
|||
|
||||
impl<B, S: AsRef<[i64]>> Wnaf<usize, B, S> {
|
||||
/// Performs exponentiation given a base.
|
||||
pub fn base<G: CurveProjective>(&mut self, base: G) -> G
|
||||
pub fn base<G: Group>(&mut self, base: G) -> G
|
||||
where
|
||||
B: AsMut<Vec<G>>,
|
||||
{
|
||||
|
@ -195,7 +208,7 @@ impl<B, S: AsRef<[i64]>> Wnaf<usize, B, S> {
|
|||
|
||||
impl<B, S: AsMut<Vec<i64>>> Wnaf<usize, B, S> {
|
||||
/// Performs exponentiation given a scalar.
|
||||
pub fn scalar<G: CurveProjective>(&mut self, scalar: &<G as Group>::Scalar) -> G
|
||||
pub fn scalar<G: Group>(&mut self, scalar: &<G as Group>::Scalar) -> G
|
||||
where
|
||||
B: AsRef<[G]>,
|
||||
{
|
||||
|
|
|
@ -2,6 +2,7 @@ macro_rules! curve_impl {
|
|||
(
|
||||
$name:expr,
|
||||
$projective:ident,
|
||||
$subgroup:ident,
|
||||
$affine:ident,
|
||||
$basefield:ident,
|
||||
$scalarfield:ident,
|
||||
|
@ -100,6 +101,21 @@ macro_rules! curve_impl {
|
|||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
|
||||
pub struct $subgroup($projective);
|
||||
|
||||
impl ::std::fmt::Display for $subgroup {
|
||||
fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
|
||||
write!(f, "{}", self.0)
|
||||
}
|
||||
}
|
||||
|
||||
impl From<$subgroup> for $projective {
|
||||
fn from(val: $subgroup) -> $projective {
|
||||
val.0
|
||||
}
|
||||
}
|
||||
|
||||
impl $affine {
|
||||
fn mul_bits_u64<S: AsRef<[u64]>>(&self, bits: BitIterator<u64, S>) -> $projective {
|
||||
let mut res = $projective::identity();
|
||||
|
@ -197,11 +213,9 @@ macro_rules! curve_impl {
|
|||
}
|
||||
}
|
||||
|
||||
impl CurveAffine for $affine {
|
||||
impl CofactorCurveAffine for $affine {
|
||||
type Scalar = $scalarfield;
|
||||
type Projective = $projective;
|
||||
type Uncompressed = $uncompressed;
|
||||
type Compressed = $compressed;
|
||||
type Curve = $projective;
|
||||
|
||||
fn identity() -> Self {
|
||||
$affine {
|
||||
|
@ -219,12 +233,80 @@ macro_rules! curve_impl {
|
|||
Choice::from(if self.infinity { 1 } else { 0 })
|
||||
}
|
||||
|
||||
fn to_projective(&self) -> $projective {
|
||||
fn to_curve(&self) -> $projective {
|
||||
(*self).into()
|
||||
}
|
||||
}
|
||||
|
||||
fn from_compressed(bytes: &Self::Compressed) -> CtOption<Self> {
|
||||
Self::from_compressed_unchecked(bytes).and_then(|affine| {
|
||||
impl GroupEncoding for $projective {
|
||||
type Repr = $compressed;
|
||||
|
||||
fn from_bytes(bytes: &Self::Repr) -> CtOption<Self> {
|
||||
if let Ok(affine) = bytes.into_affine_unchecked() {
|
||||
// NB: Decompression guarantees that it is on the curve already.
|
||||
CtOption::new(
|
||||
affine.into(),
|
||||
Choice::from(if affine.is_in_correct_subgroup_assuming_on_curve() {
|
||||
1
|
||||
} else {
|
||||
0
|
||||
}),
|
||||
)
|
||||
} else {
|
||||
CtOption::new(Self::identity(), Choice::from(0))
|
||||
}
|
||||
}
|
||||
|
||||
fn from_bytes_unchecked(bytes: &Self::Repr) -> CtOption<Self> {
|
||||
if let Ok(p) = bytes.into_affine_unchecked() {
|
||||
CtOption::new(p.into(), Choice::from(1))
|
||||
} else {
|
||||
CtOption::new(Self::identity(), Choice::from(0))
|
||||
}
|
||||
}
|
||||
|
||||
fn to_bytes(&self) -> Self::Repr {
|
||||
self.to_affine().to_bytes()
|
||||
}
|
||||
}
|
||||
|
||||
impl GroupEncoding for $subgroup {
|
||||
type Repr = $compressed;
|
||||
|
||||
fn from_bytes(bytes: &Self::Repr) -> CtOption<Self> {
|
||||
if let Ok(affine) = bytes.into_affine_unchecked() {
|
||||
// NB: Decompression guarantees that it is on the curve already.
|
||||
CtOption::new(
|
||||
$subgroup(affine.into()),
|
||||
Choice::from(if affine.is_in_correct_subgroup_assuming_on_curve() {
|
||||
1
|
||||
} else {
|
||||
0
|
||||
}),
|
||||
)
|
||||
} else {
|
||||
CtOption::new(Self::identity(), Choice::from(0))
|
||||
}
|
||||
}
|
||||
|
||||
fn from_bytes_unchecked(bytes: &Self::Repr) -> CtOption<Self> {
|
||||
if let Ok(p) = bytes.into_affine_unchecked() {
|
||||
CtOption::new($subgroup(p.into()), Choice::from(1))
|
||||
} else {
|
||||
CtOption::new(Self::identity(), Choice::from(0))
|
||||
}
|
||||
}
|
||||
|
||||
fn to_bytes(&self) -> Self::Repr {
|
||||
self.0.to_bytes()
|
||||
}
|
||||
}
|
||||
|
||||
impl GroupEncoding for $affine {
|
||||
type Repr = $compressed;
|
||||
|
||||
fn from_bytes(bytes: &Self::Repr) -> CtOption<Self> {
|
||||
Self::from_bytes_unchecked(bytes).and_then(|affine| {
|
||||
// NB: Decompression guarantees that it is on the curve already.
|
||||
CtOption::new(
|
||||
affine,
|
||||
|
@ -237,7 +319,7 @@ macro_rules! curve_impl {
|
|||
})
|
||||
}
|
||||
|
||||
fn from_compressed_unchecked(bytes: &Self::Compressed) -> CtOption<Self> {
|
||||
fn from_bytes_unchecked(bytes: &Self::Repr) -> CtOption<Self> {
|
||||
if let Ok(p) = bytes.into_affine_unchecked() {
|
||||
CtOption::new(p, Choice::from(1))
|
||||
} else {
|
||||
|
@ -245,9 +327,13 @@ macro_rules! curve_impl {
|
|||
}
|
||||
}
|
||||
|
||||
fn to_compressed(&self) -> Self::Compressed {
|
||||
fn to_bytes(&self) -> Self::Repr {
|
||||
$compressed::from_affine(*self)
|
||||
}
|
||||
}
|
||||
|
||||
impl UncompressedEncoding for $affine {
|
||||
type Uncompressed = $uncompressed;
|
||||
|
||||
fn from_uncompressed(bytes: &Self::Uncompressed) -> CtOption<Self> {
|
||||
Self::from_uncompressed_unchecked(bytes).and_then(|affine| {
|
||||
|
@ -460,30 +546,28 @@ macro_rules! curve_impl {
|
|||
}
|
||||
}
|
||||
|
||||
impl<'r> ::std::ops::Add<&'r <$projective as CurveProjective>::Affine> for $projective {
|
||||
impl<'r> ::std::ops::Add<&'r $affine> for $projective {
|
||||
type Output = Self;
|
||||
|
||||
#[inline]
|
||||
fn add(self, other: &<$projective as CurveProjective>::Affine) -> Self {
|
||||
fn add(self, other: &$affine) -> Self {
|
||||
let mut ret = self;
|
||||
ret.add_assign(other);
|
||||
ret
|
||||
}
|
||||
}
|
||||
|
||||
impl ::std::ops::Add<<$projective as CurveProjective>::Affine> for $projective {
|
||||
impl ::std::ops::Add<$affine> for $projective {
|
||||
type Output = Self;
|
||||
|
||||
#[inline]
|
||||
fn add(self, other: <$projective as CurveProjective>::Affine) -> Self {
|
||||
fn add(self, other: $affine) -> Self {
|
||||
self + &other
|
||||
}
|
||||
}
|
||||
|
||||
impl<'r> ::std::ops::AddAssign<&'r <$projective as CurveProjective>::Affine>
|
||||
for $projective
|
||||
{
|
||||
fn add_assign(&mut self, other: &<$projective as CurveProjective>::Affine) {
|
||||
impl<'r> ::std::ops::AddAssign<&'r $affine> for $projective {
|
||||
fn add_assign(&mut self, other: &$affine) {
|
||||
if other.is_identity().into() {
|
||||
return;
|
||||
}
|
||||
|
@ -561,44 +645,42 @@ macro_rules! curve_impl {
|
|||
}
|
||||
}
|
||||
|
||||
impl ::std::ops::AddAssign<<$projective as CurveProjective>::Affine> for $projective {
|
||||
impl ::std::ops::AddAssign<$affine> for $projective {
|
||||
#[inline]
|
||||
fn add_assign(&mut self, other: <$projective as CurveProjective>::Affine) {
|
||||
fn add_assign(&mut self, other: $affine) {
|
||||
self.add_assign(&other);
|
||||
}
|
||||
}
|
||||
|
||||
impl<'r> ::std::ops::Sub<&'r <$projective as CurveProjective>::Affine> for $projective {
|
||||
impl<'r> ::std::ops::Sub<&'r $affine> for $projective {
|
||||
type Output = Self;
|
||||
|
||||
#[inline]
|
||||
fn sub(self, other: &<$projective as CurveProjective>::Affine) -> Self {
|
||||
fn sub(self, other: &$affine) -> Self {
|
||||
let mut ret = self;
|
||||
ret.sub_assign(other);
|
||||
ret
|
||||
}
|
||||
}
|
||||
|
||||
impl ::std::ops::Sub<<$projective as CurveProjective>::Affine> for $projective {
|
||||
impl ::std::ops::Sub<$affine> for $projective {
|
||||
type Output = Self;
|
||||
|
||||
#[inline]
|
||||
fn sub(self, other: <$projective as CurveProjective>::Affine) -> Self {
|
||||
fn sub(self, other: $affine) -> Self {
|
||||
self - &other
|
||||
}
|
||||
}
|
||||
|
||||
impl<'r> ::std::ops::SubAssign<&'r <$projective as CurveProjective>::Affine>
|
||||
for $projective
|
||||
{
|
||||
fn sub_assign(&mut self, other: &<$projective as CurveProjective>::Affine) {
|
||||
impl<'r> ::std::ops::SubAssign<&'r $affine> for $projective {
|
||||
fn sub_assign(&mut self, other: &$affine) {
|
||||
self.add_assign(&other.neg());
|
||||
}
|
||||
}
|
||||
|
||||
impl ::std::ops::SubAssign<<$projective as CurveProjective>::Affine> for $projective {
|
||||
impl ::std::ops::SubAssign<$affine> for $projective {
|
||||
#[inline]
|
||||
fn sub_assign(&mut self, other: <$projective as CurveProjective>::Affine) {
|
||||
fn sub_assign(&mut self, other: $affine) {
|
||||
self.sub_assign(&other);
|
||||
}
|
||||
}
|
||||
|
@ -649,8 +731,182 @@ macro_rules! curve_impl {
|
|||
}
|
||||
}
|
||||
|
||||
impl ::std::iter::Sum for $subgroup {
|
||||
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
|
||||
iter.fold(Self::identity(), ::std::ops::Add::add)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'r> ::std::iter::Sum<&'r $subgroup> for $subgroup {
|
||||
fn sum<I: Iterator<Item = &'r Self>>(iter: I) -> Self {
|
||||
iter.fold(Self::identity(), ::std::ops::Add::add)
|
||||
}
|
||||
}
|
||||
|
||||
impl ::std::ops::Neg for $subgroup {
|
||||
type Output = Self;
|
||||
|
||||
#[inline]
|
||||
fn neg(self) -> Self {
|
||||
$subgroup(self.0.neg())
|
||||
}
|
||||
}
|
||||
|
||||
impl<'r> ::std::ops::Add<&'r $subgroup> for $projective {
|
||||
type Output = Self;
|
||||
|
||||
#[inline]
|
||||
fn add(self, other: &$subgroup) -> Self {
|
||||
self + &other.0
|
||||
}
|
||||
}
|
||||
|
||||
impl ::std::ops::Add<$subgroup> for $projective {
|
||||
type Output = Self;
|
||||
|
||||
#[inline]
|
||||
fn add(self, other: $subgroup) -> Self {
|
||||
self + &other.0
|
||||
}
|
||||
}
|
||||
|
||||
impl<'r> ::std::ops::AddAssign<&'r $subgroup> for $projective {
|
||||
fn add_assign(&mut self, other: &$subgroup) {
|
||||
self.add_assign(&other.0)
|
||||
}
|
||||
}
|
||||
|
||||
impl ::std::ops::AddAssign<$subgroup> for $projective {
|
||||
#[inline]
|
||||
fn add_assign(&mut self, other: $subgroup) {
|
||||
self.add_assign(&other.0);
|
||||
}
|
||||
}
|
||||
|
||||
impl<'r> ::std::ops::Sub<&'r $subgroup> for $projective {
|
||||
type Output = Self;
|
||||
|
||||
#[inline]
|
||||
fn sub(self, other: &$subgroup) -> Self {
|
||||
self - &other.0
|
||||
}
|
||||
}
|
||||
|
||||
impl ::std::ops::Sub<$subgroup> for $projective {
|
||||
type Output = Self;
|
||||
|
||||
#[inline]
|
||||
fn sub(self, other: $subgroup) -> Self {
|
||||
self - &other.0
|
||||
}
|
||||
}
|
||||
|
||||
impl<'r> ::std::ops::SubAssign<&'r $subgroup> for $projective {
|
||||
fn sub_assign(&mut self, other: &$subgroup) {
|
||||
self.sub_assign(&other.0);
|
||||
}
|
||||
}
|
||||
|
||||
impl ::std::ops::SubAssign<$subgroup> for $projective {
|
||||
#[inline]
|
||||
fn sub_assign(&mut self, other: $subgroup) {
|
||||
self.sub_assign(&other.0);
|
||||
}
|
||||
}
|
||||
|
||||
impl<'r> ::std::ops::Add<&'r $subgroup> for $subgroup {
|
||||
type Output = Self;
|
||||
|
||||
#[inline]
|
||||
fn add(self, other: &$subgroup) -> Self {
|
||||
$subgroup(self.0 + &other.0)
|
||||
}
|
||||
}
|
||||
|
||||
impl ::std::ops::Add<$subgroup> for $subgroup {
|
||||
type Output = Self;
|
||||
|
||||
#[inline]
|
||||
fn add(self, other: $subgroup) -> Self {
|
||||
$subgroup(self.0 + &other.0)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'r> ::std::ops::AddAssign<&'r $subgroup> for $subgroup {
|
||||
fn add_assign(&mut self, other: &$subgroup) {
|
||||
self.0.add_assign(&other.0)
|
||||
}
|
||||
}
|
||||
|
||||
impl ::std::ops::AddAssign<$subgroup> for $subgroup {
|
||||
#[inline]
|
||||
fn add_assign(&mut self, other: $subgroup) {
|
||||
self.0.add_assign(&other.0);
|
||||
}
|
||||
}
|
||||
|
||||
impl<'r> ::std::ops::Sub<&'r $subgroup> for $subgroup {
|
||||
type Output = Self;
|
||||
|
||||
#[inline]
|
||||
fn sub(self, other: &$subgroup) -> Self {
|
||||
$subgroup(self.0 - &other.0)
|
||||
}
|
||||
}
|
||||
|
||||
impl ::std::ops::Sub<$subgroup> for $subgroup {
|
||||
type Output = Self;
|
||||
|
||||
#[inline]
|
||||
fn sub(self, other: $subgroup) -> Self {
|
||||
$subgroup(self.0 - &other.0)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'r> ::std::ops::SubAssign<&'r $subgroup> for $subgroup {
|
||||
fn sub_assign(&mut self, other: &$subgroup) {
|
||||
self.0.sub_assign(&other.0);
|
||||
}
|
||||
}
|
||||
|
||||
impl ::std::ops::SubAssign<$subgroup> for $subgroup {
|
||||
#[inline]
|
||||
fn sub_assign(&mut self, other: $subgroup) {
|
||||
self.0.sub_assign(&other.0);
|
||||
}
|
||||
}
|
||||
|
||||
impl ::std::ops::Mul<<$projective as Group>::Scalar> for $subgroup {
|
||||
type Output = Self;
|
||||
|
||||
fn mul(mut self, other: <$projective as Group>::Scalar) -> Self {
|
||||
self.0.mul_assign(&other);
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
impl<'r> ::std::ops::Mul<&'r <$projective as Group>::Scalar> for $subgroup {
|
||||
type Output = Self;
|
||||
|
||||
fn mul(mut self, other: &'r <$projective as Group>::Scalar) -> Self {
|
||||
self.0.mul_assign(other);
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
impl ::std::ops::MulAssign<<$projective as Group>::Scalar> for $subgroup {
|
||||
fn mul_assign(&mut self, other: <$projective as Group>::Scalar) {
|
||||
self.0.mul_assign(&other);
|
||||
}
|
||||
}
|
||||
|
||||
impl<'r> ::std::ops::MulAssign<&'r <$projective as Group>::Scalar> for $subgroup {
|
||||
fn mul_assign(&mut self, other: &'r <$projective as Group>::Scalar) {
|
||||
self.0.mul_assign(other)
|
||||
}
|
||||
}
|
||||
|
||||
impl Group for $projective {
|
||||
type Subgroup = Self;
|
||||
type Scalar = $scalarfield;
|
||||
|
||||
fn random<R: RngCore + ?Sized>(rng: &mut R) -> Self {
|
||||
|
@ -738,10 +994,56 @@ macro_rules! curve_impl {
|
|||
}
|
||||
}
|
||||
|
||||
impl PrimeGroup for $projective {}
|
||||
impl Group for $subgroup {
|
||||
type Scalar = $scalarfield;
|
||||
|
||||
impl CurveProjective for $projective {
|
||||
type Affine = $affine;
|
||||
fn random<R: RngCore + ?Sized>(rng: &mut R) -> Self {
|
||||
$subgroup($projective::random(rng))
|
||||
}
|
||||
|
||||
fn identity() -> Self {
|
||||
$subgroup($projective::identity())
|
||||
}
|
||||
|
||||
fn generator() -> Self {
|
||||
$subgroup($projective::generator())
|
||||
}
|
||||
|
||||
fn is_identity(&self) -> Choice {
|
||||
self.0.is_identity()
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
fn double(&self) -> Self {
|
||||
$subgroup(self.0.double())
|
||||
}
|
||||
}
|
||||
|
||||
impl PrimeGroup for $subgroup {}
|
||||
|
||||
impl CofactorGroup for $projective {
|
||||
type Subgroup = $subgroup;
|
||||
|
||||
fn mul_by_cofactor(&self) -> Self::Subgroup {
|
||||
$subgroup($affine::from(*self).scale_by_cofactor().into())
|
||||
}
|
||||
|
||||
fn into_subgroup(self) -> CtOption<Self::Subgroup> {
|
||||
CtOption::new(
|
||||
$subgroup(self),
|
||||
Choice::from(
|
||||
if $affine::from(self).is_in_correct_subgroup_assuming_on_curve() {
|
||||
1
|
||||
} else {
|
||||
0
|
||||
},
|
||||
),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl Curve for $projective {
|
||||
type AffineRepr = $affine;
|
||||
|
||||
fn batch_normalize(p: &[Self], q: &mut [$affine]) {
|
||||
assert_eq!(p.len(), q.len());
|
||||
|
@ -790,7 +1092,9 @@ macro_rules! curve_impl {
|
|||
fn to_affine(&self) -> $affine {
|
||||
(*self).into()
|
||||
}
|
||||
}
|
||||
|
||||
impl WnafGroup for $projective {
|
||||
fn recommended_wnaf_for_scalar(_: &Self::Scalar) -> usize {
|
||||
Self::empirical_recommended_wnaf_for_scalar(
|
||||
<Self::Scalar as PrimeField>::NUM_BITS as usize,
|
||||
|
@ -802,6 +1106,10 @@ macro_rules! curve_impl {
|
|||
}
|
||||
}
|
||||
|
||||
impl CofactorCurve for $projective {
|
||||
type Affine = $affine;
|
||||
}
|
||||
|
||||
// The affine point X, Y is represented in the jacobian
|
||||
// coordinates with Z = 1.
|
||||
impl From<$affine> for $projective {
|
||||
|
@ -901,7 +1209,11 @@ pub mod g1 {
|
|||
use super::{g2::G2Affine, GroupDecodingError};
|
||||
use crate::{Engine, PairingCurveAffine};
|
||||
use ff::{BitIterator, Field, PrimeField};
|
||||
use group::{CurveAffine, CurveProjective, Group, PrimeGroup};
|
||||
use group::{
|
||||
cofactor::{CofactorCurve, CofactorCurveAffine, CofactorGroup},
|
||||
prime::PrimeGroup,
|
||||
Curve, Group, GroupEncoding, UncompressedEncoding, WnafGroup,
|
||||
};
|
||||
use rand_core::RngCore;
|
||||
use std::fmt;
|
||||
use std::ops::{AddAssign, MulAssign, Neg, SubAssign};
|
||||
|
@ -910,6 +1222,7 @@ pub mod g1 {
|
|||
curve_impl!(
|
||||
"G1",
|
||||
G1,
|
||||
G1Subgroup,
|
||||
G1Affine,
|
||||
Fq,
|
||||
Fr,
|
||||
|
@ -1454,21 +1767,23 @@ pub mod g1 {
|
|||
assert!(b.is_on_curve() && b.is_in_correct_subgroup_assuming_on_curve());
|
||||
assert!(c.is_on_curve() && c.is_in_correct_subgroup_assuming_on_curve());
|
||||
|
||||
let mut tmp1 = a.to_projective();
|
||||
tmp1.add_assign(&b.to_projective());
|
||||
let mut tmp1 = a.to_curve();
|
||||
tmp1.add_assign(&b.to_curve());
|
||||
assert_eq!(tmp1.to_affine(), c);
|
||||
assert_eq!(tmp1, c.to_projective());
|
||||
assert_eq!(tmp1, c.to_curve());
|
||||
|
||||
let mut tmp2 = a.to_projective();
|
||||
let mut tmp2 = a.to_curve();
|
||||
tmp2.add_assign(&b);
|
||||
assert_eq!(tmp2.to_affine(), c);
|
||||
assert_eq!(tmp2, c.to_projective());
|
||||
assert_eq!(tmp2, c.to_curve());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn g1_curve_tests() {
|
||||
use group::tests::curve_tests;
|
||||
use group::tests::{curve_tests, random_uncompressed_encoding_tests, random_wnaf_tests};
|
||||
curve_tests::<G1>();
|
||||
random_wnaf_tests::<G1>();
|
||||
random_uncompressed_encoding_tests::<G1>();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1477,7 +1792,11 @@ pub mod g2 {
|
|||
use super::{g1::G1Affine, GroupDecodingError};
|
||||
use crate::{Engine, PairingCurveAffine};
|
||||
use ff::{BitIterator, Field, PrimeField};
|
||||
use group::{CurveAffine, CurveProjective, Group, PrimeGroup};
|
||||
use group::{
|
||||
cofactor::{CofactorCurve, CofactorCurveAffine, CofactorGroup},
|
||||
prime::PrimeGroup,
|
||||
Curve, Group, GroupEncoding, UncompressedEncoding, WnafGroup,
|
||||
};
|
||||
use rand_core::RngCore;
|
||||
use std::fmt;
|
||||
use std::ops::{AddAssign, MulAssign, Neg, SubAssign};
|
||||
|
@ -1486,6 +1805,7 @@ pub mod g2 {
|
|||
curve_impl!(
|
||||
"G2",
|
||||
G2,
|
||||
G2Subgroup,
|
||||
G2Affine,
|
||||
Fq2,
|
||||
Fr,
|
||||
|
@ -2167,8 +2487,10 @@ pub mod g2 {
|
|||
|
||||
#[test]
|
||||
fn g2_curve_tests() {
|
||||
use group::tests::curve_tests;
|
||||
use group::tests::{curve_tests, random_uncompressed_encoding_tests, random_wnaf_tests};
|
||||
curve_tests::<G2>();
|
||||
random_wnaf_tests::<G2>();
|
||||
random_uncompressed_encoding_tests::<G2>();
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -24,7 +24,7 @@ pub use self::fr::{Fr, FrRepr};
|
|||
use super::{Engine, MillerLoopResult, MultiMillerLoop};
|
||||
|
||||
use ff::{BitIterator, Field};
|
||||
use group::CurveAffine;
|
||||
use group::cofactor::CofactorCurveAffine;
|
||||
use std::ops::{AddAssign, MulAssign, Neg, SubAssign};
|
||||
|
||||
// The BLS parameter x for BLS12-381 is -0xd201000000010000
|
||||
|
|
|
@ -1,5 +1,8 @@
|
|||
use ff::PrimeField;
|
||||
use group::{CurveAffine, CurveProjective};
|
||||
use group::{
|
||||
cofactor::{CofactorCurve, CofactorCurveAffine},
|
||||
GroupEncoding, UncompressedEncoding,
|
||||
};
|
||||
|
||||
use super::*;
|
||||
use crate::*;
|
||||
|
@ -55,9 +58,12 @@ fn test_pairing_result_against_relic() {
|
|||
});
|
||||
}
|
||||
|
||||
fn uncompressed_test_vectors<G: CurveProjective>(expected: &[u8]) {
|
||||
fn uncompressed_test_vectors<G: CofactorCurve>(expected: &[u8])
|
||||
where
|
||||
G::Affine: UncompressedEncoding,
|
||||
{
|
||||
let mut e = G::identity();
|
||||
let encoded_len = <G::Affine as CurveAffine>::Uncompressed::default()
|
||||
let encoded_len = <G::Affine as UncompressedEncoding>::Uncompressed::default()
|
||||
.as_ref()
|
||||
.len();
|
||||
|
||||
|
@ -69,7 +75,7 @@ fn uncompressed_test_vectors<G: CurveProjective>(expected: &[u8]) {
|
|||
let encoded = e_affine.to_uncompressed();
|
||||
v.extend_from_slice(encoded.as_ref());
|
||||
|
||||
let mut decoded = <G::Affine as CurveAffine>::Uncompressed::default();
|
||||
let mut decoded = <G::Affine as UncompressedEncoding>::Uncompressed::default();
|
||||
decoded.as_mut().copy_from_slice(&expected[0..encoded_len]);
|
||||
expected = &expected[encoded_len..];
|
||||
let decoded = G::Affine::from_uncompressed(&decoded).unwrap();
|
||||
|
@ -82,24 +88,22 @@ fn uncompressed_test_vectors<G: CurveProjective>(expected: &[u8]) {
|
|||
assert_eq!(&v[..], expected);
|
||||
}
|
||||
|
||||
fn compressed_test_vectors<G: CurveProjective>(expected: &[u8]) {
|
||||
fn compressed_test_vectors<G: CofactorCurve>(expected: &[u8]) {
|
||||
let mut e = G::identity();
|
||||
let encoded_len = <G::Affine as CurveAffine>::Compressed::default()
|
||||
.as_ref()
|
||||
.len();
|
||||
let encoded_len = <G::Affine as GroupEncoding>::Repr::default().as_ref().len();
|
||||
|
||||
let mut v = vec![];
|
||||
{
|
||||
let mut expected = expected;
|
||||
for _ in 0..1000 {
|
||||
let e_affine = e.to_affine();
|
||||
let encoded = e_affine.to_compressed();
|
||||
let encoded = e_affine.to_bytes();
|
||||
v.extend_from_slice(encoded.as_ref());
|
||||
|
||||
let mut decoded = <G::Affine as CurveAffine>::Compressed::default();
|
||||
let mut decoded = <G::Affine as GroupEncoding>::Repr::default();
|
||||
decoded.as_mut().copy_from_slice(&expected[0..encoded_len]);
|
||||
expected = &expected[encoded_len..];
|
||||
let decoded = G::Affine::from_compressed(&decoded).unwrap();
|
||||
let decoded = G::Affine::from_bytes(&decoded).unwrap();
|
||||
assert_eq!(e_affine, decoded);
|
||||
|
||||
e.add_assign(&G::generator());
|
||||
|
@ -392,12 +396,12 @@ fn test_g2_uncompressed_invalid_vectors() {
|
|||
#[test]
|
||||
fn test_g1_compressed_invalid_vectors() {
|
||||
{
|
||||
let z = G1Affine::identity().to_compressed();
|
||||
let z = G1Affine::identity().to_bytes();
|
||||
|
||||
{
|
||||
let mut z = z;
|
||||
z.as_mut()[0] &= 0b0111_1111;
|
||||
if G1Affine::from_compressed(&z).is_none().into() {
|
||||
if G1Affine::from_bytes(&z).is_none().into() {
|
||||
// :)
|
||||
} else {
|
||||
panic!("should have rejected the point because we expected a compressed point");
|
||||
|
@ -407,7 +411,7 @@ fn test_g1_compressed_invalid_vectors() {
|
|||
{
|
||||
let mut z = z;
|
||||
z.as_mut()[0] |= 0b0010_0000;
|
||||
if G1Affine::from_compressed(&z).is_none().into() {
|
||||
if G1Affine::from_bytes(&z).is_none().into() {
|
||||
// :)
|
||||
} else {
|
||||
panic!("should have rejected the point because the parity bit should not be set if the point is at infinity");
|
||||
|
@ -417,7 +421,7 @@ fn test_g1_compressed_invalid_vectors() {
|
|||
for i in 0..G1Compressed::size() {
|
||||
let mut z = z;
|
||||
z.as_mut()[i] |= 0b0000_0001;
|
||||
if G1Affine::from_compressed(&z).is_none().into() {
|
||||
if G1Affine::from_bytes(&z).is_none().into() {
|
||||
// :)
|
||||
} else {
|
||||
panic!("should have rejected the point because the coordinates should be zeroes at the point at infinity");
|
||||
|
@ -425,12 +429,12 @@ fn test_g1_compressed_invalid_vectors() {
|
|||
}
|
||||
}
|
||||
|
||||
let o = G1Affine::generator().to_compressed();
|
||||
let o = G1Affine::generator().to_bytes();
|
||||
|
||||
{
|
||||
let mut o = o;
|
||||
o.as_mut()[0] &= 0b0111_1111;
|
||||
if G1Affine::from_compressed(&o).is_none().into() {
|
||||
if G1Affine::from_bytes(&o).is_none().into() {
|
||||
// :)
|
||||
} else {
|
||||
panic!("should have rejected the point because we expected a compressed point");
|
||||
|
@ -444,7 +448,7 @@ fn test_g1_compressed_invalid_vectors() {
|
|||
o.as_mut()[..48].copy_from_slice(m.as_ref());
|
||||
o.as_mut()[0] |= 0b1000_0000;
|
||||
|
||||
if G1Affine::from_compressed(&o).is_none().into() {
|
||||
if G1Affine::from_bytes(&o).is_none().into() {
|
||||
// x coordinate
|
||||
} else {
|
||||
panic!("should have rejected the point")
|
||||
|
@ -466,7 +470,7 @@ fn test_g1_compressed_invalid_vectors() {
|
|||
o.as_mut().copy_from_slice(x.to_repr().as_ref());
|
||||
o.as_mut()[0] |= 0b1000_0000;
|
||||
|
||||
if G1Affine::from_compressed(&o).is_none().into() {
|
||||
if G1Affine::from_bytes(&o).is_none().into() {
|
||||
break;
|
||||
} else {
|
||||
panic!("should have rejected the point because it isn't on the curve")
|
||||
|
@ -489,7 +493,7 @@ fn test_g1_compressed_invalid_vectors() {
|
|||
o.as_mut().copy_from_slice(x.to_repr().as_ref());
|
||||
o.as_mut()[0] |= 0b1000_0000;
|
||||
|
||||
if G1Affine::from_compressed(&o).is_none().into() {
|
||||
if G1Affine::from_bytes(&o).is_none().into() {
|
||||
break;
|
||||
} else {
|
||||
panic!(
|
||||
|
@ -506,12 +510,12 @@ fn test_g1_compressed_invalid_vectors() {
|
|||
#[test]
|
||||
fn test_g2_compressed_invalid_vectors() {
|
||||
{
|
||||
let z = G2Affine::identity().to_compressed();
|
||||
let z = G2Affine::identity().to_bytes();
|
||||
|
||||
{
|
||||
let mut z = z;
|
||||
z.as_mut()[0] &= 0b0111_1111;
|
||||
if G2Affine::from_compressed(&z).is_none().into() {
|
||||
if G2Affine::from_bytes(&z).is_none().into() {
|
||||
// :)
|
||||
} else {
|
||||
panic!("should have rejected the point because we expected a compressed point");
|
||||
|
@ -521,7 +525,7 @@ fn test_g2_compressed_invalid_vectors() {
|
|||
{
|
||||
let mut z = z;
|
||||
z.as_mut()[0] |= 0b0010_0000;
|
||||
if G2Affine::from_compressed(&z).is_none().into() {
|
||||
if G2Affine::from_bytes(&z).is_none().into() {
|
||||
// :)
|
||||
} else {
|
||||
panic!("should have rejected the point because the parity bit should not be set if the point is at infinity");
|
||||
|
@ -531,7 +535,7 @@ fn test_g2_compressed_invalid_vectors() {
|
|||
for i in 0..G2Compressed::size() {
|
||||
let mut z = z;
|
||||
z.as_mut()[i] |= 0b0000_0001;
|
||||
if G2Affine::from_compressed(&z).is_none().into() {
|
||||
if G2Affine::from_bytes(&z).is_none().into() {
|
||||
// :)
|
||||
} else {
|
||||
panic!("should have rejected the point because the coordinates should be zeroes at the point at infinity");
|
||||
|
@ -539,12 +543,12 @@ fn test_g2_compressed_invalid_vectors() {
|
|||
}
|
||||
}
|
||||
|
||||
let o = G2Affine::generator().to_compressed();
|
||||
let o = G2Affine::generator().to_bytes();
|
||||
|
||||
{
|
||||
let mut o = o;
|
||||
o.as_mut()[0] &= 0b0111_1111;
|
||||
if G2Affine::from_compressed(&o).is_none().into() {
|
||||
if G2Affine::from_bytes(&o).is_none().into() {
|
||||
// :)
|
||||
} else {
|
||||
panic!("should have rejected the point because we expected a compressed point");
|
||||
|
@ -558,7 +562,7 @@ fn test_g2_compressed_invalid_vectors() {
|
|||
o.as_mut()[..48].copy_from_slice(m.as_ref());
|
||||
o.as_mut()[0] |= 0b1000_0000;
|
||||
|
||||
if G2Affine::from_compressed(&o).is_none().into() {
|
||||
if G2Affine::from_bytes(&o).is_none().into() {
|
||||
// x coordinate (c1)
|
||||
} else {
|
||||
panic!("should have rejected the point")
|
||||
|
@ -570,7 +574,7 @@ fn test_g2_compressed_invalid_vectors() {
|
|||
o.as_mut()[48..96].copy_from_slice(m.as_ref());
|
||||
o.as_mut()[0] |= 0b1000_0000;
|
||||
|
||||
if G2Affine::from_compressed(&o).is_none().into() {
|
||||
if G2Affine::from_bytes(&o).is_none().into() {
|
||||
// x coordinate (c0)
|
||||
} else {
|
||||
panic!("should have rejected the point")
|
||||
|
@ -599,7 +603,7 @@ fn test_g2_compressed_invalid_vectors() {
|
|||
o.as_mut()[48..].copy_from_slice(x.c0.to_repr().as_ref());
|
||||
o.as_mut()[0] |= 0b1000_0000;
|
||||
|
||||
if G2Affine::from_compressed(&o).is_none().into() {
|
||||
if G2Affine::from_bytes(&o).is_none().into() {
|
||||
break;
|
||||
} else {
|
||||
panic!("should have rejected the point because it isn't on the curve")
|
||||
|
@ -629,7 +633,7 @@ fn test_g2_compressed_invalid_vectors() {
|
|||
o.as_mut()[48..].copy_from_slice(x.c0.to_repr().as_ref());
|
||||
o.as_mut()[0] |= 0b1000_0000;
|
||||
|
||||
if G2Affine::from_compressed(&o).is_none().into() {
|
||||
if G2Affine::from_bytes(&o).is_none().into() {
|
||||
break;
|
||||
} else {
|
||||
panic!(
|
||||
|
|
|
@ -22,7 +22,10 @@ pub mod bls12_381;
|
|||
|
||||
use core::ops::Mul;
|
||||
use ff::{Field, PrimeField};
|
||||
use group::{CurveAffine, CurveProjective, GroupOps, GroupOpsOwned, ScalarMul, ScalarMulOwned};
|
||||
use group::{
|
||||
cofactor::{CofactorCurve, CofactorCurveAffine},
|
||||
GroupOps, GroupOpsOwned, ScalarMul, ScalarMulOwned, UncompressedEncoding,
|
||||
};
|
||||
|
||||
/// An "engine" is a collection of types (fields, elliptic curve groups, etc.)
|
||||
/// with well-defined relationships. In particular, the G1/G2 curve groups are
|
||||
|
@ -32,7 +35,7 @@ pub trait Engine: Sized + 'static + Clone {
|
|||
type Fr: PrimeField;
|
||||
|
||||
/// The projective representation of an element in G1.
|
||||
type G1: CurveProjective<Scalar = Self::Fr, Affine = Self::G1Affine>
|
||||
type G1: CofactorCurve<Scalar = Self::Fr, Affine = Self::G1Affine>
|
||||
+ From<Self::G1Affine>
|
||||
+ GroupOps<Self::G1Affine>
|
||||
+ GroupOpsOwned<Self::G1Affine>
|
||||
|
@ -42,7 +45,7 @@ pub trait Engine: Sized + 'static + Clone {
|
|||
/// The affine representation of an element in G1.
|
||||
type G1Affine: PairingCurveAffine<
|
||||
Scalar = Self::Fr,
|
||||
Projective = Self::G1,
|
||||
Curve = Self::G1,
|
||||
Pair = Self::G2Affine,
|
||||
PairingResult = Self::Gt,
|
||||
> + From<Self::G1>
|
||||
|
@ -50,7 +53,7 @@ pub trait Engine: Sized + 'static + Clone {
|
|||
+ for<'a> Mul<&'a Self::Fr, Output = Self::G1>;
|
||||
|
||||
/// The projective representation of an element in G2.
|
||||
type G2: CurveProjective<Scalar = Self::Fr, Affine = Self::G2Affine>
|
||||
type G2: CofactorCurve<Scalar = Self::Fr, Affine = Self::G2Affine>
|
||||
+ From<Self::G2Affine>
|
||||
+ GroupOps<Self::G2Affine>
|
||||
+ GroupOpsOwned<Self::G2Affine>
|
||||
|
@ -60,7 +63,7 @@ pub trait Engine: Sized + 'static + Clone {
|
|||
/// The affine representation of an element in G2.
|
||||
type G2Affine: PairingCurveAffine<
|
||||
Scalar = Self::Fr,
|
||||
Projective = Self::G2,
|
||||
Curve = Self::G2,
|
||||
Pair = Self::G1Affine,
|
||||
PairingResult = Self::Gt,
|
||||
> + From<Self::G2>
|
||||
|
@ -77,7 +80,7 @@ pub trait Engine: Sized + 'static + Clone {
|
|||
|
||||
/// Affine representation of an elliptic curve point that can be used
|
||||
/// to perform pairings.
|
||||
pub trait PairingCurveAffine: CurveAffine {
|
||||
pub trait PairingCurveAffine: CofactorCurveAffine + UncompressedEncoding {
|
||||
type Pair: PairingCurveAffine<Pair = Self>;
|
||||
type PairingResult: Field;
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
use ff::{Endianness, Field, PrimeField};
|
||||
use group::{CurveAffine, CurveProjective, Group};
|
||||
use group::{cofactor::CofactorCurveAffine, Curve, Group};
|
||||
use rand_core::SeedableRng;
|
||||
use rand_xorshift::XorShiftRng;
|
||||
use std::ops::MulAssign;
|
||||
|
|
Loading…
Reference in New Issue