756 lines
22 KiB
Rust
756 lines
22 KiB
Rust
//! Circuit representation of a [`u32`], with helpers for the [`sha256`]
|
|
//! gadgets.
|
|
|
|
use ff::{Field, PrimeField, ScalarEngine};
|
|
|
|
use crate::{ConstraintSystem, LinearCombination, SynthesisError};
|
|
|
|
use super::boolean::{AllocatedBit, Boolean};
|
|
|
|
use super::multieq::MultiEq;
|
|
|
|
/// Represents an interpretation of 32 `Boolean` objects as an
|
|
/// unsigned integer.
|
|
#[derive(Clone)]
|
|
pub struct UInt32 {
|
|
// Least significant bit first
|
|
bits: Vec<Boolean>,
|
|
value: Option<u32>,
|
|
}
|
|
|
|
impl UInt32 {
|
|
/// Construct a constant `UInt32` from a `u32`
|
|
pub fn constant(value: u32) -> Self {
|
|
let mut bits = Vec::with_capacity(32);
|
|
|
|
let mut tmp = value;
|
|
for _ in 0..32 {
|
|
if tmp & 1 == 1 {
|
|
bits.push(Boolean::constant(true))
|
|
} else {
|
|
bits.push(Boolean::constant(false))
|
|
}
|
|
|
|
tmp >>= 1;
|
|
}
|
|
|
|
UInt32 {
|
|
bits,
|
|
value: Some(value),
|
|
}
|
|
}
|
|
|
|
/// Allocate a `UInt32` in the constraint system
|
|
pub fn alloc<E, CS>(mut cs: CS, value: Option<u32>) -> Result<Self, SynthesisError>
|
|
where
|
|
E: ScalarEngine,
|
|
CS: ConstraintSystem<E>,
|
|
{
|
|
let values = match value {
|
|
Some(mut val) => {
|
|
let mut v = Vec::with_capacity(32);
|
|
|
|
for _ in 0..32 {
|
|
v.push(Some(val & 1 == 1));
|
|
val >>= 1;
|
|
}
|
|
|
|
v
|
|
}
|
|
None => vec![None; 32],
|
|
};
|
|
|
|
let bits = values
|
|
.into_iter()
|
|
.enumerate()
|
|
.map(|(i, v)| {
|
|
Ok(Boolean::from(AllocatedBit::alloc(
|
|
cs.namespace(|| format!("allocated bit {}", i)),
|
|
v,
|
|
)?))
|
|
})
|
|
.collect::<Result<Vec<_>, SynthesisError>>()?;
|
|
|
|
Ok(UInt32 { bits, value })
|
|
}
|
|
|
|
pub fn into_bits_be(self) -> Vec<Boolean> {
|
|
let mut ret = self.bits;
|
|
ret.reverse();
|
|
ret
|
|
}
|
|
|
|
pub fn from_bits_be(bits: &[Boolean]) -> Self {
|
|
assert_eq!(bits.len(), 32);
|
|
|
|
let mut value = Some(0u32);
|
|
for b in bits {
|
|
value.as_mut().map(|v| *v <<= 1);
|
|
|
|
match b.get_value() {
|
|
Some(true) => {
|
|
value.as_mut().map(|v| *v |= 1);
|
|
}
|
|
Some(false) => {}
|
|
None => {
|
|
value = None;
|
|
}
|
|
}
|
|
}
|
|
|
|
UInt32 {
|
|
value,
|
|
bits: bits.iter().rev().cloned().collect(),
|
|
}
|
|
}
|
|
|
|
/// Turns this `UInt32` into its little-endian byte order representation.
|
|
pub fn into_bits(self) -> Vec<Boolean> {
|
|
self.bits
|
|
}
|
|
|
|
/// Converts a little-endian byte order representation of bits into a
|
|
/// `UInt32`.
|
|
pub fn from_bits(bits: &[Boolean]) -> Self {
|
|
assert_eq!(bits.len(), 32);
|
|
|
|
let new_bits = bits.to_vec();
|
|
|
|
let mut value = Some(0u32);
|
|
for b in new_bits.iter().rev() {
|
|
value.as_mut().map(|v| *v <<= 1);
|
|
|
|
match *b {
|
|
Boolean::Constant(b) => {
|
|
if b {
|
|
value.as_mut().map(|v| *v |= 1);
|
|
}
|
|
}
|
|
Boolean::Is(ref b) => match b.get_value() {
|
|
Some(true) => {
|
|
value.as_mut().map(|v| *v |= 1);
|
|
}
|
|
Some(false) => {}
|
|
None => value = None,
|
|
},
|
|
Boolean::Not(ref b) => match b.get_value() {
|
|
Some(false) => {
|
|
value.as_mut().map(|v| *v |= 1);
|
|
}
|
|
Some(true) => {}
|
|
None => value = None,
|
|
},
|
|
}
|
|
}
|
|
|
|
UInt32 {
|
|
value,
|
|
bits: new_bits,
|
|
}
|
|
}
|
|
|
|
pub fn rotr(&self, by: usize) -> Self {
|
|
let by = by % 32;
|
|
|
|
let new_bits = self
|
|
.bits
|
|
.iter()
|
|
.skip(by)
|
|
.chain(self.bits.iter())
|
|
.take(32)
|
|
.cloned()
|
|
.collect();
|
|
|
|
UInt32 {
|
|
bits: new_bits,
|
|
value: self.value.map(|v| v.rotate_right(by as u32)),
|
|
}
|
|
}
|
|
|
|
pub fn shr(&self, by: usize) -> Self {
|
|
let by = by % 32;
|
|
|
|
let fill = Boolean::constant(false);
|
|
|
|
let new_bits = self
|
|
.bits
|
|
.iter() // The bits are least significant first
|
|
.skip(by) // Skip the bits that will be lost during the shift
|
|
.chain(Some(&fill).into_iter().cycle()) // Rest will be zeros
|
|
.take(32) // Only 32 bits needed!
|
|
.cloned()
|
|
.collect();
|
|
|
|
UInt32 {
|
|
bits: new_bits,
|
|
value: self.value.map(|v| v >> by as u32),
|
|
}
|
|
}
|
|
|
|
fn triop<E, CS, F, U>(
|
|
mut cs: CS,
|
|
a: &Self,
|
|
b: &Self,
|
|
c: &Self,
|
|
tri_fn: F,
|
|
circuit_fn: U,
|
|
) -> Result<Self, SynthesisError>
|
|
where
|
|
E: ScalarEngine,
|
|
CS: ConstraintSystem<E>,
|
|
F: Fn(u32, u32, u32) -> u32,
|
|
U: Fn(&mut CS, usize, &Boolean, &Boolean, &Boolean) -> Result<Boolean, SynthesisError>,
|
|
{
|
|
let new_value = match (a.value, b.value, c.value) {
|
|
(Some(a), Some(b), Some(c)) => Some(tri_fn(a, b, c)),
|
|
_ => None,
|
|
};
|
|
|
|
let bits = a
|
|
.bits
|
|
.iter()
|
|
.zip(b.bits.iter())
|
|
.zip(c.bits.iter())
|
|
.enumerate()
|
|
.map(|(i, ((a, b), c))| circuit_fn(&mut cs, i, a, b, c))
|
|
.collect::<Result<_, _>>()?;
|
|
|
|
Ok(UInt32 {
|
|
bits,
|
|
value: new_value,
|
|
})
|
|
}
|
|
|
|
/// Compute the `maj` value (a and b) xor (a and c) xor (b and c)
|
|
/// during SHA256.
|
|
pub fn sha256_maj<E, CS>(cs: CS, a: &Self, b: &Self, c: &Self) -> Result<Self, SynthesisError>
|
|
where
|
|
E: ScalarEngine,
|
|
CS: ConstraintSystem<E>,
|
|
{
|
|
Self::triop(
|
|
cs,
|
|
a,
|
|
b,
|
|
c,
|
|
|a, b, c| (a & b) ^ (a & c) ^ (b & c),
|
|
|cs, i, a, b, c| Boolean::sha256_maj(cs.namespace(|| format!("maj {}", i)), a, b, c),
|
|
)
|
|
}
|
|
|
|
/// Compute the `ch` value `(a and b) xor ((not a) and c)`
|
|
/// during SHA256.
|
|
pub fn sha256_ch<E, CS>(cs: CS, a: &Self, b: &Self, c: &Self) -> Result<Self, SynthesisError>
|
|
where
|
|
E: ScalarEngine,
|
|
CS: ConstraintSystem<E>,
|
|
{
|
|
Self::triop(
|
|
cs,
|
|
a,
|
|
b,
|
|
c,
|
|
|a, b, c| (a & b) ^ ((!a) & c),
|
|
|cs, i, a, b, c| Boolean::sha256_ch(cs.namespace(|| format!("ch {}", i)), a, b, c),
|
|
)
|
|
}
|
|
|
|
/// XOR this `UInt32` with another `UInt32`
|
|
pub fn xor<E, CS>(&self, mut cs: CS, other: &Self) -> Result<Self, SynthesisError>
|
|
where
|
|
E: ScalarEngine,
|
|
CS: ConstraintSystem<E>,
|
|
{
|
|
let new_value = match (self.value, other.value) {
|
|
(Some(a), Some(b)) => Some(a ^ b),
|
|
_ => None,
|
|
};
|
|
|
|
let bits = self
|
|
.bits
|
|
.iter()
|
|
.zip(other.bits.iter())
|
|
.enumerate()
|
|
.map(|(i, (a, b))| Boolean::xor(cs.namespace(|| format!("xor of bit {}", i)), a, b))
|
|
.collect::<Result<_, _>>()?;
|
|
|
|
Ok(UInt32 {
|
|
bits,
|
|
value: new_value,
|
|
})
|
|
}
|
|
|
|
/// Perform modular addition of several `UInt32` objects.
|
|
pub fn addmany<E, CS, M>(mut cs: M, operands: &[Self]) -> Result<Self, SynthesisError>
|
|
where
|
|
E: ScalarEngine,
|
|
CS: ConstraintSystem<E>,
|
|
M: ConstraintSystem<E, Root = MultiEq<E, CS>>,
|
|
{
|
|
// Make some arbitrary bounds for ourselves to avoid overflows
|
|
// in the scalar field
|
|
assert!(E::Fr::NUM_BITS >= 64);
|
|
assert!(operands.len() >= 2); // Weird trivial cases that should never happen
|
|
assert!(operands.len() <= 10);
|
|
|
|
// Compute the maximum value of the sum so we allocate enough bits for
|
|
// the result
|
|
let mut max_value = (operands.len() as u64) * (u64::from(u32::max_value()));
|
|
|
|
// Keep track of the resulting value
|
|
let mut result_value = Some(0u64);
|
|
|
|
// This is a linear combination that we will enforce to equal the
|
|
// output
|
|
let mut lc = LinearCombination::zero();
|
|
|
|
let mut all_constants = true;
|
|
|
|
// Iterate over the operands
|
|
for op in operands {
|
|
// Accumulate the value
|
|
match op.value {
|
|
Some(val) => {
|
|
result_value.as_mut().map(|v| *v += u64::from(val));
|
|
}
|
|
None => {
|
|
// If any of our operands have unknown value, we won't
|
|
// know the value of the result
|
|
result_value = None;
|
|
}
|
|
}
|
|
|
|
// Iterate over each bit of the operand and add the operand to
|
|
// the linear combination
|
|
let mut coeff = E::Fr::one();
|
|
for bit in &op.bits {
|
|
lc = lc + &bit.lc(CS::one(), coeff);
|
|
|
|
all_constants &= bit.is_constant();
|
|
|
|
coeff.double();
|
|
}
|
|
}
|
|
|
|
// The value of the actual result is modulo 2^32
|
|
let modular_value = result_value.map(|v| v as u32);
|
|
|
|
if all_constants && modular_value.is_some() {
|
|
// We can just return a constant, rather than
|
|
// unpacking the result into allocated bits.
|
|
|
|
return Ok(UInt32::constant(modular_value.unwrap()));
|
|
}
|
|
|
|
// Storage area for the resulting bits
|
|
let mut result_bits = vec![];
|
|
|
|
// Linear combination representing the output,
|
|
// for comparison with the sum of the operands
|
|
let mut result_lc = LinearCombination::zero();
|
|
|
|
// Allocate each bit of the result
|
|
let mut coeff = E::Fr::one();
|
|
let mut i = 0;
|
|
while max_value != 0 {
|
|
// Allocate the bit
|
|
let b = AllocatedBit::alloc(
|
|
cs.namespace(|| format!("result bit {}", i)),
|
|
result_value.map(|v| (v >> i) & 1 == 1),
|
|
)?;
|
|
|
|
// Add this bit to the result combination
|
|
result_lc = result_lc + (coeff, b.get_variable());
|
|
|
|
result_bits.push(b.into());
|
|
|
|
max_value >>= 1;
|
|
i += 1;
|
|
coeff.double();
|
|
}
|
|
|
|
// Enforce equality between the sum and result
|
|
cs.get_root().enforce_equal(i, &lc, &result_lc);
|
|
|
|
// Discard carry bits that we don't care about
|
|
result_bits.truncate(32);
|
|
|
|
Ok(UInt32 {
|
|
bits: result_bits,
|
|
value: modular_value,
|
|
})
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test {
|
|
use super::UInt32;
|
|
use crate::gadgets::boolean::Boolean;
|
|
use crate::gadgets::multieq::MultiEq;
|
|
use crate::gadgets::test::*;
|
|
use crate::ConstraintSystem;
|
|
use ff::Field;
|
|
use pairing::bls12_381::Bls12;
|
|
use rand_core::{RngCore, SeedableRng};
|
|
use rand_xorshift::XorShiftRng;
|
|
|
|
#[test]
|
|
fn test_uint32_from_bits_be() {
|
|
let mut rng = XorShiftRng::from_seed([
|
|
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
|
|
0xbc, 0xe5,
|
|
]);
|
|
|
|
for _ in 0..1000 {
|
|
let v = (0..32)
|
|
.map(|_| Boolean::constant(rng.next_u32() % 2 != 0))
|
|
.collect::<Vec<_>>();
|
|
|
|
let b = UInt32::from_bits_be(&v);
|
|
|
|
for (i, bit) in b.bits.iter().enumerate() {
|
|
match *bit {
|
|
Boolean::Constant(bit) => {
|
|
assert!(bit == ((b.value.unwrap() >> i) & 1 == 1));
|
|
}
|
|
_ => unreachable!(),
|
|
}
|
|
}
|
|
|
|
let expected_to_be_same = b.into_bits_be();
|
|
|
|
for x in v.iter().zip(expected_to_be_same.iter()) {
|
|
match x {
|
|
(&Boolean::Constant(true), &Boolean::Constant(true)) => {}
|
|
(&Boolean::Constant(false), &Boolean::Constant(false)) => {}
|
|
_ => unreachable!(),
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_uint32_from_bits() {
|
|
let mut rng = XorShiftRng::from_seed([
|
|
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
|
|
0xbc, 0xe5,
|
|
]);
|
|
|
|
for _ in 0..1000 {
|
|
let v = (0..32)
|
|
.map(|_| Boolean::constant(rng.next_u32() % 2 != 0))
|
|
.collect::<Vec<_>>();
|
|
|
|
let b = UInt32::from_bits(&v);
|
|
|
|
for (i, bit) in b.bits.iter().enumerate() {
|
|
match *bit {
|
|
Boolean::Constant(bit) => {
|
|
assert!(bit == ((b.value.unwrap() >> i) & 1 == 1));
|
|
}
|
|
_ => unreachable!(),
|
|
}
|
|
}
|
|
|
|
let expected_to_be_same = b.into_bits();
|
|
|
|
for x in v.iter().zip(expected_to_be_same.iter()) {
|
|
match x {
|
|
(&Boolean::Constant(true), &Boolean::Constant(true)) => {}
|
|
(&Boolean::Constant(false), &Boolean::Constant(false)) => {}
|
|
_ => unreachable!(),
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_uint32_xor() {
|
|
let mut rng = XorShiftRng::from_seed([
|
|
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
|
|
0xbc, 0xe5,
|
|
]);
|
|
|
|
for _ in 0..1000 {
|
|
let mut cs = TestConstraintSystem::<Bls12>::new();
|
|
|
|
let a = rng.next_u32();
|
|
let b = rng.next_u32();
|
|
let c = rng.next_u32();
|
|
|
|
let mut expected = a ^ b ^ c;
|
|
|
|
let a_bit = UInt32::alloc(cs.namespace(|| "a_bit"), Some(a)).unwrap();
|
|
let b_bit = UInt32::constant(b);
|
|
let c_bit = UInt32::alloc(cs.namespace(|| "c_bit"), Some(c)).unwrap();
|
|
|
|
let r = a_bit.xor(cs.namespace(|| "first xor"), &b_bit).unwrap();
|
|
let r = r.xor(cs.namespace(|| "second xor"), &c_bit).unwrap();
|
|
|
|
assert!(cs.is_satisfied());
|
|
|
|
assert!(r.value == Some(expected));
|
|
|
|
for b in r.bits.iter() {
|
|
match *b {
|
|
Boolean::Is(ref b) => {
|
|
assert!(b.get_value().unwrap() == (expected & 1 == 1));
|
|
}
|
|
Boolean::Not(ref b) => {
|
|
assert!(!b.get_value().unwrap() == (expected & 1 == 1));
|
|
}
|
|
Boolean::Constant(b) => {
|
|
assert!(b == (expected & 1 == 1));
|
|
}
|
|
}
|
|
|
|
expected >>= 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_uint32_addmany_constants() {
|
|
let mut rng = XorShiftRng::from_seed([
|
|
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
|
|
0xbc, 0xe5,
|
|
]);
|
|
|
|
for _ in 0..1000 {
|
|
let mut cs = TestConstraintSystem::<Bls12>::new();
|
|
|
|
let a = rng.next_u32();
|
|
let b = rng.next_u32();
|
|
let c = rng.next_u32();
|
|
|
|
let a_bit = UInt32::constant(a);
|
|
let b_bit = UInt32::constant(b);
|
|
let c_bit = UInt32::constant(c);
|
|
|
|
let mut expected = a.wrapping_add(b).wrapping_add(c);
|
|
|
|
let r = {
|
|
let mut cs = MultiEq::new(&mut cs);
|
|
let r =
|
|
UInt32::addmany(cs.namespace(|| "addition"), &[a_bit, b_bit, c_bit]).unwrap();
|
|
r
|
|
};
|
|
|
|
assert!(r.value == Some(expected));
|
|
|
|
for b in r.bits.iter() {
|
|
match *b {
|
|
Boolean::Is(_) => panic!(),
|
|
Boolean::Not(_) => panic!(),
|
|
Boolean::Constant(b) => {
|
|
assert!(b == (expected & 1 == 1));
|
|
}
|
|
}
|
|
|
|
expected >>= 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_uint32_addmany() {
|
|
let mut rng = XorShiftRng::from_seed([
|
|
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
|
|
0xbc, 0xe5,
|
|
]);
|
|
|
|
for _ in 0..1000 {
|
|
let mut cs = TestConstraintSystem::<Bls12>::new();
|
|
|
|
let a = rng.next_u32();
|
|
let b = rng.next_u32();
|
|
let c = rng.next_u32();
|
|
let d = rng.next_u32();
|
|
|
|
let mut expected = (a ^ b).wrapping_add(c).wrapping_add(d);
|
|
|
|
let a_bit = UInt32::alloc(cs.namespace(|| "a_bit"), Some(a)).unwrap();
|
|
let b_bit = UInt32::constant(b);
|
|
let c_bit = UInt32::constant(c);
|
|
let d_bit = UInt32::alloc(cs.namespace(|| "d_bit"), Some(d)).unwrap();
|
|
|
|
let r = a_bit.xor(cs.namespace(|| "xor"), &b_bit).unwrap();
|
|
let r = {
|
|
let mut cs = MultiEq::new(&mut cs);
|
|
UInt32::addmany(cs.namespace(|| "addition"), &[r, c_bit, d_bit]).unwrap()
|
|
};
|
|
|
|
assert!(cs.is_satisfied());
|
|
|
|
assert!(r.value == Some(expected));
|
|
|
|
for b in r.bits.iter() {
|
|
match *b {
|
|
Boolean::Is(ref b) => {
|
|
assert!(b.get_value().unwrap() == (expected & 1 == 1));
|
|
}
|
|
Boolean::Not(ref b) => {
|
|
assert!(!b.get_value().unwrap() == (expected & 1 == 1));
|
|
}
|
|
Boolean::Constant(_) => unreachable!(),
|
|
}
|
|
|
|
expected >>= 1;
|
|
}
|
|
|
|
// Flip a bit and see if the addition constraint still works
|
|
if cs.get("addition/result bit 0/boolean").is_zero() {
|
|
cs.set("addition/result bit 0/boolean", Field::one());
|
|
} else {
|
|
cs.set("addition/result bit 0/boolean", Field::zero());
|
|
}
|
|
|
|
assert!(!cs.is_satisfied());
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_uint32_rotr() {
|
|
let mut rng = XorShiftRng::from_seed([
|
|
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
|
|
0xbc, 0xe5,
|
|
]);
|
|
|
|
let mut num = rng.next_u32();
|
|
|
|
let a = UInt32::constant(num);
|
|
|
|
for i in 0..32 {
|
|
let b = a.rotr(i);
|
|
assert_eq!(a.bits.len(), b.bits.len());
|
|
|
|
assert!(b.value.unwrap() == num);
|
|
|
|
let mut tmp = num;
|
|
for b in &b.bits {
|
|
match *b {
|
|
Boolean::Constant(b) => {
|
|
assert_eq!(b, tmp & 1 == 1);
|
|
}
|
|
_ => unreachable!(),
|
|
}
|
|
|
|
tmp >>= 1;
|
|
}
|
|
|
|
num = num.rotate_right(1);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_uint32_shr() {
|
|
let mut rng = XorShiftRng::from_seed([
|
|
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
|
|
0xbc, 0xe5,
|
|
]);
|
|
|
|
for _ in 0..50 {
|
|
for i in 0..60 {
|
|
let num = rng.next_u32();
|
|
let a = UInt32::constant(num).shr(i);
|
|
let b = UInt32::constant(num.wrapping_shr(i as u32));
|
|
|
|
assert_eq!(a.value.unwrap(), num.wrapping_shr(i as u32));
|
|
|
|
assert_eq!(a.bits.len(), b.bits.len());
|
|
for (a, b) in a.bits.iter().zip(b.bits.iter()) {
|
|
assert_eq!(a.get_value().unwrap(), b.get_value().unwrap());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_uint32_sha256_maj() {
|
|
let mut rng = XorShiftRng::from_seed([
|
|
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
|
|
0xbc, 0xe5,
|
|
]);
|
|
|
|
for _ in 0..1000 {
|
|
let mut cs = TestConstraintSystem::<Bls12>::new();
|
|
|
|
let a = rng.next_u32();
|
|
let b = rng.next_u32();
|
|
let c = rng.next_u32();
|
|
|
|
let mut expected = (a & b) ^ (a & c) ^ (b & c);
|
|
|
|
let a_bit = UInt32::alloc(cs.namespace(|| "a_bit"), Some(a)).unwrap();
|
|
let b_bit = UInt32::constant(b);
|
|
let c_bit = UInt32::alloc(cs.namespace(|| "c_bit"), Some(c)).unwrap();
|
|
|
|
let r = UInt32::sha256_maj(&mut cs, &a_bit, &b_bit, &c_bit).unwrap();
|
|
|
|
assert!(cs.is_satisfied());
|
|
|
|
assert!(r.value == Some(expected));
|
|
|
|
for b in r.bits.iter() {
|
|
match b {
|
|
&Boolean::Is(ref b) => {
|
|
assert!(b.get_value().unwrap() == (expected & 1 == 1));
|
|
}
|
|
&Boolean::Not(ref b) => {
|
|
assert!(!b.get_value().unwrap() == (expected & 1 == 1));
|
|
}
|
|
&Boolean::Constant(b) => {
|
|
assert!(b == (expected & 1 == 1));
|
|
}
|
|
}
|
|
|
|
expected >>= 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_uint32_sha256_ch() {
|
|
let mut rng = XorShiftRng::from_seed([
|
|
0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
|
|
0xbc, 0xe5,
|
|
]);
|
|
|
|
for _ in 0..1000 {
|
|
let mut cs = TestConstraintSystem::<Bls12>::new();
|
|
|
|
let a = rng.next_u32();
|
|
let b = rng.next_u32();
|
|
let c = rng.next_u32();
|
|
|
|
let mut expected = (a & b) ^ ((!a) & c);
|
|
|
|
let a_bit = UInt32::alloc(cs.namespace(|| "a_bit"), Some(a)).unwrap();
|
|
let b_bit = UInt32::constant(b);
|
|
let c_bit = UInt32::alloc(cs.namespace(|| "c_bit"), Some(c)).unwrap();
|
|
|
|
let r = UInt32::sha256_ch(&mut cs, &a_bit, &b_bit, &c_bit).unwrap();
|
|
|
|
assert!(cs.is_satisfied());
|
|
|
|
assert!(r.value == Some(expected));
|
|
|
|
for b in r.bits.iter() {
|
|
match b {
|
|
&Boolean::Is(ref b) => {
|
|
assert!(b.get_value().unwrap() == (expected & 1 == 1));
|
|
}
|
|
&Boolean::Not(ref b) => {
|
|
assert!(!b.get_value().unwrap() == (expected & 1 == 1));
|
|
}
|
|
&Boolean::Constant(b) => {
|
|
assert!(b == (expected & 1 == 1));
|
|
}
|
|
}
|
|
|
|
expected >>= 1;
|
|
}
|
|
}
|
|
}
|
|
}
|