ff: Add PrimeField: From<u64> constraint

This commit is contained in:
Jack Grigg 2020-03-27 23:19:58 +13:00
parent b6457a905b
commit fd79de5408
11 changed files with 50 additions and 37 deletions

View File

@ -34,6 +34,12 @@ impl fmt::Display for Fr {
}
}
impl From<u64> for Fr {
fn from(v: u64) -> Fr {
Fr(Wrapping((v % MODULUS_R.0 as u64) as u32))
}
}
impl ConditionallySelectable for Fr {
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
Fr(Wrapping(u32::conditional_select(

View File

@ -853,6 +853,15 @@ fn prime_field_impl(
}
}
impl From<u64> for #name {
#[inline(always)]
fn from(val: u64) -> #name {
let mut raw = [0u64; #limbs];
raw[0] = val;
#name(#repr(raw)) * #name(R2)
}
}
impl From<#name> for #repr {
fn from(e: #name) -> #repr {
e.into_repr()

View File

@ -256,7 +256,7 @@ impl fmt::Display for PrimeFieldDecodingError {
}
/// This represents an element of a prime field.
pub trait PrimeField: Field {
pub trait PrimeField: Field + From<u64> {
/// The prime field can be converted back and forth into this biginteger
/// representation.
type Repr: PrimeFieldRepr + From<Self>;
@ -274,7 +274,7 @@ pub trait PrimeField: Field {
let mut res = Self::zero();
let ten = Self::from_repr(Self::Repr::from(10)).unwrap();
let ten = Self::from(10);
let mut first_digit = true;
@ -290,7 +290,7 @@ pub trait PrimeField: Field {
}
res.mul_assign(&ten);
res.add_assign(&Self::from_repr(Self::Repr::from(u64::from(c))).unwrap());
res.add_assign(&Self::from(u64::from(c)));
}
None => {
return None;

View File

@ -456,7 +456,7 @@ pub struct Fq(FqRepr);
#[test]
fn test_b_coeff() {
assert_eq!(Fq::from_repr(FqRepr::from(4)).unwrap(), B_COEFF);
assert_eq!(Fq::from(4), B_COEFF);
}
#[test]
@ -1586,7 +1586,7 @@ fn test_fq_is_valid() {
assert!(!a.is_valid());
a.0.sub_noborrow(&FqRepr::from(1));
assert!(a.is_valid());
assert!(Fq(FqRepr::from(0)).is_valid());
assert!(Fq::from(0).is_valid());
assert!(Fq(FqRepr([
0xdf4671abd14dab3e,
0xe2dc0c9f534fbd33,
@ -2193,10 +2193,7 @@ fn test_fq_root_of_unity() {
use ff::SqrtField;
assert_eq!(Fq::S, 1);
assert_eq!(
Fq::multiplicative_generator(),
Fq::from_repr(FqRepr::from(2)).unwrap()
);
assert_eq!(Fq::multiplicative_generator(), Fq::from(2));
assert_eq!(
Fq::multiplicative_generator().pow_vartime([
0xdcff7fffffffd555u64,
@ -2225,9 +2222,7 @@ fn test_fq_ordering() {
// FqRepr's ordering is well-tested, but we still need to make sure the Fq
// elements aren't being compared in Montgomery form.
for i in 0..100 {
assert!(
Fq::from_repr(FqRepr::from(i + 1)).unwrap() > Fq::from_repr(FqRepr::from(i)).unwrap()
);
assert!(Fq::from(i + 1) > Fq::from(i));
}
}

View File

@ -364,7 +364,7 @@ fn test_fq2_squaring() {
a.square(),
Fq2 {
c0: Fq::zero(),
c1: Fq::from_repr(FqRepr::from(2)).unwrap(),
c1: Fq::from(2),
}
); // 2u

View File

@ -368,7 +368,7 @@ fn test_fr_is_valid() {
assert!(!a.is_valid());
a.0.sub_noborrow(&FrRepr::from(1));
assert!(a.is_valid());
assert!(Fr(FrRepr::from(0)).is_valid());
assert!(Fr::from(0).is_valid());
assert!(Fr(FrRepr([
0xffffffff00000000,
0x53bda402fffe5bfe,
@ -961,10 +961,7 @@ fn test_fr_root_of_unity() {
use ff::SqrtField;
assert_eq!(Fr::S, 32);
assert_eq!(
Fr::multiplicative_generator(),
Fr::from_repr(FrRepr::from(7)).unwrap()
);
assert_eq!(Fr::multiplicative_generator(), Fr::from(7));
assert_eq!(
Fr::multiplicative_generator().pow_vartime([
0xfffe5bfeffffffffu64,

View File

@ -191,7 +191,7 @@ fn test_g1_uncompressed_invalid_vectors() {
loop {
let mut x3b = x.square();
x3b.mul_assign(&x);
x3b.add_assign(&Fq::from_repr(FqRepr::from(4)).unwrap()); // TODO: perhaps expose coeff_b through API?
x3b.add_assign(&Fq::from(4)); // TODO: perhaps expose coeff_b through API?
let y = x3b.sqrt();
if y.is_some().into() {
@ -331,8 +331,8 @@ fn test_g2_uncompressed_invalid_vectors() {
let mut x3b = x.square();
x3b.mul_assign(&x);
x3b.add_assign(&Fq2 {
c0: Fq::from_repr(FqRepr::from(4)).unwrap(),
c1: Fq::from_repr(FqRepr::from(4)).unwrap(),
c0: Fq::from(4),
c1: Fq::from(4),
}); // TODO: perhaps expose coeff_b through API?
let y = x3b.sqrt();
@ -428,7 +428,7 @@ fn test_g1_compressed_invalid_vectors() {
loop {
let mut x3b = x.square();
x3b.mul_assign(&x);
x3b.add_assign(&Fq::from_repr(FqRepr::from(4)).unwrap()); // TODO: perhaps expose coeff_b through API?
x3b.add_assign(&Fq::from(4)); // TODO: perhaps expose coeff_b through API?
if x3b.sqrt().is_some().into() {
x.add_assign(&Fq::one());
@ -452,7 +452,7 @@ fn test_g1_compressed_invalid_vectors() {
loop {
let mut x3b = x.square();
x3b.mul_assign(&x);
x3b.add_assign(&Fq::from_repr(FqRepr::from(4)).unwrap()); // TODO: perhaps expose coeff_b through API?
x3b.add_assign(&Fq::from(4)); // TODO: perhaps expose coeff_b through API?
if x3b.sqrt().is_some().into() {
// We know this is on the curve, but it's likely not going to be in the correct subgroup.
@ -558,8 +558,8 @@ fn test_g2_compressed_invalid_vectors() {
let mut x3b = x.square();
x3b.mul_assign(&x);
x3b.add_assign(&Fq2 {
c0: Fq::from_repr(FqRepr::from(4)).unwrap(),
c1: Fq::from_repr(FqRepr::from(4)).unwrap(),
c0: Fq::from(4),
c1: Fq::from(4),
}); // TODO: perhaps expose coeff_b through API?
if x3b.sqrt().is_some().into() {
@ -589,8 +589,8 @@ fn test_g2_compressed_invalid_vectors() {
let mut x3b = x.square();
x3b.mul_assign(&x);
x3b.add_assign(&Fq2 {
c0: Fq::from_repr(FqRepr::from(4)).unwrap(),
c1: Fq::from_repr(FqRepr::from(4)).unwrap(),
c0: Fq::from(4),
c1: Fq::from(4),
}); // TODO: perhaps expose coeff_b through API?
if x3b.sqrt().is_some().into() {

View File

@ -119,7 +119,7 @@ pub fn from_str_tests<F: PrimeField>() {
let n = rng.next_u64();
let a = F::from_str(&format!("{}", n)).unwrap();
let b = F::from_repr(n.into()).unwrap();
let b = F::from(n);
assert_eq!(a, b);
}

View File

@ -278,6 +278,15 @@ impl ::std::fmt::Display for Fs {
}
}
impl From<u64> for Fs {
#[inline(always)]
fn from(val: u64) -> Fs {
let mut raw = [0u64; 4];
raw[0] = val;
Fs(FsRepr(raw)) * Fs(R2)
}
}
impl From<Fs> for FsRepr {
fn from(e: Fs) -> FsRepr {
e.into_repr()
@ -514,7 +523,7 @@ impl Field for Fs {
#[inline]
fn zero() -> Self {
Fs(FsRepr::from(0))
Fs::from(0)
}
#[inline]
@ -1683,10 +1692,7 @@ fn test_fs_num_bits() {
#[test]
fn test_fs_root_of_unity() {
assert_eq!(Fs::S, 1);
assert_eq!(
Fs::multiplicative_generator(),
Fs::from_repr(FsRepr::from(6)).unwrap()
);
assert_eq!(Fs::multiplicative_generator(), Fs::from(6));
assert_eq!(
Fs::multiplicative_generator().pow_vartime([
0x684b872f6b7b965bu64,

View File

@ -24,7 +24,7 @@ impl<E: JubjubEngine> ValueCommitment<E> {
pub fn cm(&self, params: &E::Params) -> edwards::Point<E, PrimeOrder> {
params
.generator(FixedGenerators::ValueCommitmentValue)
.mul(self.value, params)
.mul(E::Fs::from(self.value), params)
.add(
&params
.generator(FixedGenerators::ValueCommitmentRandomness)
@ -291,7 +291,7 @@ impl<E: JubjubEngine> Note<E> {
let rho = self.cm_full_point(params).add(
&params
.generator(FixedGenerators::NullifierPosition)
.mul(position, params),
.mul(E::Fs::from(position), params),
params,
);

View File

@ -2,7 +2,7 @@
use pairing::bls12_381::Bls12;
use zcash_primitives::jubjub::{
edwards, fs::FsRepr, FixedGenerators, JubjubBls12, JubjubParams, Unknown,
edwards, fs::Fs, FixedGenerators, JubjubBls12, JubjubParams, Unknown,
};
use zcash_primitives::transaction::components::Amount;
@ -30,7 +30,7 @@ fn compute_value_balance(
// Compute it in the exponent
let mut value_balance = params
.generator(FixedGenerators::ValueCommitmentValue)
.mul(FsRepr::from(abs), params);
.mul(Fs::from(abs), params);
// Negate if necessary
if is_negative {