Add math rendering with KaTeX.
This commit is contained in:
parent
603f1ed638
commit
f3adaa923c
|
@ -9,6 +9,9 @@ repository = "https://github.com/zkcrypto/bls12_381"
|
|||
version = "0.0.0"
|
||||
edition = "2018"
|
||||
|
||||
[package.metadata.docs.rs]
|
||||
rustdoc-args = [ "--html-in-header", "katex-header.html" ]
|
||||
|
||||
[dependencies.subtle]
|
||||
version = "2.1"
|
||||
default-features = false
|
||||
|
|
|
@ -0,0 +1,15 @@
|
|||
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/katex.min.css" integrity="sha384-9eLZqc9ds8eNjO3TmqPeYcDj8n+Qfa4nuSiGYa6DjLNcv9BtN69ZIulL9+8CqC9Y" crossorigin="anonymous">
|
||||
<script src="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/katex.min.js" integrity="sha384-K3vbOmF2BtaVai+Qk37uypf7VrgBubhQreNQe9aGsz9lB63dIFiQVlJbr92dw2Lx" crossorigin="anonymous"></script>
|
||||
<script src="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/contrib/auto-render.min.js" integrity="sha384-kmZOZB5ObwgQnS/DuDg6TScgOiWWBiVt0plIRkZCmE6rDZGrEOQeHM5PcHi+nyqe" crossorigin="anonymous"></script>
|
||||
<script>
|
||||
document.addEventListener("DOMContentLoaded", function() {
|
||||
renderMathInElement(document.body, {
|
||||
delimiters: [
|
||||
{left: "$$", right: "$$", display: true},
|
||||
{left: "\\(", right: "\\)", display: false},
|
||||
{left: "$", right: "$", display: false},
|
||||
{left: "\\[", right: "\\]", display: true}
|
||||
]
|
||||
});
|
||||
});
|
||||
</script>
|
10
src/g1.rs
10
src/g1.rs
|
@ -1,13 +1,13 @@
|
|||
//! This module provides an implementation of the G1 group of BLS12-381.
|
||||
//! This module provides an implementation of the $\mathbb{G}_1$ group of BLS12-381.
|
||||
|
||||
use crate::fp::Fp;
|
||||
use subtle::Choice;
|
||||
|
||||
/// This is an element of G1 represented in the affine (x, y) coordinate space. It
|
||||
/// is ideal to keep elements in this representation to reduce memory usage and
|
||||
/// This is an element of $\mathbb{G}_1$ represented in the affine coordinate space.
|
||||
/// It is ideal to keep elements in this representation to reduce memory usage and
|
||||
/// improve performance through the use of mixed curve model arithmetic.
|
||||
///
|
||||
/// Values of `G1Affine` are guaranteed to be in the q-order subgroup unless an
|
||||
/// Values of `G1Affine` are guaranteed to be in the $q$-order subgroup unless an
|
||||
/// "unchecked" API was misused.
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub struct G1Affine {
|
||||
|
@ -16,7 +16,7 @@ pub struct G1Affine {
|
|||
infinity: Choice,
|
||||
}
|
||||
|
||||
/// This is an element of G1 represented in the projective (X, Y, Z) coordinate space.
|
||||
/// This is an element of $\mathbb{G}_1$ represented in the projective coordinate space.
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub struct G1Projective {
|
||||
x: Fp,
|
||||
|
|
10
src/g2.rs
10
src/g2.rs
|
@ -1,13 +1,13 @@
|
|||
//! This module provides an implementation of the G2 group of BLS12-381.
|
||||
//! This module provides an implementation of the $\mathbb{G}_2$ group of BLS12-381.
|
||||
|
||||
use crate::fp2::Fp2;
|
||||
use subtle::Choice;
|
||||
|
||||
/// This is an element of G2 represented in the affine (x, y) coordinate space. It
|
||||
/// is ideal to keep elements in this representation to reduce memory usage and
|
||||
/// This is an element of $\mathbb{G}_2$ represented in the affine coordinate space.
|
||||
/// It is ideal to keep elements in this representation to reduce memory usage and
|
||||
/// improve performance through the use of mixed curve model arithmetic.
|
||||
///
|
||||
/// Values of `G2Affine` are guaranteed to be in the q-order subgroup unless an
|
||||
/// Values of `G2Affine` are guaranteed to be in the $q$-order subgroup unless an
|
||||
/// "unchecked" API was misused.
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub struct G2Affine {
|
||||
|
@ -16,7 +16,7 @@ pub struct G2Affine {
|
|||
infinity: Choice,
|
||||
}
|
||||
|
||||
/// This is an element of G2 represented in the projective (X, Y, Z) coordinate space.
|
||||
/// This is an element of $\mathbb{G}_2$ represented in the projective coordinate space.
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub struct G2Projective {
|
||||
x: Fp2,
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
//! This module provides an implementation of the BLS12-381 scalar field `GF(q)`
|
||||
//! This module provides an implementation of the BLS12-381 scalar field $\mathbb{F}_q$
|
||||
//! where `q = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001`
|
||||
|
||||
use core::fmt;
|
||||
|
@ -9,7 +9,8 @@ use subtle::{Choice, ConditionallySelectable, ConstantTimeEq, CtOption};
|
|||
|
||||
use crate::util::{adc, mac, sbb};
|
||||
|
||||
/// Represents a scalar of the BLS12-381 elliptic curve construction.
|
||||
/// Represents an element of the scalar field $\mathbb{F}_q$ of the BLS12-381 elliptic
|
||||
/// curve construction.
|
||||
// The internal representation of this type is four 64-bit unsigned
|
||||
// integers in little-endian order. `Scalar` values are always in
|
||||
// Montgomery form; i.e., Scalar(a) = aR mod q, with R = 2^256.
|
||||
|
|
Loading…
Reference in New Issue